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Infection prediction in swine 
populations with machine learning
Avishai Halev 1, Beatriz Martínez‑López 2*, Maria Clavijo 3, Carlos Gonzalez‑Crespo 2, 
Jeonghoon Kim 1, Chao Huang 4, Seth Krantz 5, Rebecca Robbins 6 & Xin Liu 4

The pork industry is an essential part of the global food system, providing a significant source of 
protein for people around the world. A major factor restraining productivity and compromising 
animal wellbeing in the pork industry is disease outbreaks in pigs throughout the production process: 
widespread outbreaks can lead to losses as high as 10% of the U.S. pig population in extreme years. 
In this study, we present a machine learning model to predict the emergence of infection in swine 
production systems throughout the production process on a daily basis, a potential precursor to 
outbreaks whose detection is vital for disease prevention and mitigation. We determine features 
that provide the most value in predicting infection, which include nearby farm density, historical test 
rates, piglet inventory, feed consumption during the gestation period, and wind speed and direction. 
We utilize these features to produce a generalizable machine learning model, evaluate the model’s 
ability to predict outbreaks both seven and 30 days in advance, allowing for early warning of disease 
infection, and evaluate our model on two swine production systems and analyze the effects of data 
availability and data granularity in the context of our two swine systems with different volumes 
of data. Our results demonstrate good ability to predict infection in both systems with a balanced 
accuracy of 85.3% on any disease in the first system and balanced accuracies (average prediction 
accuracy on positive and negative samples) of 58.5% , 58.7% , 72.8% and 74.8% on porcine reproductive 
and respiratory syndrome, porcine epidemic diarrhea virus, influenza A virus, and Mycoplasma 
hyopneumoniae in the second system, respectively, using the six most important predictors in all 
cases. These models provide daily infection probabilities that can be used by veterinarians and other 
stakeholders as a benchmark to more timely support preventive and control strategies on farms.

The United States is the world’s second largest producer of pork, producing 12.6 million metric tons of pork in 
2021—over 11% of total global production1. In 2021, the industry generated over $24 billion in revenue and 
employed over 600 thousand people at various stages in the production process2. In the United States, hog 
producers generally fall into one of three categories. In recent decades, the hog industry has moved away from 
farrow-to-finish operations, which raise hogs from birth to slaughter, and specialized into multi-site operations 
with separate nurseries, finishers, and sow sites in order to maximize farm efficiency and lower production costs3. 
In doing so, individual farms have grown larger and consolidated, with the total number of farms declining over 
70% since 19903.

This shift, however, necessitates the movement of large numbers of pigs between sites, allowing for increased 
numbers of contact points and increasing the chances of diseases propagating between farms. This trend toward 
multi-site operations, in addition to the increasing globalization of the swine industry, has led to an increase 
in the vulnerability of the swine industry to both endemic and emerging pathogens. For example, in 2013, the 
emergence of the porcine epidemic diarrhea virus in the United States led to the loss of over 10% of the domestic 
pig population4,5.

Current approaches implemented in swine production systems for disease control are labor and capital inten-
sive, including strict biosecurity regimens, disease surveillance, and vaccine administration6. Consequently, the 
swine industry has become interested in the implementation of disease forecasting tools in swine populations 
to strategically use resources and available fixed infrastructure7. The ability to do so hinges on accurate identi-
fication of disease transmission pathways. Disease propagation is caused by both direct and indirect contacts, 
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with the transportation of infected pigs as well as the airborne movement of disease being significant sources 
of outbreaks8–10. Outbreaks are sudden rises in the number of cases in a disease; as a result, they are always pre-
ceded by disease infections, which we study here. Infections can lead to outbreaks if left undetected, untreated, 
or uncontrolled; infection detection, however, allows for early mitigation and treatment preparation.

Traditionally, the most common epidemiological models for disease prediction have been compartmental 
models, which are knowledge-driven mechanistic models. The most common models include the SIR—Suscepti-
ble, Infectious, and Recovered—and the SEIR—Susceptible, Exposed, Infectious and Recovered models11,12. Both 
SIR and SEIR models are reasonably effective at predicting outbreaks in the short-term; they tend to struggle, 
however, with more complicated dynamics and with early prediction13–15.

