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Evaluating the COVID‑19 
vaccination program in Japan, 
2021 using the counterfactual 
reproduction number
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Hiroshi Nishiura 1*

Japan implemented its nationwide vaccination program against COVID-19 in 2021, immunizing more 
than one million people (approximately 1%) a day. However, the direct and indirect impacts of the 
program at the population level have yet to be fully evaluated. To assess the vaccine effectiveness 
during the Delta variant (B.1.617.2) epidemic in 2021, we used a renewal process model. A 
transmission model was fitted to the confirmed cases from 17 February to 30 November 2021. In the 
absence of vaccination, the cumulative numbers of infections and deaths during the study period were 
estimated to be 63.3 million (95% confidence interval [CI] 63.2–63.6) and 364,000 (95% CI 363–366), 
respectively; the actual numbers of infections and deaths were 4.7 million and 10,000, respectively. 
Were the vaccination implemented 14 days earlier, there could have been 54% and 48% fewer cases 
and deaths, respectively, than the actual numbers. We demonstrated the very high effectiveness of 
COVID-19 vaccination in Japan during 2021, which reduced mortality by more than 97% compared 
with the counterfactual scenario. The timing of expanding vaccination and vaccine recipients could be 
key to mitigating the disease burden of COVID-19. Rapid and proper decision making based on firm 
epidemiological input is vital.

Vaccination against coronavirus disease (COVID-19) was widely implemented at nationwide and global scale; 
therefore, its evaluation at population level, including direct and indirect effects, is key for assessing this policy 
program1–3. For instance, Japan implemented a nationwide vaccination program against COVID-19 in 2021 using 
mRNA vaccines and prioritizing health care professionals from February 2021, then older adults aged ≥ 65 years 
and those with underlying comorbidities, followed by younger individuals. For mass vaccination, the Pfizer/
BioNTech mRNA vaccine (BNT162b2) using ancestral severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) strain was utilized. The Moderna vaccine (mRNA-1273) was also used for a part of the vaccination 
rollout and also for vaccination in the workplace. Immunization was conducted to cover more than one million 
people (approximately 1%) a day when the pace of vaccination was at its peak. Therefore, post-hoc evaluation is 
essential to understand how influential the program was at population level. Alongside the vaccination program, 
various public health and social measures (PHSM) were implemented, including the declaration of the state of 
emergency and contact tracing4. These measures aimed to suppress virus transmission even temporarily, thereby 
alleviating the burden on healthcare facilities and protecting the health infrastructure. Despite these efforts, 
the virus posed significant challenges, partly due to the emergence of new variants with elevated transmissibil-
ity including Alpha (B.1.1.7) and Delta (B.1.617.2) variants, imposing additional difficulties in controlling the 
spread of SARS-CoV-25–7.

In evaluating the indirect effects of vaccination owing to reduced opportunities for infection and decreased 
transmissibility (e.g., herd immunity effect), the epidemiological evaluation of population-level effectiveness calls 
for statistical methods8–11. For direct effects only (i.e., whether vaccinated individuals are protected biologically 
by comparing vaccinated and unvaccinated people), the estimation is simpler, as reported in many countries12–16, 
including estimates in Japan17. However, evaluation of population-level effects are scarce (mainly in the United 
States and Israel)18,19, although global estimates have been reported20. Whereas the indirect effectiveness of 
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vaccination has been understudied, the related published studies imply that the impact of herd immunity has 
been substantial during the pre-Omicron period of the COVID-19 pandemic18,19.

The present study is focused on the post-hoc evaluation of the vaccination program in Japan where the 
mortality impact of COVID-19 has been one of the lowest among countries belonging to the Organization for 
Economic Cooperation and Development21. Calculating the counterfactual scenario, herein, we aimed to esti-
mate the total effectiveness of COVID-19 vaccination in Japan in 2021, during which the course of the primary 
series of the vaccination program was completed and third dose (or booster dose) was not administered yet. We 
further examined scenarios involving different timing and recipients of vaccination.

Results
Addressing age-dependent heterogeneity along with vaccination coverage, our transmission model successfully 
captured the observed data during the primary series of the vaccination program in Japan (Fig. 1 and Supple-
mentary Fig. S8). Whereas the prototype model in Fig. 1 unrealistically assumed that observed cases represented 
all infected individuals (i.e., ascertainment bias factor at 1), hereinafter, we present results using other plausible 
reporting coverages, i.e., 0.125, 0.25, and 0.50, as shown in Supplementary Fig. S9 and Supplementary Table S1.

