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Abstract
Heart failure caused by iron deposits in the myocardium is the primary cause of mortality in beta-thalassemia major patients. 
Cardiac magnetic resonance imaging (CMRI) T2* is the primary screening technique used to detect myocardial iron overload, 
but inherently bears some limitations. In this study, we aimed to differentiate beta-thalassemia major patients with myocardial 
iron overload from those without myocardial iron overload (detected by T2*CMRI) based on radiomic features extracted from 
echocardiography images and machine learning (ML) in patients with normal left ventricular ejection fraction (LVEF > 55%) 
in echocardiography. Out of 91 cases, 44 patients with thalassemia major with normal LVEF (> 55%) and T2* ≤ 20 ms 
and 47 people with LVEF > 55% and T2* > 20 ms as the control group were included in the study. Radiomic features were 
extracted for each end-systolic (ES) and end-diastolic (ED) image. Then, three feature selection (FS) methods and six differ-
ent classifiers were used. The models were evaluated using various metrics, including the area under the ROC curve (AUC), 
accuracy (ACC), sensitivity (SEN), and specificity (SPE). Maximum relevance-minimum redundancy-eXtreme gradient 
boosting (MRMR-XGB) (AUC = 0.73, ACC = 0.73, SPE = 0.73, SEN = 0.73), ANOVA-MLP (AUC = 0.69, ACC = 0.69, 
SPE = 0.56, SEN = 0.83), and recursive feature elimination-K-nearest neighbors (RFE-KNN) (AUC = 0.65, ACC = 0.65, 
SPE = 0.64, SEN = 0.65) were the best models in ED, ES, and ED&ES datasets. Using radiomic features extracted from 
echocardiographic images and ML, it is feasible to predict cardiac problems caused by iron overload.
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Abbreviation
CMRI	� Cardiac magnetic resonance imaging
ML	� Machine learning

LVEF	� Left ventricular ejection fraction
ES	� End-systolic
ED	� End-diastolic
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FS	� Feature selection
AUC​	� Area under the ROC curve
SEN	� Sensitivity
SPE	� Specificity
ACC​	� Accuracy
SD	� Standard deviation
SSFP	� Steady-state free precession
IBSI	� Image biomarker standardization initiative
ANOVA	� Analysis of variance
MRMR	� Maximum relevance-minimum redundancy
RFE	� Recursive feature elimination
KNN	� K-nearest neighbors
LR	� Logistic regression
MLP	� Multi-layer perceptron
RF	� Random forest
SVM	� Support vector machine
XGB	� eXtreme gradient boosting

Introduction

One of the common forms of inherited anemia caused by a 
malfunction with hemoglobin synthesis is thalassemia [1]. 
Approximately 1.5% of people worldwide, according to a 
World Health Organization (WHO) estimate, may be thalas-
semia carriers [1]. Defects in the synthesis of hemoglobin 
chains occur in one of the forms alpha-thalassemia (reduc-
tion or lack of synthesis of alpha globin chains) and beta-
thalassemia (decrease or absence of synthesis of beta-globin 
chains) [2]. Beta-thalassemia is a genetic disorder that leads to 
the incomplete synthesis of beta-globin chains and, eventually, 
hemolytic anemia [3]. Beta-thalassemia is a common genetic 
disorder worldwide which roughly 9% of thalassemia patients 
suffer from it [4]. Beta-thalassemia is seen in one of the forms 
encompassing beta-thalassemia major, beta-thalassemia inter-
media, and beta-thalassemia minor [5].

Patients with thalassemia major require frequent blood 
transfusions due to severe anemia, and regular blood trans-
fusions cause iron overload in these patients [5]. Iron over-
load can lead to heart problems (cardiomyopathy), liver and 
endocrine gland involvement [5, 6], osteoporosis, splenomeg-
aly, chronic hepatitis, and delayed growth and sexual matu-
rity in children [5]. Among the stated complications, heart 
failure caused by iron deposition in the myocardium is the 
leading cause of mortality in 71% of beta-thalassemia major 
patients [7]. Cardiomyopathy evoked by cardiac siderosis (iron 
overload) is the most common and life-threatening issue in 
B-thalassemia major patients [5, 8]. Moreover, the life span 
of these patients is limited [9]. Hence, early recognition of 
myocardial dysfunction can lead to initiating the iron chelation 
treatment in time [4] to reverse cardiomyopathy caused by iron 
deposition [10]. However, the initial diagnosis of heart failure 

patients is difficult, as the left ventricular function is preserved 
until the later stages of the disease in these patients [9].