Another approach to disease prediction is agent-based modeling, in which models simulate the actions and 
interactions of individual agents, each acting autonomously under a set of assumptions. These models have been 
shown to be more accurate to compartmental models in predicting spread of different diseases16,17. However, they 
are computationally intensive, can be difficult to parameterize and calibrate, and commonly-made assumptions 
have been criticized as being unrealistic18,19.

Machine learning (ML) has emerged as a powerful tool in disease prediction. In machine learning, data is 
leveraged to uncover insights about a task of interest by using trends from past data to generalize and infer on 
new data. Machine learning has had success in a variety of applications, including computer vision, natural lan-
guage processing, speech recognition, fraud detection, and robotic locomotion, and has recently been applied 
effectively in public health20–25.

In the swine field, Liang et. al wielded outbreak and meteorological data to predict outbreaks of African swine 
fever (ASF) on a global scale with ML26. The authors trained ML models on their collected data and found that 
random forest models were effective in ASF outbreak prediction. Shamsabardeh et al. predicted porcine repro-
ductive and respiratory syndrome (PRRS) outbreaks using machine learning27. Their model leveraged internal 
production and movement data as well as external factors to predict disease within the production period and 
achieved a high degree of accuracy. However, the model suffers from temporal granularity issues, where out-
breaks can only be predicted at the time-scale of a production cycle, which range from three to over six months.

Silva et al. used machine learning methods to determine biosecurity and production factors that impacted 
outbreaks of PRRS in swine farms28. They focus on two variable selection strategies and find subsets of the overall 
feature set that outperform naïvely using the entire feature set in prediction. Machado et al. utilized movements 
of animals between farms and neighborhood attributes to predict outbreaks of PEDV in sow farms in one-week 
periods29. The authors used neighborhood attributes such as hog density, environmental data such as vegetation, 
wind speed, temperature, precipitation, and topographical features such as slope to capture local area spread 
of disease. Combined with long-distance movements, their model was able to predict outbreaks of PEDV on 
sow farms with greater than 80% accuracy on data collected over the course of one year. In Paploski et al.  the 
authors used XGBoost (gradient boosting) models to forecast outbreak of PEDV in near real time by leveraging 
scheduled movement data for the upcoming week as well as five weeks of historical data to predict outbreaks7.

In our study, we design a model to predict infection using three disease pathways: direct contact, indirect 
contact, and local area spread. We consider data from two farm systems, one with low data granularity and one 
with high data granularity, and show that we can build models that adapt to cases with sparse data, where we infer 
global disease trends on farms, and cases with granular data, where we are able to predict case trends for specific 
diseases: porcine reproductive and respiratory syndrome (PRRS), porcine epidemic diarrhea virus (PEDV), influ-
enza A virus (IAV), and Mycoplasma hyopneumoniae (MHP). We access diagnostic and movement data collected 
daily and production data collected weekly on sow and nursery/finishing farms over a period of multiple years 
and leverage it to predict infection with a daily time granularity. We analyze a wide variety of machine learning 
models, including support vector machines, tree-based models such as decision trees and random forests, and 
neural networks, and show that models are able to predict infection with seven and 30 day advance warning. The 
results of this study are also useful to detect abnormal diagnostic results for further scrutiny, helping to detect 
diseases earlier and more rapidly and aiding practitioners in effectively controlling outbreaks. We also propose 
additional detection methods when more complete data is available.