Hypothetical cumulative numbers of infections and deaths from February to November 2021 were explored 
in the absence of vaccination by different reporting coverages (Table 1). We found that the cumulative number of 
infections differed, from 63.3 million (95% CI 63.2–63.6) to 72.0 million (95% CI 71.4–72.6) cases for reporting 
coverages of 0.25 and 0.50, respectively. The possible cumulative number of deaths without vaccination ranged 
from 213,000 (95% CI 212–213) to 860,000 (95% CI 850–869) deaths for reporting coverage from 0.125 to 0.50. 
Compared with variations in cases, variations in deaths were broader because the infection fatality risk also 
varied by reporting coverage (Supplementary Figs. S10 and S11).

Figure 1.   Comparison between predicted and observed infections with SARS-CoV-2. Orange dots represent 
the observed daily incidence of infection with SARS-CoV-2 during the primary series of the vaccination 
program from 17 February to 30 November 2021. Green line denotes the predicted daily incidence, computed 
by the transmission model, with 95% confidence intervals highlighted as light green areas. The observed number 
of COVID-19 cases is the same as the confirmed cases in this figure (i.e., we assumed that no ascertainment bias 
existed); in the main study, we examined realistic ranges of ascertainment bias.

Table 1.   Cumulative numbers of infections and deaths owing to COVID-19 without vaccination according 
to reporting coverage. a Values inside the parentheses represent 95% confidence intervals computed using the 
parametric bootstrap method.

Reporting coverage Infections (thousand) Deaths (thousand)

0.50 72,015 (71,406–72,621)a 860 (850–869)

0.25 63,344 (63,242–63,562) 364 (363–366)

0.125 71,457 (71,338–71,646) 213 (212–213)
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Here, we present the results based on the assumption that the reporting coverage was 0.25, i.e., the actual 
number of infections was four times greater than observed (confirmed) cases22. The epidemic size varied greatly 
with the counterfactual vaccination scenario (Fig. 2A). If the vaccination program had been conducted 14 days 
earlier than the actual pace, the peak of daily incidence would have decreased by 73%, i.e., 98,368 infections 
(or four times the observed) versus 26,149 (95% CI 24,354–27,952) infections in the early schedule scenario. 
However, if the program had taken place 14 days later than the actual schedule, the peak of daily incidence would 
have reached 263,220 (95% CI 250,387–276,173) infections, and the maximum daily incidence was estimated 
to be 33,004 (95% CI 30,996–35,258) infections in the elevated coverage scenario. Using the estimated number 
of infections over time, we calculated the effective reproduction number, interpreted as the average number of 
infections generated by a single primary case at a certain time (Fig. 2B). We also computed the line represent-
ing the effective reproduction number in the scenario without vaccination. The discrepancies among scenarios 
became recognizable when the vaccination program was accelerated around June–July 2021, sharing similar 
incidence patterns (Fig. 2A). Comparing Fig. 2A and B, the peak height of the effective reproduction number 
did not necessarily correspond to the magnitude of the epidemic.

Table 2 presents the cumulative number of infections with SARS-CoV-2 by age group and counterfactual 
scenario. Whereas the early schedule and elevated coverage scenarios respectively could have contributed to 
reductions of 54% and 47% overall, the late schedule scenario could have led to an increase in infections of 
117%, reaching more than 10 million infections by the end of November 2021. In all examined scenarios, young 
adults aged 20–29 years yielded the greatest number of infections whereas the relative and absolute reductions 
with better vaccination programs than the actual program were comparable among people aged 10–49 years.

The cumulative numbers of deaths by age group and counterfactual scenario are summarized in Table 3. 
Mortality in older people was more sensitive to different vaccination scenarios. In the late schedule scenario, 
the relative increase in the number of deaths was estimated to be 50%, i.e., this scenario yielded more than 5000 
additional deaths by the end of November 2021.