Identifying and measuring iron deposits, especially in the 
heart, in patients with thalassemia major with frequent injec-
tions and patients receiving chelation treatments should be 
considered. There are several methods to evaluate and control 
iron overload. Serum ferritin level, as the broadest tool with 
the lowest cost in assessing the body’s iron concentration [11], 
may change under the influence of several conditions, includ-
ing inflammation, infection, liver damage, and chelation treat-
ments. Therefore, it cannot accurately measure iron overload 
[12, 13]. Another approach to testing iron overload is liver 
biopsy, an invasive procedure with risks and complications 
[10] that cannot analyze and identify cardiac iron deposits 
[14]. In addition, due to the non-uniform distribution of iron 
in the liver, the results obtained from the biopsy may not have 
the necessary accuracy [12, 15], such that in a situation where 
a significant liver iron overload is seen, cardiac iron overload 
may not be evident [15]. On the other hand, a myocardial 
biopsy lacks the sensitivity required to identify cardiac iron 
deposits due to [14] the fragmentation of iron deposits [16].

Cardiac magnetic resonance imaging (CMRI) is a non-
invasive method to evaluate cardiac iron deposits. Moreover, 
T2*CMRI is an outstanding and non-invasive technique in 
evaluating myocardial iron deposits [17–20]. T2* relaxation 
time is a parameter in MRI that shows the speed of signal 
decay in tissues with an iron overload [21]. As cardiac iron 
deposition increases, T2* value in MRI decreases [4, 6, 8, 14, 
21, 22] because iron disrupts the magnetic field’s uniformity 
and speeds up signal decay [14, 16, 23]. Despite the advan-
tages of this technique, CMRI is costly and is not generally 
available in all medical centers [8–10, 18]. In addition, some 
patients are claustrophobic or cannot undertake MRI due to 
having metal implants or devices such as pacemaker [18].

Echocardiography is a method to identify cardiac dys-
function caused by iron overload in patients with thalas-
semia major. In studies conducted by Abtahi et al. [4] and 
Khaled et al.[13], no significant relationship was observed 
between LVEF from echocardiography and cardiac T2*. 
One of the most used imaging procedures in cardiology is 
echocardiography; however, the correct interpretation of its 
findings relies on the user’s experience and knowledge [24]. 
Artificial intelligence, machine learning (ML), and radiomic 
analysis could be potentially efficient in this era. Radiomics 
involves the extraction with high throughput of quantitative 
features from digital images to construct predictive or diag-
nostic models [25–28]. Radiomics plays an important role 
in medical image analysis, especially in cancer and cardiac 
imaging [29–34]. Radiomics extracts quantitative character-
istics from medical images and probed to hold significant 
promise in predicting factors, such as lesion malignancy, 
prognosis, and treatment response prediction (e.g., tumor 
response and recurrence risks) [35]. Radiomic biomarkers 
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can be associated with clinical observations [35] and can be 
utilized to estimate survival rates [36].

In a study conducted by Baessler et al. [37], the ability 
of texture analysis of CMRI images to distinguish between 
myocardial problems and a healthy heart was investigated 
in non-contrast cine images. Also, Cetin et al. [38] demon-
strated the ability of radiomics of CMRI images to detect 
myocardial structural changes in cases with hypertension but 
apparently healthy. Additionally, the use of artificial intel-
ligence in cardiovascular imaging is expanding quickly [24]. 
Artificial intelligence has the ability to reduce human errors 
and facilitate the identification and prediction of diseases 
and the decision-making process [24]. Numerous studies 
highlighted the effectiveness of radiomics in identifying 
changes in myocardial tissue in patients with hypertrophic 
cardiomyopathy and detecting cardiovascular changes in 
hypertensive patients with healthy hearts using CMRI [38, 
39]. However, echocardiography has certain advantages over 
CMRI, including its availability, outpatient nature, non-
invasiveness, and portability [24]. Therefore, it is crucial 
to empower echocardiography in identifying cardiovascular 
problems using radiomic features, as it is capable of offering 
the abovementioned benefits.