Results
We trained and evaluated a variety of machine learning models and dimension reductions and showed that the 
models are able to effectively predict infections, defined as a positive test result on a specific date, using data 
collected over a period of time ending on that date. Due to imbalances in the number of positive and negative 
samples, we use balanced accuracy scores to evaluate our model, which is the weighted accuracy on both classes. 
The best performance is provided with a 60-day window: on system A, the top-performing model—a random 
forest with 10 estimators—has a cross-validated balanced accuracy of 0.897± 0.05 and provides a balanced 
accuracy of 0.853 on the test set, using the six most important features. On system B, model performance lags 
slightly behind—especially in generalizing to the test set. Our top-performing model, an auto-encoder neural 
network model, scores 0.633± 0.05 , 0.788± 0.08 , 0.777± 0.06 , and 0.906± 0.05 in cross-validation on PRRS, 
PEDV, IAV, and MHP, respectively, and achieves balanced accuracies of 0.585, 0.587, 0.728 and 0.748 on the test 
sets of PRRS, PEDV, IAV, and MHP, respectively, using the six most important features. Note that cross-validation 
scores, not test scores, are used to determine the best performing model; this is to avoid using and thus leaking 
any information from the test set in the model and window selection process. An example of our model being 
used for inference of IAV infection on a specific farm can be seen in Fig. 1.
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Infection prediction in system A
We consider diagnoses collected on 60 farms in system A, of which 40 are finishing sites, 10 are sow sites, and 
10 do not contain production data. There are approximately 1000 total samples, with the exact number varying 
slightly with the window length; of these, roughly 11% are positive samples (see the “Methods” section for exact 
counts).

The best-performing models across all window lengths are ensemble tree models: random forests and gra-
dient boosting, with cross-validation balanced accuracies of 0.918 and 0.898 with data collected over a 60-day 
historical window, respectively. Random forests excel yet slightly overtrain compared to gradient boosting, which 
often overtake them in performance on the test set: the corresponding random forest and gradient boosting 
models with 10 estimators obtain test accuracies of 0.789 and 0.792 for random forests and gradient boosting, 
respectively. Second, while random forests and gradient boosting models provide similar performance, the 
optimal thresholds for random forest are higher than those for gradient boosting, suggesting that the random 
forest model is able to better differentiate positive and negative samples in the probability space; this effect is 
particularly pronounced in models trained on data collected over 30- and 90-day historical windows. In other 
words, the random forest model gives positive samples higher probabilities of being positive than the gradient 
boosting model. Details on these models and additional models are available in Table 1.

In addition, the threshold-determining process is rendered irrelevant on decision tree models as they predict 
binary probabilities for all samples. Specifically, since the decision tree models are complete and all leaves are 
pure, predicted probabilities are either zero or one; as a result, threshold selection loses its meaning.

Figure 1.   IAV infection prediction on a single farm using our model compared to true diagnoses. Outbreak 
probabilities are evaluated on a weekly basis.

Table 1.   Balanced accuracy with selected hyperparameters on system A. Balanced accuracy represents the 
average recall, weighted between positive and negative samples. Columns CV and Test correspond to balanced 
accuracy scores in cross-validation and on the test set, respectively, while Thresh gives the optimal threshold 
for that model as determined via the metric computation process. Higher thresholds imply better model 
discrimination between positive and negative predictions. Results with additional models and hyperparameters 
are available in Supplementary Table S1.

Trees

14 Day 30 Day

CV Test Thresh CV Test Thresh

Random forest

10 0.895 ± 0.040 0.829 0.095 0.879 ± 0.033 0.833 0.160

25 0.892 ± 0.037 0.878 0.190 0.873 ± 0.027 0.828 0.198

100 0.885 ± 0.047 0.842 0.204 0.880 ± 0.030 0.824 0.194

Gradient boosting

10 0.890 ± 0.020 0.849 0.064 0.891 ± 0.025 0.801 0.053

25 0.880 ± 0.021 0.844 0.109 0.891 ± 0.025 0.792 0.060

100 0.888 ± 0.012 0.840 0.073 0.889 ± 0.028 0.801 0.064

60 Day 90 Day

Random forest

10 0.918 ± 0.022 0.789 0.212 0.898 ± 0.025 0.882 0.216

25 0.915 ± 0.028 0.825 0.164 0.898 ± 0.022 0.896 0.218

100 0.913 ± 0.026 0.792 0.212 0.894 ± 0.026 0.891 0.186

Gradient boosting

10 0.898 ± 0.028 0.792 0.140 0.872 ± 0.036 0.856 0.051

25 0.898 ± 0.028 0.758 0.141 0.860 ± 0.038 0.868 0.062

100 0.897 ± 0.030 0.769 0.132 0.865 ± 0.034 0.887 0.102
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We see that the model is relatively robust to dimensionality reduction with some slight variation by per-
forming a sensitivity analysis on the dimension reduction parameter, with performance remaining relatively 
similar across different numbers of PCA components. This suggests linear dependence and a lack of predictive 
power of some features. In general, the stratified dimension reduction outperforms the unstratified dimension 
reduction on system A, with ten close out (Finishing Farm key performance indicator) and ten sow features 
providing consistently high performance. Detailed results of this analysis are available in Supplementary 
Discussion 2.1.