Discussion
Whereas Japan successfully implemented its primary series of vaccination against COVID-19, reaching 75% 
coverage by the end of November 202123, a pressing question has been how successful the program was during 
the pre-Omicron period. The present study revealed that without the vaccination program, the cumulative num-
bers of infections and deaths would have been 63.3 million (95% CI 63.2–63.6) and 364,000 (95% CI 363–366), 
respectively, assuming that confirmed cases represented 25% of infections. Despite the immense impact of the 
program, had vaccination been implemented 14 days earlier, there could have been 54% and 48% fewer cases and 
deaths, respectively, than the observed numbers. These figures represent the averted number of cases and deaths, 
and such estimates contrast to vaccine effectiveness (or efficacy) estimate at an individual level via randomized 
controlled trial or cohort study design, i.e., the averted number estimates require the vaccination coverage at 
the population level (possibly in real time), and additional datasets, including transmission dynamics, need to 

Figure 2.   Impact of the primary series of the vaccination program on cases and the effective reproduction 
number. (A) Number of infections with SARS-CoV-2 from 17 February to 30 November 2021 according to 
counterfactual vaccination scenarios. Each line represents a different scenario with 95% confidence intervals 
highlighted as the light colored area; blue dots denote actual numbers of infections. (B) Effective reproduction 
number by vaccination scenario from 4 March to 30 November 2021. The colors are the same as in Fig. 3A. 
Blue dots represent the effective reproduction number estimated using the actual estimated infections shown in 
Fig. 3A. The pink-colored line represents the counterfactual scenario without vaccination. The red dashed line 
describes the threshold of the effective reproduction number, which is equal to 1. The number of infections was 
calculated assuming that the reporting coverage is 0.25.
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be analyzed to clarify the indirect effect of vaccination. The use of renewal process models enabled us to dem-
onstrate the critical importance of the pace of the vaccination program and the prioritizing of vaccine recipients 
in determining the disease burden associated with COVID-19.

A critical take-home message from the present study is that the indirect effect of vaccination was enormous 
in Japan. The numbers of prevented infections and deaths were 13.5 and 36.4 times the empirically observed 
counts, respectively. In other words, the total effectiveness of the vaccination program in preventing infection 
and death was estimated at 92.6% and 97.2%, respectively. Of these fractions, the direct effect (i.e., comparison 
of risks between vaccinated and unvaccinated cases) that we estimated earlier17 accounted for only 3.6% and 
5.1%, respectively, and the indirect effect (i.e., comparison of risks between actual and counterfactual courses 
of the epidemic) was as large as 89.0% and 92.1% reductions in infections and deaths, respectively. Such dif-
ferences were seen because the incidence in Japan remained relatively lower than those in Western countries 
owing to PHSM, e.g., less than 5% of the population was reported as a COVID-19 case by the end of 2021. 
Clarifying the total effectiveness of vaccination was facilitated by modeling to yield the counterfactual scenario, 
and our finding regarding the total effect echoes those of published studies18,19. Together with past evidence18,19, 
consistent findings that the vaccination program prevented infections among half of the Japanese population 
and more than 90% of prevented deaths were owing to its indirect effect indicate that the vaccination program 
was enormously successful during the Delta variant epidemic wave during 2021 in Japan. The importance of 
indirect effect is what the present study contrasts to existing published studies12–17 that only directly measured 
individual benefit of vaccination, including the averted cases, hospitalization, severe complication and death. 

Table 2.   Cumulative numbers of infections with SARS-CoV-2 in the counterfactual scenarios. a Early: 
counterfactual scenario of a vaccination program implemented earlier that the actual schedule; Late: 
counterfactual scenario of a vaccination program implemented later that the actual schedule; Elevated: 
counterfactual scenario if the program had been implemented faster with higher vaccination coverage among 
adolescents and people aged 10–59 years. b Relative change represents a comparison between the computed 
number and observed number (i.e., reporting coverage = 0.25).