The main objective of this study is to utilize echocardi-
ography radiomic features and ML algorithms to identify 
individuals at risk of developing cardiac issues in the near 
future due to excessive iron accumulation in their hearts. 
These individuals have been categorized based on CMRI 
T2* results.

Materials and Methods

Study Design and Dataset

The framework of the study is shown in Fig. 1. In the follow-
ing, each part of the workflow will be elaborated.

Ninety-one patients with an age range of 15 to 50 years 
(31 ± 7.56 years) were enrolled in this study. Forty-four 
patients with thalassemia major (age: 30.40 ± 7.05 years) 
whose heart condition was examined and followed up at a 
maximum interval of 6 months by echocardiography and 
CMRI were included in the study. Patients had normal ech-
oes (LVEF > 55%) and T2* ≤ 20 ms in CMRI. In addition, 47 
people (age: 33.23 ± 7.75 years) and conditions as thalassemia 
patients who had an echo and CMRI tests conducted at a max-
imum interval of 6 months and those with LVEF > 55% and 
T2* > 20 ms were entered into the study as the control group. 
Table 1 shows the characteristics of the population investi-
gated, and in Fig. 1S, the CMRI image of two cases, including 
one T2* > 20 and one T2* ≤ 20, is presented. Patients with 
valvular heart problems, congenital heart diseases, infectious 
diseases, hypertension, liver failure, diabetes, and kidney 

diseases, as well as patients who used drugs that changed 
myocardial function, were excluded from the study.

Image Acquisition

Two-dimensional M-mode and Doppler echocardiography 
(pulsed-wave Doppler, continuous-wave Doppler, colored 
Doppler) and tissue Doppler echocardiography were per-
formed using the echocardiography system by the transtho-
racic method in supine. Left lateral decubitus positions for 
all subjects were performed to obtain a 4-chamber view. 
Within less than 6 months, patients with thalassemia major 
and those selected as the control group were subjected to 
CMRI examinations. MRI examinations were performed 
using a 1.5 Tesla scanner (Avanto-Siemens). To evaluate 
cardiac T2*, a black-blood multi-gradient echo sequence 
was obtained in short axis view with 8 echo times (TE) and 
10 mm slice thickness. In addition, fast spin echo sequences 
were routinely performed to examine the morphology of the 
heart. Myocardial function was evaluated using cine CMRI 
protocols such as steady-state free precession (SSFP) with a 
slice thickness of 8 mm and a gap of 2 mm in the short and 
long axis (2 chambers, 3 chambers, and 4 chambers).

Preprocessing and Segmentation

After obtaining the echo images in the video, the frames 
of the end-systolic (ES) and end-diastolic (ED), according 
to the patient’s electrocardiogram, were extracted from all 
the frames related to the 4-chamber view. Furthermore, fil-
tration was also done on them due to the low quality and 
high Speckle noise. The linear statistical filter DsFlsmv, 
which had the best performance and had the most negli-
gible impact on the radiomic analysis [40], was applied to 
the images to remove the noise. Finally, the filtered images 
(two frames of ES and ED) were used for segmentation. The 
ventricular septum in filtered echo images was segmented 
manually by an experienced echocardiographer and edited/ 
verified by a specialist using LIFEx v7.2.0 [41] software.

Feature Extraction

In order to extract radiomic features in LIFEx v7.2.0 soft-
ware [41], which is compliant with the image biomarker 
standardization initiative (IBSI) were used [42, 43]. All 
echo images, including ED and ES images, were resampled 
(in two-dimensional space with 1 mm intervals) and inten-
sities were quantized to 64 fixed bin number discretized 
gray levels. Because image intensities range between 0 and 
255 values and are constant in all images, this value equals 
4 fixed bin size gray levels, which results in 64 ray levels. 
Finally, 54 features were extracted from each ES and ED 
image using LIFEx v7.2.0 software. The features included 
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different types of first order (n = 21), shape (n = 1), and 
texture ((n = 32), GLCM = 7, GLRLM = 11, NGLDM = 3, 
GLZLM = 11). After extracting the features and classi-
fying the data into two classes (class 1 representing the 

patients and class 0 representing the control group), the 
data were divided into two categories: the train (75%, 36 
class 0 and 33 class 1) and the test (25%, 11 class 0 and  
11 class 1) using stratification.