Important predictors
We find that the distance of the five closest neighboring farms—a proxy for local farm density—and sow pro-
duction features concerning piglet production rates are the most significant features. Specifically, total piglet 
inventory, the number of pigs weaned per mated female per year (PWMFY), pregnancy rates and average gilt 
pool inventory (total gilt days per days in period) are all particularly valuable to the model. The importances of 
these and additional important features can be seen in Figs. 2a and 3a.

By performing a marginal feature importance, where we consider the value of adding a group of features as 
a whole to a model, we find that the distance of nearby farms are again important, as are data from close out 
reports (from finishing farms) and sow production data. These sets of features beget accuracy increases of 12.5, 
4.9 and 4.9 percentage points, respectively. As we group together the entire sets of each type of production data, 
this analysis suggests that on a high level, close out data and sow production data add value to the model: while it 
does not provide specific insight on which production features provide this value, we can infer from out previous 
permutation feature importance that total piglet inventory, PWMFY, pregnancy rates and average gilt pool inven-
tory provide this value for sow production, for example. With the exception of source test rates, all sets of features 
have a positive effect on the median model, albeit with significant variation in the magnitude of these effects.

Performance with selected important predictors
Based on the feature importances from the previous section, we select the n most important features and pass 
them to the final steps in the model. Cross-validated and test set scores are presented in Fig. 4a. From this figure, 
it is apparent the model performs best with the top six features, peaking with a cross validated balanced accuracy 
of 0.897± 0.04 and a corresponding test accuracy of 0.853. Past this critical point, performance improvements 
taper off and eventually mildly decrease. In system A, while cross-validated scores remain effectively flat as less 
significant features are added, test scores gradually decrease, suggesting mild overfitting. However, this effect is 
mild, and may be due to randomness.

Early prediction
Our results show that longer data collection windows generally performed better than shorter windows, with 
models trained on 90-day collection windows achieving higher accuracies than models trained on 14- and 30-day 
windows and models trained on 60-day collection windows outperforming all three (Table 1). We would thus 
expect the model to leverage information not only from the immediate past but from the more distant past as well. 
We train the top-line model—random forests with 10-feature stratified PCA on these new datasets to determine 
our ability to forecast into the future and achieve cross-validated balanced accuracy scores of 0.883 and 0.891 for 
7- and 30-day early prediction utilizing data collected over a 60-day historical window, respectively, meaning we 
predict positive tests 7- and 30-days in the future with data collected over the previous 60 days. This shows that 
the model does not suffer when performing early prediction (Supplementary Figure S3).

Infection prediction in system B
In system B, we focus on diagnoses collected on 148 farms, of which 132 are nursing/finishing (NurFin) sites, 
15 are sow sites and 1 is a boar site, which we group together with the sow sites. With data collected over 60-day 
historical windows, we have 3215, 3366, 681, and 343 total samples for PRRS, PEDV, IAV and MHP, respectively, 
of which 708, 475, 271 and 97 are positive, respectively.

The models with the highest accuracy on system B differ from those on system A (Table 2). The best model is 
the auto-encoder MLP model, which provides the most consistent results across all diseases and best generalizes 
to validation and test sets. By extension, other models tested, such as Random Forests and Gradient Boosting, 
overfit on noisy signals present in the training data, leading to high training set scores but lower cross-validation 
and test set scores (Table 2). This is further compounded by distribution shift between the training and test sets 
as we discuss in the following section.