Age group (years) Scenarioa Estimate (thousand) 95% confidence interval Relative change (%)b

0–9

Early 93 87–99  − 72

Late 498 477–518 50

Elevated 109 103–115  − 67

10–19

Early 324 304–345  − 30

Late 1677 1611–1740 260

Elevated 375 354–398  − 20

20–29

Early 537 508–567  − 56

Late 2470 2373–2563 101

Elevated 597 565–629  − 51

30–39

Early 314 295–332  − 60

Late 1545 1478–1610 95

Elevated 356 336–376  − 55

40–49

Early 344 324–364  − 53

Late 1731 1654–1804 134

Elevated 391 369–413  − 47

50–59

Early 266 251–281  − 54

Late 1303 1243–1361 126

Elevated 303 287–320  − 48

60–69

Early 120 114–127  − 52

Late 495 470–518 98

Elevated 148 140–156  − 41

70–79

Early 95 90–100  − 43

Late 286 272–299 71

Elevated 110 104–116  − 34

80–89

Early 57 54–61  − 47

Late 148 141–154 36

Elevated 64 61–68  − 41

 ≥ 90

Early 16 15–17  − 63

Late 43 41–45 2

Elevated 18 17–19  − 58

Total

Early 2166 2044–2290 -54

Late 10,196 9761–10,607 117

Elevated 2470 2337–2610  − 47
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In many countries with greater incidence, including Brazil15, Israel14, Italy12, United States16 and countries that 
belong to WHO European Region13, the direct effect was already enormous. Japan enjoyed smaller incidence 
by the end of 2021 and the direct effect was relatively limited17, but the present study has been unique in that it 
demonstrated that the indirect effect can be inferred to be substantial using the effective reproduction number 
in a counterfactual scenario.

Another notable finding of this study is that our modeling approach enabled us to examine hypothetical sce-
narios in which the vaccination pace is accelerated. The cumulative numbers of infections in the early schedule 
and late schedule scenarios were estimated to be 2.2 million (95% CI 2.0–2.3) and 10.2 million (95% CI 9.8–10.6), 
respectively, which clearly led to substantial differences in mortality. Epidemiological studies can help policy 
makers recognize that a 1- or 2-week difference in the implementation of vaccination could yield completely 
different population impacts.

Published studies have indicated that prioritized vaccination for older people could minimize COVID-19 
mortality if vaccines are not sufficiently available24–28. This was consistent with our finding, i.e., the early schedule 
scenario yielded better outcomes than the elevated coverage scenario. However, in our elevated coverage scenario 
(i.e., encouraging more adolescents and people aged 10–59 years to be vaccinated), the total effect was substantial, 
even when older people were not prioritized for vaccination. This demonstrates that vaccinating younger indi-
viduals with substantial transmission potential is a critical strategy in mitigating the magnitude of the epidemic 
for an entire population, including children aged < 10 years who were not eligible for the vaccination program. 
Taken together, the present study findings imply that, given a substantial vaccine supply and immunization 

Table 3.   Cumulative numbers of deaths associated with COVID-19 in the counterfactual scenarios. a Early: 
counterfactual scenario of a vaccination program implemented earlier that the actual schedule; Late: 
counterfactual scenario of a vaccination program implemented later that the actual schedule; Elevated: 
counterfactual scenario if the program had been implemented faster with higher vaccination coverage among 
adolescents and people aged 10–59 years. b Relative change represents a comparison between the computed 
number and observed number (i.e., reporting coverage = 0.25).

Age group (years) Scenarioa Estimate (persons) 95% confidence interval Relative change (%)b

0–9

Early – – –

Late – – –

Elevated – – –

10–19

Early 2 2–2  − 31

Late 11 10–11 260

Elevated 2 2–3  − 19

20–29

Early 10 9–11  − 56

Late 46 44–49 102

Elevated 11 10–12  − 51

30–39

Early 27 24–29  − 60

Late 131 124–138 95

Elevated 30 28–33  − 55

40–49

Early 106 97–115  − 53

Late 533 504–562 135

Elevated 122 113–131  − 46

50–59

Early 301 276–326  − 54

Late 1465 1381–1547 126

Elevated 348 320–376  − 46

60–69

Early 533 480–587  − 49

Late 1998 1859–2138 92

Elevated 663 602–727  − 36

70–79

Early 1445 1296–1601  − 40

Late 4000 3684–4325 67

Elevated 1700 1532–1877  − 29

80–89

Early 2135 1874–2410  − 44

Late 5089 4608–5586 34

Elevated 2444 2156–2748  − 36

 ≥ 90

Early 717 565–880  − 61

Late 1831 1558–2119  − 1

Elevated 829 661–1009  − 55

Total

Early 5274 4623–5960  − 48

Late 15,103 13,771–16,474 50

Elevated 6150 5424–6916  − 39
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capacity, allocating vaccines for younger adults in addition to prioritizing older adults could reduce the overall 
COVID-19 burden, as previously indicated19,27,29–32.

