Table 4.
The performance of prediction models in internal and external validation
| Algorithm | Dataset | Model | Accuracy | Classification report | AUC | ||
|---|---|---|---|---|---|---|---|
| Precision | Recall | f1-score | |||||
| Random forest classifier (RFC) | 10-Fold cross-validation | RFC | 0.72 ± 0.10 | – | – | – | 0.77 ± 0.08 |
| Internal validation | RF-Model-O | 0.83 | 0.84 | 0.82 | 0.83 | 0.87 | |
| Bootstrap-internal validation | RF-Model-O | 0.81 ± 0.05 | 0.83 ± 0.05 | 0.80 ± 0.07 | 0.82 ± 0.05 | 0.80 ± 0.06 | |
| External validation | RF-Model-O | 0.68 | 0.66 | 0.68 | 0.67 | 0.69 | |
| Bootstrap-external validation | RF-Model-O | 0.72 ± 0.04 | 0.77 ± 0.06 | 0.85 ± 0.03 | 0.81 ± 0.03 | 0.69 ± 0.05 | |
| Support vector classifier (SVC) | 10-Fold cross-validation | SVC | 0.69 ± 0.12 | – | – | – | 0.76 ± 0.09 |
| Internal validation | SV-Model-O | 0.78 | 0.80 | 0.78 | 0.78 | 0.82 | |
| Bootstrap-internal validation | SV-Model-O | 0.78 ± 0.08 | 0.94 ± 0.07 | 0.68 ± 0.12 | 0.81 ± 0.03 | 0.81 ± 0.09 | |
| External validation | SV-Model-O | 0.57 | 0.62 | 0.57 | 0.58 | 0.61 | |
| Bootstrap-external validation | SV-Model-O | 0.57 ± 0.06 | 0.73 ± 0.07 | 0.57 ± 0.07 | 0.64 ± 0.06 | 0.61 ± 0.07 | |
| Gradient boosting classifier (GBC) | 10-Fold cross-validation | GBC | 0.73 ± 0.07 | – | – | – | 0.79 ± 0.08 |
| Internal validation | GB-Model-O | 0.80 | 0.81 | 0.80 | 0.80 | 0.81 | |
| Bootstrap-internal validation | GB-Model-O | 0.72 ± 0.05 | 0.84 ± 0.06 | 0.67 ± 0.07 | 0.74 ± 0.06 | 0.81 ± 0.05 | |
| External validation | GB-Model-O | 0.68 | 0.66 | 0.68 | 0.67 | 0.72 | |
| Bootstrap-external validation | GB-Model-O | 0.70 ± 0.03 | 0.73 ± 0.04 | 0.86 ± 0.03 | 0.79 ± 0.03 | 0.67 ± 0.04 | |
| 7-layer perceptron model | Internal validation | Simple-DL | 0.76 | 0.7 | 0.73 | 0.71 | 0.72 |
| Dropout-DL | 0.76 | 0.7 | 0.73 | 0.71 | 0.72 | ||
| External validation | Simple-DL | 0.55 | |||||
| Dropout-DL | 0.55 | ||||||