Important predictors
In system B, we include historical positive and negative test rates, which provide another predictive feature that 
holds significant explanatory value in system B: the inclusion of test rates provides a marginal model improve-
ment of 3.6% , over double the improvement of the next most valuable feature type, movement data (Fig. 3b). 
Wind direction and speed are important predictors, as is sow gestation feed and the number of incoming pigs 
(denoted by Swine Movement (1st) and Swine Movement (2nd), which describe the number of incoming swine 
from the farms sending the first and second most swine, respectively (Supplementary Methods 3.2)). The incor-
poration of farm biosecurity data, unavailable in system A, also proves to be a useful factor: the manure storage 
method for PRRS, the employee access plan for PRRS and PEDV, and the carcass disposal method for PEDV 
and MHP. With the notable exception of test rates, the importance of various groups of features varies between 
diseases; in particular, MHP stands out as having important predictors that differ from the other diseases, with 
test rates and movement data providing outsized explanatory value in this case, and source distance data and 
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biosecurity data not providing value. Diagnoses on source farms and feed data provide much higher explanatory 
value for IAV than for other diseases, where cull and mortality data provide more value than feed data. These 
results are available in Figs. 2b and 3b.

(a) System A

(b) System B

Figure 2.   Permutation importance of both systems; features are ordered by median score. Medians of 
importance with respect to models trained on each disease displayed for system B. Feature descriptions as well 
as a full enumeration of important features by disease in system B are available in Supplementary Tables S11 
and S12, respectively. Feature names in the figure follow the form 〈Feature Name (Source Farm Number)〉 . For 
example, Swine Movement (1st) denotes the feature representing the number of incoming swine from the first 
source farm within the historical window. Source farms are zero-indexed. Farm Density Indicators (nth) give the 
distance of the nth nearest farm, providing information about local farm density. See Supplementary Methods 
3.2 for additional details on naming conventions.
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Performance with selected important predictors
In system B, model performance consistently peaks with less than ten features, after which overfitting leads to 
relatively steady decreases in performance across all models. In particular, models with six features provide 
consistent performance, with test set scores of 0.585, 0.587, 0.728 and 0.748 on PRRS, PEDV, IAV, and MHP, 
respectively. After six features, our model’s cross-validation scores decrease slowly, by −0.13% on average with 
each feature addition through ten features (Fig. 4).

(a) System A

(b) System B

Figure 3.   Group feature importance. Each point represents an increase in balanced accuracy from adding one 
group of features to a model using other groups of features.
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Discussion
The use of machine learning in veterinary epidemiology is still in its infancy, but it has the potential to signifi-
cantly contribute to the field. This study presents an approach to infection prediction on swine farms through 
the development of machine learning models. Our approach shows a good prediction ability for some of the 
most important endemic pathogens in the swine industry.

(a) System A

(b) System B

Figure 4.   Model performance with feature selection by permutation feature importance using ten most 
important features. Each point represents the model’s performance with the n best features for that disease/
system. Results with all features available in Supplementary Figure S4.
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Previous work in predicting outbreaks on swine farms using machine learning include a gradient boosting 
model of PEDV outbreaks on sow farms with near real-time prediction capabilities using five weeks of historical 
data and one week of predicted future data7, a model of PEDV outbreaks on sow farms using movement and 
local area spread data29, and a machine learning model of PRRS outbreaks on finishing farms27. As suggested in 
Paploski et al., we expand our survey of machine learning models to include neural network models in addition 
to the random forest and gradient boosting models used in these works7. We consider multiple diseases (PRRS, 
PEDV, IAV and MHP) in our analysis of one production system (system B) in contrast to the single-disease focus 
of these previous works, which focus on PEDV, PEDV, and PRRS, respectively. Our work considers production 
systems as a whole, including both sow and nursing/finishing farms in both systems. In addition, we present 
analysis and a comparison of two distinct farm production systems with differing levels of data availability, and 
show that machine learning is able to predict positive samples in both of these contexts.