So, how should we rate the vaccination program in Japan during the SARS-CoV-2 Delta variant epidemic 
wave? The Japanese government set a goal for the daily number of vaccinated people of one million in early May 
2021 (which was achieved from late June to July), subsequently stating that the maximum number was to be 1.5 
million in the later part of the same month33. In addition to mass vaccination with initial prioritization of older 
people and health care workers, the program of vaccination in the workplace aimed at expanding coverage started 
in late June 202134. Our counterfactual scenario indicated that the observed vaccination program helped avoid 
the worst case. However, if the vaccination program had begun 2 weeks later than the observed schedule, sub-
stantial mortality could have occurred. Additionally, a surge in COVID-19 patients observed in July–September 
2021 was the largest epidemic wave ever experienced in Japan, and the corresponding period fell under the state 
of emergency, which was based on a non-legally binding policy in which the government requested voluntary 
restriction of contacts35. Were PHSM not in place under the state of emergency, the number of infections could 
have been even greater than the observed number. Considering that our early schedule and elevated coverage 
schedule scenarios were realistic in their anticipated pace of vaccination, considerable mortality and resulting 
economic losses could have been mitigated. Perhaps more importantly, from a scientific point of view, evidence 
regarding the indirect impact of such interventions in real time using modeling techniques should be routinely 
accessible to policy makers during future pandemics.

Our study involved several technical limitations. First, as previously mentioned, during the research period, 
Japan experienced three state of emergency declarations: from 8 January to 21 March, from 25 April to 20 June, 
and from 12 July to 30 September 2021. Rather than incorporating the specific variable of a state of emergency 
into the model (e.g., quantified effectiveness of PHSM), we tried to indirectly capture its impact via estimating 
the effective reproduction number using several explanatory variables, including mobility. In fact, use of human 
mobility data as a predictor is recognized as reflecting the impact of PHSM36–39. It should be noted, however, that 
published studies have attempted to measure the population-level impact of both vaccination and PHSM over the 
course of time40,41. Second, the contact matrix used in the present study was quantified before the study period42, 
and the next-generation matrix was calibrated during the course of the pandemic. At minimum, our time-
dependent reproduction number helped capture the transmission dynamics over time and across ages (Fig. 1). 
Third, vaccine-induced immunity and immunity following natural infection were dealt with independently in the 
present study, and we did not account for the effect of waning immunity with the latter during the study period. 
We focused on the period shortly after vaccination and before the vaccination rollout, when approximately only 
1% of the population experienced COVID-19 infection. Fourth, we did not take into account the heterogeneities 
over geographical space. Strictly speaking, the state of emergency covered different durations and areas according 
to prefecture, leading to specific variations in mobility information43. Finally, while vaccines against the Omicron 
variant, which is antigenically distinct, have shown reduced effectiveness compared to previously circulating 
variants44,45, the population-level impact of those changes have yet to be understood well46. In line with this, we 
have yet to understand whether the indirect effects of vaccination continued to accumulate and played a pivotal 
role in responding to the Omicron variant and its subvariants, including XBB. Future studies should address the 
issue of population impact during Omicron era.

Conclusions
We demonstrated that the indirect effect of vaccination in Japan during 2021 was very large, with the vaccination 
program reducing mortality by more than 97%. The pace of vaccination and prioritization of vaccine recipients 
have been key to mitigating the mortality burden of COVID-19. In the future, firm and prompt policy-making 
process based on real-time understanding of the transmission dynamics under various vaccination scenarios 
is called for.

Methods
Conversion to infections
COVID-19 was designated a notifiable disease under the infectious disease law of Japan as of 2021. All individu-
als suspected of being infected with SARS-CoV-2 were tested via PCR or quantitative antigen test at medical 
facilities. They were then requested to remain in home isolation and undergo investigation by municipal public 
health centers to identify their close contacts. Information of confirmed cases (e.g., age and sex) was registered 
in the Health Center Real-time Information-sharing System on COVID-19 (HER-SYS) by medical facilities or 
municipal public health centers. Supplementary Fig. S1A shows the number of confirmed cases from the begin-
ning of the primary series (the first and second doses) of the vaccination program through the end of November 
2021. In the end of November 2021, SARS-CoV-2 in Japan was dominated by Delta variant to which the vaccine 
effectiveness was known to have been greatly diminished, sometimes by 10%, compared with other variants that 
circulated earlier47–49.

