Skip to main content
. 2023 Sep 21;36(6):2494–2506. doi: 10.1007/s10278-023-00891-0

Table 3.

The best machine learning models

Dataset Model AUC ± SD
CI
ACC ± SD
CI
SEN ± SD
CI
SPE ± SD
CI
ED MRMR_XGB

0.73 ± 0.096

0.72–0.73

0.73 ± 0.094

0.72–0.73

0.73 ± 0.140

0.72–0.73

0.73 ± 0.140

0.72–0.74

ES ANOVA_MLP

0.69 ± 0.091

0.69–0.70

0.69 ± 0.092

0.69–0.70

0.83 ± 0.110

0.82–0.83

0.56 ± 0.150

0.55–0.57

ES RFE_KNN

0.68 ± 0.092

0.68–0.69

0.69 ± 0.094

0.68–0.69

0.55 ± 0.150

0.54–0.56

0.81 ± 0.120

0.81–0.82

ED&ES RFE_KNN

0.65 ± 0.092

0.64–0.65

0.65 ± 0.088

0.64–0.65

0.65 ± 0.140

0.64–0.66

0.64 ± 0.150

0.63–0.65

ES MRMR_MLP

0.65 ± 0.093

0.64–0.66

0.65 ± 0.090

0.64–0.66

0.65 ± 0.150

0.64–0.66

0.65 ± 0.140

0.64–0.66

SD standard deviation, CI confidence interval, ACC accuracy, SPE specificity, SEN sensitivity