The data used in this research was extracted from both internal swine farm collection and external sources, 
which allowed us to model various factors contributing to disease occurrence, including historical as well as 
current environmental, climatic and farm-level specific factors. We demonstrated the value of our approach 
under scenarios from two separate farm production systems with different data availability and quality, one with 
unbalanced and scarce data (system A) and one with a richer feature set and better data availability (sytem B). 
Due to a relative lack of data in system A, we group together all diseases to compile a dataset. Given that diseases 
often happen in tandem, with immune system weakness from one disease begetting another disease, this model 
still has high predictive value. However, the grouping of diseases may not be desirable if we want to inform target 
interventions focused to specific pathogens on farm, which is a limitation of this approach. The sample set in 
system A is quite unbalanced, with approximately 11% of samples being positive for all window lengths. This 

Table 2.   Balanced accuracy with selected hyperparameters on system B. Columns CV and Test correspond to 
balanced accuracy scores in cross-validation and on the test set, respectively, while Thresh gives the optimal 
threshold for that model as determined via the metric-computation process. Results with additional models 
and hyperparameters available in Supplementary Tables S2 and S3.

PRRS PEDV

CV Test Thresh. CV Test Thresh.

MLP

Hidden layers

(4, 2, 4) 0.637 ± 0.05 0.575 0.321 0.651 ± 0.14 0.537 0.688

(32, 4, 32) 0.640 ± 0.06 0.523 0.256 0.765 ± 0.09 0.525 0.251

(32, 32) 0.626 ± 0.06 0.487 0.183 0.760 ± 0.13 0.527 0.460

Random forest

Trees

5 0.604 ± 0.06 0.618 0.480 0.697 ± 0.10 0.503 0.394

10 0.619 ± 0.06 0.615 0.462 0.720 ± 0.11 0.511 0.354

25 0.629 ± 0.05 0.564 0.468 0.723 ± 0.12 0.553 0.276

Gradient boosting

Trees

5 0.635 ± 0.07 0.568 0.357 0.719 ± 0.09 0.567 0.144

10 0.607 ± 0.06 0.614 0.430 0.679 ± 0.07 0.499 0.220

25 0.632 ± 0.07 0.553 0.353 0.723 ± 0.10 0.554 0.164

IAV MHP

MLP

Hidden layers

(4, 2, 4) 0.670 ± 0.04 0.637 0.430 0.723 ± 0.13 0.579 0.502

(32, 4, 32) 0.661 ± 0.08 0.710 0.336 0.706 ± 0.16 0.641 0.343

(32, 32) 0.654 ± 0.09 0.623 0.292 0.716 ± 0.16 0.633 0.445

Random forest

Trees

5 0.669 ± 0.04 0.540 0.424 0.836 ± 0.07 0.589 0.282

10 0.683 ± 0.05 0.560 0.462 0.82 ± 0.10 0.604 0.254

25 0.679 ± 0.03 0.550 0.422 0.822 ± 0.08 0.637 0.302

Gradient boosting

Trees

5 0.678 ± 0.05 0.586 0.298 0.818 ± 0.09 0.571 0.402

10 0.663 ± 0.05 0.651 0.206 0.831 ± 0.05 0.56 0.403

25 0.668 ± 0.05 0.568 0.312 0.815 ± 0.08 0.663 0.396
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presents two challenges: models will be unbalanced toward the majority group (negative samples) and naïve 
accuracy metrics will report high scores even if predictions of positive samples are poor (for example, a model 
that predicts negative for any input, would obtain an accuracy of 89%)30. To address both of these challenges, we 
use balanced accuracy as the performance metric, with thresholds determined as the maximizer of the Youden’s 
J statistic on validation sets31. Balanced accuracy is the weighted accuracy of both positive and negative classes; 
thus, the same model that predicts negative for every input would only achieve a score of 50%. By selecting for 
this metric, we select for models that perform well on positive as well as negative samples.

The structure of the available data leads to test rates being an overly effective predictor in production system 
A that may not be applicable to other production systems or sample sets. This is a result of the fact that many 
farms have an overwhelming number of negative samples relative to their number of positive samples or vice 
versa. To illustrate this, we build a baseline heuristic model that solely utilizes historical test rates to predict out-
breaks. On system A, this simple model is effective: it obtains a balanced accuracy of 0.883 on the test set with a 
60-day window, surpassing all of the machine learning models. This observation is an artifact of the data: many 
samples exist on farms that have either a very high number of negative or positive samples relative to their total 
number of samples. The heuristic model achieves scores of 0.584, 0.578, 0.725, 0.752 on PRRS, PEDV, IAV and 
MHP in production system B, respectively, with the relatively high accuracy of IAV and MHP heuristic models 
corresponding with the endemic nature of these diseases32,33. As a result of this analysis, we discard test rates as 
a feature in system A but retain them in system B. Details on this heuristic model are available in Supplementary 
Discussion 2.3.