Fig. 1   The framework of the current study
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Feature Selection

Before FS and the implementation of ML algorithms, some 
preprocessing on the train dataset was implemented. The 
radiomic features with zero variance were removed, and 
correlation between features was investigated using Spear-
man’s statistical analysis. One of the two features that had 
an absolute correlation coefficient > 0.90 with each other 
was removed. Then, feature standardization was done using 
Z-score. In more detail, the training dataset was standard-
ized, and the derived mean and standard deviation (SD) were 
applied to the test dataset. Analysis of variance (ANOVA), 
maximum relevance-minimum redundancy (MRMR), and 
recursive feature elimination (RFE) feature selection meth-
ods were used to select the features. Random forest is used 
as the core of the RFE feature selection approach because it 
is flexible, resistant to overfitting, computationally efficient, 
and produces feature importance scores [44].

Machine Learning

After selecting a certain number of features as input to the 
models, various types of models such as K-nearest neigh-
bors (KNN), logistic regression (LR), multi-layer percep-
tron (MLP), random forest (RF), support vector machine 
(SVM), and eXtreme gradient boosting (XGB) were applied 
to the data. The architecture of MLP can be found in the 
supplementary under the heading “The Multi-Layer Per-
ceptron (MLP) architecture”. The data were divided into 
three categories to feed the ML algorithms: first, only the 
radiomic features extracted from ED images; second, the 
radiomic features extracted from ES images; and finally, the 
combination of the features of these images (ED and ES). 
Considering 3 separate datasets, 3 FS methods, and 6 differ-
ent classifiers, a total of 54 models were implemented in this 
study. GridSearch was used to optimize hyperparameters in 
the training dataset with 10-fold cross-validation. The best 

Table 1   Demographic data of the studied patient population

SD standard deviation
a Student’s t-test
b Chi-squared test

Group Number T2* (mean ± SD) Range of T2* Age (mean ± SD) Gender Number Age (mean ± SD)

Thalassemia 
patients 
(T2* ≤ 20 ms)

44 13.37 ± 6.25 3–20 30.40 ± 7.05 Male 20 29.70 ± 7.05
Female 24 31.00 ± 7.03

Control group 
(T2* > 20 ms)

47 29.42 ± 6.33 21–45 33.23 ± 7.75 Male 19 32.05 ± 6.91
Female 28 34.03 ± 7.75

P value  < 0.0001a 0.07a 0.78b

Fig. 2   Feature selection using 
the ANOVA method based on 
scoring
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hyperparameters were chosen for the trained model, which 
was then applied to the test dataset using 1000 bootstraps.

Model’s Evaluation

Various metrics including the area under the receiver operat-
ing characteristic (ROC) curve (AUC), accuracy, specificity, 
and sensitivity were used to evaluate the performance of 
the models. In addition, all model’s AUCs were compared 
using the DeLong test [45]. The DeLong test is designed to 
compare the ROC curves of two models. It is used to exam-
ine whether the difference in AUC between two models is 
statistically significant, which shows one is more accurate 
or dependable in a certain situation. The test considers the 
data’s paired nature and produces a P value to estimate the 
significance of the observed difference [45]. P values under 
0.05 were regarded as statistically significant. Furthermore, 
feature maps of four of the most selected features with the 
highest scores across the three different FS methods were 
designed for two cases, including a case from the control 

group (T2* > 20 ms) and a case from the group of patients 
prone to develop iron overload (T2* ≤ 20 ms). The Pyradi-
omics version 3.0.1 [42] was used to generate the feature 
maps, with a kernel radius of 2, the initial value of the fea-
ture maps of 0. Moreover, the convolution operation was 
executed on batches of 10,000 voxels, utilizing the voxel-
Batch parameter. FS, classification, and statistical test were 
performed in R version 4.0 [46] using “mlr” [47], “ggplot2” 
[48], “caret” [49], and “praznik” [50] libraries.