The time of infection for all confirmed COVID-19 cases retrieved from HER-SYS was backcalculated using 
a previously estimated distribution of the interval between infection and illness onset, assumed to follow a log-
normal distribution with a mean of 4.6 days and standard deviation (SD) of 1.8 days50, 51. Cases without a date 
of symptom onset were backcalculated using the time difference from symptom onset to reporting, assumed to 
follow a log-normal distribution with a mean of 2.6 days and SD of 2.1 days, as previously estimated using cases 
with information for the date of symptom onset. Non-parametric backcalculation was performed using the 
R-package “surveillance” (version 1.20.3). To address the issue of reporting bias, we explored different report-
ing coverages: 0.125, 0.25, 0.5, and 1.0 (no bias) by multiplying the backcalculated cases by 1 and dividing by 
reporting coverage to finally obtain the number of infections.
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Immune fraction
SARS-CoV-2, all vaccinated individuals retrieved from the Vaccine Record System (VRS) were converted into 
immunized people according to time. The data comprised the sex, age, and date of vaccination for vaccinated 
individuals. We assumed that all people who received the first dose were subsequently vaccinated with the second 
dose at an interval of 21 days (Supplementary Fig. S1B). According to statistics of the VRS, there was a very small 
discrepancy in vaccination coverage between the first dose (75.19%) and the second dose (74.61%) as of the 
end of December 202152; therefore, we could obtain a certain consensus on the usage data for people vaccinated 
with the first dose only. For the conversion, we used a profile of vaccine efficacy involving waning immunity for 
the primary series used by Gavish et al.19, which was based on previous estimates53,54. Given the widespread use 
of the messenger RNA vaccine BNT162b2 (Pfizer/BioNTech) in Japan (more than 80% of individuals received 
this vaccine by the end of November 2021)23, we assumed that published estimates could directly be applied 
to the case of Japan. Further details and background of the primary series in Japan’s vaccination program are 
described elsewhere17.

To adapt the following transmission model, we used the number of vaccinated individuals and the profile 
of vaccine efficacy to estimate the immune fraction in age group a at calendar time t  , la,t , which is expressed as:

where na is the population size in age group a in 202155, va,t denotes the number of vaccinated individuals in age 
group a at calendar time t  , and hs represents the vaccine profile. Supplementary Fig. S2 displays the estimated 
immune fraction by age group.

Transmission model
We developed the time-dependent transmission model that accounts for heterogeneous transmission between age 
groups, fitting the model to observed incidence data and estimating unknown parameters. We used the following 
renewal equation to infer the transmission dynamics underlying the COVID-19 epidemic, which is described as:

where ia,t represents the number of infections with SARS-CoV-2 in age group a at day t  and gτ indicates the 
probability density function of the generation interval, assumed to follow a Weibull distribution with a mean 
of 4.8 days and SD of 2.2 days51,56. Rab,t denotes the effective reproduction number, interpreted as the average 
number of secondary cases in age group a generated by a single primary case in age group b at calendar time t  . 
To capture the impact of vaccination, Rab,t was decomposed as:

where 
∑t−1

k=1 ia,k represents the cumulative number of previous infections after 16 February 2021. Kab is consid-
ered a next-generation matrix, which was modeled as Kab = samab , where sa represents relative susceptibility 
and mab denotes the contact matrix; we rescaled a previously quantified next-generation matrix during the 
initial phase of the COVID-19 epidemic in 2021 attributable to the Alpha variant57. Because the oldest age 
group was ≥ 65 years in the previous estimate, we reconstructed the epidemic curve with new age groups: 0–9, 
10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89 and ≥ 90 years and estimated Kab by fitting the model 
to observed cases (Supplementary Fig. S3). The detailed methods are explained elsewhere57,58. We assumed that 
the contact rates among groups aged ≥ 70 years were the same as those aged ≥ 65 in the contact matrix, mab , 
which is based on a social epidemiological survey conducted prior to the COVID-19 pandemic in Japan42. 
With respect to the above explanation, those early terms in Eq. (3) could capture the effective heterogeneous 
interactions between infectees and infectors, which accounts for the immune fraction owing to vaccination and 
infections among susceptible individuals (i.e., infectees). p denotes the scaling parameter involving all terms in 
Eq. (3) and ht expresses the change in mobility. The variable, ht , related to human mobility was decomposed as:

where ω means the coefficient of human mobility in the community, household, or workplace relative to the 
community setting (i.e., ωcommunity is equivalent to 1). The coefficient, αt , describes a proxy of the intensified 
contacts in three different settings retrieved from Google’s COVID-19 community mobility report in Japan59. 
Those data were smoothed using a 7-day moving average (Supplementary Fig. S4). dt represents the increase in 
transmissibility of the Delta variant compared with earlier variants, which was formulated as dt = rut , where r is 
the scaling parameter for transmissibility and ut represents the profile of increased transmissibility. We assumed 
that ut increased with the detected proportion of COVID-19 cases owing to the Delta variant in Japan60, which 
was modeled using a logistic curve. We then rescaled ut up from 1 to a maximum of 1.561–63. A comparison 
between the predicted and observed proportion is shown in Supplementary Fig. S5. dt was parameterized as 1 
before 20 May 2021, when we assumed that the proportion of infections with the Delta variant started to increase 
at population level. Finally, ct expresses the influence of consecutive holidays, defined as more than 3 days in 
the present study. Moreover, we added “Obon season,” the national religious season associated with Buddhist 

(1)la,t =
1

na

t−1∑

s=1

va,t−shs

(2)ia,t =

10∑

b=1

t−1∑

τ=1

Rab,t ib,t−τ gτ ,

(3)Rab,t =

(
1− la,t −

∑t−1
k=1 ia,k

na

)
Kabphtdtct

(4)ht = ωcommunityα
community
t + ωhouseαhouse

t + ωworkαwork
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tradition, to those holidays. Not all consecutive days in this period (from 13 to 16 August 2021) were regarded 
as holidays; however, many Japanese people travel and/or visit their relatives during this season. We modeled ct 
as ct = eβt , where e accounts for the coefficient of holiday influence and βt was assigned 1 if the day was aligned 
with consecutive holidays; otherwise ct was parameterized as 1.

Vaccination scenarios
We first computed the counterfactual scenario, i.e., without vaccination. We also explored three additional 
hypothetical scenarios: (1) the vaccination program was implemented sooner than the actual program, reaching 
a maximum number of vaccinated individuals 14 days earlier than the observed pace (hereafter “early schedule” 
scenario); (2) the vaccination schedule was delayed, reaching a peak in the number of vaccinated people 14 days 
slower than the observed pace (“late schedule” scenario); and (3) adolescents and people aged 10–59 years were 
vaccinated more and faster (“elevated” scenario). To explore different counterfactual scenarios, we first regressed 
the vaccination coverage using the logistic function by age group, which is modeled as:

where π1 , π2 , and π3 represent the carrying capacity (eventual coverage of the primary series), speed of increase 
in the vaccination coverage, and requisite duration for the half coverage of π1 (also representing the peak day for 
the number of vaccinated individuals), respectively. We performed maximum likelihood estimation to estimate 
π1 , π2 , and π3 by age group. Comparisons between the predicted and observed number of vaccinated people by 
age group are shown in Supplementary Fig. S6.

We assumed that the days with the maximum number of vaccinated people (i.e., days that 50% of the car-
rying capacity was achieved) were 14 days earlier in the Early scenario and later in the Late scenario than the 
observed. For the Elevated scenario, we assumed that people aged 10–59 years had earlier peaks in the number 
of vaccinated individuals, as with the Early scenario. Additionally, people aged 10–19 years and aged 20–49 years 
were assumed to reach 70% and 90% in eventual vaccination coverage ( π1 ), respectively. People aged ≥ 50 years 
had already reached more than 90% of the vaccination coverage by the end of November 2021. We did not con-
sider vaccination among individuals aged less than 10 years because children were not eligible to be vaccinated 
during the primary series of the program in Japan. All scenarios of the vaccination program by age group are 
shown in Supplementary Fig. S7.