Results

Selected Features

Three feature selection methods including ANOVA, MRMR, 
and RFE were applied on the three datasets (ED, ES, 
ED + ES), and 10 features were selected in all the datasets for 
the ANOVA and MRMR methods. Moreover, for RFE, 12, 11, 
and 8 features were selected in ED, ES, and ED&ES datasets, 

Fig. 3   Selected features using 
the MRMR method and their 
related scores

Table 2   The selected features using RFE in different datasets

ED ES ED&ES

ED_CONVENTIONAL_Skewness
ED_DISCRETIZED_HISTO_Entropy_log2
ED_DISCRETIZED_mean
ED_DISCRETIZED_Q1
ED_GLCM_Contrast
ED_GLCM_Entropy_log2
ED_GLRLM_HGRE
ED_GLRLM_LGRE
ED_GLRLM_RLNU
ED_GLZLM_LZLGE
ED_GLZLM_SZE
ED_GLZLM_SZHGE

ES_CONVENTIONAL_max
ES_CONVENTIONAL_Q1
ES_DISCRETIZED_HISTO_Energy
ES_DISCRETIZED_std
ES_GLCM_Entropy_log2
ES_GLRLM_HGRE
ES_GLRLM_LRHGE
ES_GLZLM_LGZE
ES_GLZLM_LZLGE
ES_GLZLM_SZE
ES_NGLDM_Busyness

ED_GLCM_Contrast
ED_GLRLM_HGRE
ED_GLZLM_GLNU
ES_DISCRETIZED_HISTO_Energy
ES_DISCRETIZED_mean
ES_DISCRETIZED_std
ES_GLCM_Energy
ES_GLRLM_HGRE
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Fig. 4   Distribution of radiomic features selected by three feature selection methods including ANOVA, MRMR, and RFE in three different data-
sets (ED, ES, ED + ES)



2501Journal of Digital Imaging (2023) 36:2494–2506	

1 3

respectively. Selected features with their scores for ANOVA 
and MRMR, the linear diagram, and selected features related 
to the RFE are presented in Figs. 2, 3, 2S, and Table 2, respec-
tively. Also, the distribution of selected features in different 
modes is plotted as a pie chart in Fig. 4. According to the pie 
charts, the first-order features had the largest share in different 
modes, and the shape and NGLDM had the least share.

Models’ Performance

The results of all the models used using six classifi-
ers (KNN, LR, MLP, RF, SVM, and XGB) and three FS 
(ANOVA, MRMR, and RFE) on three separate datasets 
(ED, ES, and ED&ES) are shown in Fig. 5. In addition, the 
performance of the models is evaluated using different cri-
teria of AUC, ACC, SEN, and SPE. The best models in ED, 
ES, and ED&ES datasets were MRMR-XGB (AUC = 0.73, 
ACC = 0.73, SPE = 0.73, SEN = 0.73), ANOVA-MLP 
(AUC = 0.69, ACC = 0.69, SPE = 0.56, SEN = 0.83), 
and RFE-KNN (AUC = 0.65, ACC = 0.65, SPE = 0.64, 

SEN = 0.65), respectively. Models with the best performance 
are listed in Table 3. In addition, the adjusted range for the 
hyperparameters of the different models used in this study 
is given in Table 1S in the supplementary section. At last, 
a feature map comparing a normal and thalassemia case in 
ED and ES datasets in four features among the best and most 
selected features according to the FS methods evaluated in 
this study was generated (Fig. 6).

DeLong Test

Figure 7 presents the DeLong test findings. A total of 54 
different models were implemented in this study, and the 
AUC of all these models was compared with each other 
using the DeLong test. The outcomes were categorized as 
non-significant and statistically significant (substantially 
lower or higher). ED-MRMR-XGB, ES-ANOVA-MLP, and 
ES-RFE-KNN models were among the best models of this 
study. They had 24, 21, and 16 statistically higher q values 
compared to other models, respectively.

Fig. 5   Performance of ML models in different settings including dif-
ferent datasets, feature selection methods, and classifiers. ACC: accu-
racy, SPE: specificity, SEN: sensitivity, KNN: K-nearest neighbors, 
LR: logistic regression, MLP: multi-layer perceptron, RF: random 

forest, SVM: support vector machine, XGB: eXtreme gradient boost-
ing, ANOVA: analysis of variance, MRMR: maximum relevance-
minimum redundancy, RFE: recursive feature elimination, ED: end-
diastolic, ES: end-systolic
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Discussion

Despite recent developments, heart failure resulting from 
iron deposition in patients with thalassemia major is still 
the most serious and the leading cause of death [18]. 