Likelihood function
We assumed that the daily counts of infections followed a Poisson distribution, and the likelihood function with 
unknown parameters, θ = {p,ωhouse ,ωwork , r, e} , was represented as:

By minimizing the loglikelihood function, we estimated θ . The 95% confidence intervals (CI) were calculated 
from 1000 bootstrap iterations using the multivariate normal distributions of the parameters. We estimated 
a series of parameters by reporting coverage in the present study. All estimated parameters with 95% CIs are 
shown in Supplementary Table S1. Supplementary Fig. S8 demonstrates the fitting outcome of the predicted and 
observed infections with SARS-CoV-2 by age group, with reporting coverage of 1 (i.e., no ascertainment bias). 
Supplementary Fig. S9 compares the predicted and observed infections by reporting coverage.

Using the estimated parameters, θ , we explored hypothetical scenarios by varying the timing and the recipients 
of vaccination. For this, we used infections already backcalculated 14 days back from the start of vaccination as 
the initial condition.

Effective reproduction number
Because the effective reproduction number in Japan conventionally uses an estimate for the entire population, 
we also calculated an effective reproduction number based on the total number of cases at calendar time t  , Rt , in 
each counterfactual scenario using the total number of infections with SARS-CoV-2. Using an equation similar 
to Eq. (2), the total number of infections, itotalt  , was modeled as:

Assuming the daily case counts followed a Poisson distribution, we estimated Rt using maximum likelihood 
estimation51.

Infection fatality risk
To compute the mortality impact, we estimated the age-specific infection fatality risk (IFR) according to report-
ing coverage in the present study. First, we formulated the cumulative number of deaths in age group a resulting 
from cases infected during the research period in unvaccinated and vaccinated individuals, respectively, which 
are described as:

(7)E(va,t) =
π1

1+ exp(−π2(t − π3))
,
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t
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where ǫa,t represents the time-varying proportion of vaccinated people among confirmed cases in age group a 
at calendar time t  , and îa,t is the expected number of infections estimated from the transmission model. VEa 
expresses the vaccine-induced reduction in mortality estimated in 2021 for Japan64. We obtained ǫa,t by mod-
eling cases with a vaccination history registered in HER-SYS using a logistic function. The observed proportion 
was calculated as 7-day moving average and shifted − 5 days because of the conversion for the time of infection. 
Also, to account for the age groups used in the present study, people aged 10–19, 20–29, 30–39, 40–49, 50–59 
and ≥ 60 years were utilized as people aged 15–24, 25–34, 35–44, 45–54, 55–64 and ≥ 65 years for the propor-
tion retrieved from HER-SYS, respectively. Supplementary Fig. S10 shows the comparison between the model 
prediction and observed proportions.

To estimate IFR by age group, the following likelihood equation was used:

where �a denotes the risk of death in age group a , modeled as:

Da is the cumulative number of deaths reported from 10 March to 21 December 2021 in age group a , which 
was retrieved from the Ministry of Health, Labour and Welfare of Japan, accounting for the reporting delay of 
21 days.65 By minimizing the negative logarithm of Eq. (8), we estimated IFRa . We performed this process for 
each reporting coverage. Supplementary Fig. S11 displays the estimated IFR by reporting coverage and age group. 
Finally, we estimated the cumulative number of deaths as an aggregation of Dunvaccinated

a  and Dvaccinated
a  in Eq. (7) 

according to different counterfactual scenarios of varying îa,t . We only applied the first equation in Eq. (7), i.e., 
Dunvaccinated
a  , for the counterfactual scenario in the absence of vaccination.

For calculation of the death toll, we altered only a parameter representing the requisite duration for the half 
coverage of a carrying capacity to coincide with changes in vaccine recipients in the counterfactual vaccination 
scenarios. Because of this exercise, we were able to model the specific proportion of vaccinated people among 
confirmed cases according to different vaccination scenarios. The principal idea of the logistic model is explained 
in the early subsection.

Ethical considerations
This study was conducted according to the principles of the Declaration of Helsinki. Informed consent was 
obtained for reporting the diagnosis. The authors did not have an access to any individual identity information, 
and this research was approved by the Ethics Committee of Kyoto University Graduate School of Medicine 
(approval number R2673).

Data availability
We were allowed to access the information on HER-SYS only for the purpose of analyzing the COVID-19 situ-
ation in Japan; therefore, this database is not publicly available. However, we shared the daily numbers of vac-
cinated individuals and reported cases not stratified by age group during the analysis. Hiroshi Nishiura should 
be contacted to request the data from this study.
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