Furthermore, patients with thalassemia major may not have 
any symptoms, which can delay the early diagnosis of myo-
cardial dysfunction and put successful reverse disease condi-
tions at risk [10]. Iron overload identification methods such 
as serum ferritin and liver and heart biopsy have limitations 

Table 3   The best machine 
learning models

SD standard deviation, CI confidence interval, ACC​ accuracy, SPE specificity, SEN sensitivity

Dataset Model AUC ± SD
CI

ACC ± SD
CI

SEN ± SD
CI

SPE ± SD
CI

ED MRMR_XGB 0.73 ± 0.096
0.72–0.73

0.73 ± 0.094
0.72–0.73

0.73 ± 0.140
0.72–0.73

0.73 ± 0.140
0.72–0.74

ES ANOVA_MLP 0.69 ± 0.091
0.69–0.70

0.69 ± 0.092
0.69–0.70

0.83 ± 0.110
0.82–0.83

0.56 ± 0.150
0.55–0.57

ES RFE_KNN 0.68 ± 0.092
0.68–0.69

0.69 ± 0.094
0.68–0.69

0.55 ± 0.150
0.54–0.56

0.81 ± 0.120
0.81–0.82

ED&ES RFE_KNN 0.65 ± 0.092
0.64–0.65

0.65 ± 0.088
0.64–0.65

0.65 ± 0.140
0.64–0.66

0.64 ± 0.150
0.63–0.65

ES MRMR_MLP 0.65 ± 0.093
0.64–0.66

0.65 ± 0.090
0.64–0.66

0.65 ± 0.150
0.64–0.66

0.65 ± 0.140
0.64–0.66

Fig. 6   Comparison of normal and thalassemia cases using a feature map approach in four different features to visualize voxel-wise radiomic fea-
ture. ED: end-diastole, ES: end-systole



2503Journal of Digital Imaging (2023) 36:2494–2506	

1 3

and cannot be used as a reliable and accurate method to 
evaluate myocardial iron concentration [15]. T2*CMRI is an 
outstanding and non-invasive diagnostic technique in iden-
tifying cardiac iron content [10], although obstacles such as 
being expensive and time-consuming, not being generally 
available in all medical centers, and the presence of contrain-
dications for MRI prevent its widespread use [18]. Echo-
cardiography can also evaluate heart failure resulting from 
iron deposition. Availability, outpatient, and portable are the 
advantages of echo; nevertheless, the interpretation of this 
method highly depends on the user’s knowledge and experi-
ence [24]. In this study, the CMRI findings are utilized to 
categorize participants into two groups: normal and prone to 
thalassemia. It should be emphasized that while echo results 
were comparable (LEFV > 55%) in all patients, those with 
T2* ≤ 20 ms were more likely to experience future cardiac 
issues. In order to categorize patients and determine who 
is most likely to experience cardiac difficulties owing to 

iron overload in the future, radiomic features of echo images 
were used. As was already noted, early identification of 
these individuals can have a crucial role in the treatment 
process and reducing the mortality rate. To the best of our 
knowledge, this study is the first attempt to identify cardiac 
problems caused by iron overload using radiomic features 
extracted from echo images and ML based on T2* values 
obtained from MRI. In previous studies [6, 8–10, 17, 18, 
51], statistical tests and software determined the correlation 
between T2* and echo parameters.

According to Fig. 4, first-order, GLRLM, and GLZLM 
were the most frequent features in three FS methods. In 
detail, in the ANOVA method, first-order (50%) and GLZLM 
(20%) features; in the MRMR method, the first-order (47%) 
and GLRLM (23%) features; and in the RFE method, the 
first-order (36%) and GLRLM (23%) features were the most 
frequent. Shape features were not selected in any FS methods 
because these features have no relationship with the amount 

Fig. 7   Model performance is compared using the DeLong test, which 
is run on the models’ AUCs. In this figure, the models on column and 
row were evaluated against each other. Green, if the row model con-
siderably outperformed the column model in terms of P value; red, if 

the row model’s P value was much lower than the column model’s. If 
the comparison between the row model and column model yielded a 
non-significant P value, light blue would be the color
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of iron deposition and the amount of T2* in the septal area. 
Among the features selected by the ANOVA method, the 
highest scores in ED, ES, and ED&ES datasets belonged 
to the first quartile of discretized (DISCRETIZED_Q1), 
GLRLM_High Gray-Level Run Emphasis (HGRE), and 
GLCM_Energy features, respectively (Fig. 2). Joint Energy 
as one of the GLCM features evaluates the homogeneity pat-
terns in the myocardium [31] and HGRE as GLRLM feature 
determines the distribution of the higher gray level values 
[43]. An effective substitute for the coefficient of variance 
is the quartile coefficient of dispersion. The first quartile 
(Q1) also evaluates the distribution of gray level values [43]. 
Then, among the features selected by the MRMR method, the 
highest scores in ED, ES, and ED&ES datasets belonged to 
the GLCM_Correlation, GLCM_Dissimilarity, and GLCM_
Dissimilarity features, respectively (Fig. 3). Correlation as 
GLCM feature measures the linear dependency of gray 
levels and dissimilarity shows the local intensity variation 
[42]. Although, as in CMRI images, iron deposits cause the 
myocardium containing iron overload to have a lower signal 
and intensity compared to normal tissue [11], in echocardiog-
raphy images, iron accumulation leads to the heterogeneous 
distribution of the intensity of gray levels. These radiomic 
features will help identify patients without any heart failure.

Barzin et al. [18] stated that all diastolic functional indi-
cators, except for early (E) and late (A) transmitral peak flow 
velocity ratio (E⁄A), exhibit a notable relationship with T2*. 
In our research, the radiomic features showed that diastolic 
indices are related to the T2* parameter. Meanwhile, in the 
study of Aypar et al. [10], diastolic dysfunction was seen 
locally in the septal wall in patients with thalassemia major. 
In our study, the radiomics from diastolic were obtained 
from the segmentation area (septum) and had the highest 
score and importance in the ANOVA method.

Model explainability seeks to identify a distinctive set of 
biomarkers, known as a signature, to potentially predict a 
clinical outcome, such as a diagnosis, prognosis, or response 
to treatment. In the realm of radiomics, intriguing research has 
been carried out recently. However, there is a lack of emphasis 
on developing explainable models. The essence of explainable 
models lies in their ability to gain approval and trust from 
physicians in clinical setting. When a model is developed, it 
becomes crucial to demonstrate to physicians that it is not just 
a black-box computerized system. By providing explanations 
for the model’s outcomes, it can foster confidence and encour-
age the utilization of these models in practice [39].

The important issue is that many of the developed models 
are not easily interpretable. Physicians and clinicians can-
not easily understand and subsequently trust them because 
of their black-box nature [39]. In Fig. 6, the four features 
that had the highest scores and the most selections among 
different FS methods were visualized by voxel-wise feature 
extraction for different classes. Entropy, from first-order 

features, provides randomness of the intensity distribution in 
the region of interest (ROI). A lower entropy value denotes 
a more uniform distribution, while a greater value reflects 
a more heterogeneous intensity [43, 52]. Dissimilarity, a 
GLCM-derived feature, measures the difference between 
adjacent pixel intensities, revealing changes in intensity val-
ues and indicating texture edges or sharp transitions. Higher 
dissimilarity values indicate greater contrast and variation, 
while lower values suggest more uniformity [43, 52]. HGRE, 
a GLRLM-derived feature, shows the image frequency and 
length of runs of consecutive pixel values. It measures the 
importance or weighting of the image’s longer runs with 
higher gray-level values and emphasizes the dominance or 
prevalence of runs with high values for the gray level [43, 
52]. Small Zone High Gray-Level Emphasis (SZHGE), a 
GLZLM-derived feature, evaluates the significance or prior-
itization given to smaller zones containing higher gray-level 
values within the image. It offers insights into these small 
zones’ frequency and dominance, characterized by elevated 
gray-level values [43, 52]. The mean value of entropy and 
GLCM dissimilarity was higher, and the mean value of 
GLRLM_HGRE and GLZLM_SZHGE was lower in the 
control group both in ES and ED datasets. Our hypothesis 
regarding the former two features is that the formation of 
iron overload may have reduced the amount of dissimilarity 
and randomness of the intensity, which caused these val-
ues to be lower in patients compared to the control group. 
In terms of the latter two features, it can be hypothetically 
related to the points where iron overload is developing.

In the ED dataset, the MRMR-XGB model achieved the 
best result. In the ES dataset, the top models were MLP 
using ANOVA and KNN using RFE. In the ED&ES dataset, 
RFE-KNN had the best result. The results of the models in 
the ED dataset are superior to those of each set of features. 
The explanation is that the motion of the heart is the lowest 
in the mid-to-end-diastolic phase; this probably causes the 
distortion of the features to occur less and get a better result.

According to our findings, using radiomics extracted 
from echo images, it is possible to classify individuals 
which are labeled according to CMRI T2*. Meanwhile, 
the subjects examined in this study had normal results in 
terms of LVEF, and no dysfunction was evident. In other 
words, based on image analysis, echo radiomic features are 
related to the T2* value. While in conventional echocardi-
ography studies, Moussavi et al. [21] found no remarkable 
association between T2*MRI and echocardiographic results. 
Vogel et al. [9] stated that the sensitivity of tissue doppler 
echocardiography in detecting abnormal iron load is 88%, 
and its specificity is 65%. In contrast, 73% of sensitivity 
and 73% of specificity in the MRMR-XGB model and 83% 
sensitivity and 56% specificity in the ANOVA-MLP model 
were achieved in our study. Aypar et al. [10] also concluded 
that when the mid-septal Sm ≤ 5.7 cm⁄s, the tissue Doppler 
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echocardiography sensitivity is 63%, and the specificity is 
83%, and when the mid-septal Em ≤ 12.1 cm⁄s, the sensi-
tivity is 75%, and the specificity is 75%. Djer et al. [17] 
claimed no significant relationship exists between T2* and 
left ventricular systolic indices. While in our study ANOVA-
MLP among the models applied on the ES dataset (AUC: 
0.69, SPE: 0.56, SEN: 0.83, and ACC: 0.69) had the best 
performance in diagnosis of cardiac problems caused by iron 
overload. ANOVA-MLP is considered among the top three 
models. Since systolic dysfunction occurs late in the disease 
process, this finding can be significant.

Our study emphasizes the high ability of radiomics in 
the early detection of cardiomyopathy resulting from iron 
deposition in conditions where LVEF is preserved. There-
fore, the presented findings could potentially help physi-
cians make decisions regarding heart failure caused by iron 
deposition using echo images. In such a way, physicians can 
successfully reverse the condition of cardiomyopathy and 
prevent the progression of the disease with early diagno-
sis. Furthermore, since echocardiography has a lower cost 
than a method like MRI and is available in most centers, 
this method is cost-effective in evaluating heart failure in 
patients with thalassemia. In addition, echocardiography is 
non-invasive as well as portable.

This study had some limitations. First, we have a small 
sample size as we select patients with echo and CMRI stud-
ies in short time intervals with a max 6-month duration; a 
larger sample in future studies would be of more value. In 
this study, data were collected from one center. To ensure 
the models’ generalizability, collecting data from different 
centers and evaluating model performance across different 
centers is necessary. As RFE only benefited from the RF 
model, it is possible that the features selected may not be 
the most optimal choice for other classifiers.

Conclusion

The ED-MRMR-XGB has presented promising and accept-
able results among ML algorithms. According to the results 
of the echo images, the individuals in the study had the same 
conditions (LVEF > 55%), but they were different based on 
the CMRI results, which were labeled accordingly, and then 
using the radiomic features extracted from the echo images 
and ML approaches were classified. Although the results of 
LVEF from echo were similar, by using the radiomic features 
extracted from these images, our models obtained promising 
results, which indicate that with non-invasive, inexpensive, 
portable, and highly accessible echocardiography, it is pos-
sible to identify who is prone to suffer from heart problems 
caused by iron overload in the near future and this can lead 
to a proper treatment to prevent cardiac problems and death 
of these patients. Therefore, early diagnosis of heart failure, 

even before the appearance of symptoms, has been made 
possible by radiomics of echo images and ML.
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