The inclusion of test rates in system B may contribute to models predicting continued infection, as historical 
rates of positive/negative tests are associated with samples being positive or negative. This effect is mild, however: 
the historical positivity rates are 1.66% and 1.59% averaged across all positive and negative samples, respectively, 
while the historical negativity rates are 3.80% and 5.90%, respectively.

In system A, the ensemble tree models outperform other models, with random forests and gradient boosting 
returning consistently high accuracies. These models are equipped to extract nonlinear signals from input fea-
tures, with the ensembles providing a buffer against overfitting. In system B, the neural network model equipped 
with an auto-encoder architecture, such as that with layers of 32, 4, and 32 dimensions, generalizes well. These 
models are often close to our top performers on the cross-validation set but are not quite the best; however, they 
often produce the best results on the test set.

Permutation importance was used to find important predictors of positive samples, which does not depend 
on the type of machine learning model used28. We find that distance of nearby farms—a proxy for local farm 
density—total piglet inventory, the number of pigs weaned per mated female per year (PMFY), pregnancy rates 
and average gilt pool inventory (total gilt days per days in period) are all particularly valuable in distinguishing 
between positive and negative samples in the system A model. We note that close nearby farms implies high local 
farm density, and vice versa; our model shows that higher values of nearby farms (implying farms are farther 
away) is associated with less disease. Increases in PWMFY are associated with increases in positive samples, as 
are the average live born and pigs weaned per sow. Gilt pool inventory is likely associated as a predictive factor 
of disease because there is typically a correlation between disease and the frequency of gilt introductions to the 
herd: smaller gilt pool inventory and shorter total days probably indicates more frequent gilt introductions into 
the herd at an older age so there are more events to bring disease in and lower quarantine time as they are closer 
to breeding age.

In system B, test rates, wind direction and speed, sow gestation feed, and incoming swine movements are 
important predictors. Feed quantity likely shows up as a predictor due to its correlation with farm size, which 
can correlate with outbreaks; alternatively, it is possible that disease are transmitted through feed or contami-
nated feed delivery vehicles, in which case more feed deliveries leads to more opportunities for transmission. 
Specific features also hold particular value for specific diseases: movement data, for example, is valuable in the 
PEDV model, concurring with existing models that use movements to predict PEDV outbreaks10. Diagnoses of 
IAV on source farms is an important predictor for IAV. Biosecurity data proves important for PRRS, MHP and 
PEDV: the employee access point plan is valuable in PRRS and PEDV prediction, and the carcass disposal plan 
is valuable in PEDV and MHP prediction. Specifically, employee access plans that require showering in and out 
is associated with mild decreases in predicted infection probability for PEDV and mild increases for PRRS. This 
latter correlation is surprising but can be explained by the likely fact that showering is more frequently required 
on higher volume farms, which leads to additional opportunities for infection via feed delivery or swine move-
ments. The rendering and biovator carcass disposal plans are associated with mild increases in predicted infection 
probability of PEDV and MHP, respectively. In addition, storing manure in a lagoon as opposed to a tank or deep 
pit is associated with predicted infection probability of PRRS.

The model in system A is a high-level model due to the grouping together of diseases. As such, this model 
models pathways concerning broad health issues; positive diagnoses, or predictions thereof, can reveal that 
there is a breakdown of overall health on a given farm. Given that diseases often happen in tandem, prompting 
a clinical practitioner to investigate holds value even at a high level. We contrast this with system B, where we 
train models on specific diseases. In doing so, we model at a lower level by analyzing epidemiological pathways.

We propose three main reasons for the relatively worse performance in system B versus system A. First, the 
distributions of positive and negative samples in test and training sets are highly reflective of each other in system 
A, with approximately 11% of both training and test sets being positive. This does not hold for all diseases in 
system B; while some diseases have train and test set distributions that reflect each other, others, such as PRRS 
and PEDV, do not. Specifics on these distributions are located in Supplementary Table  S5. This is unmitigable 
due to the time series nature of the data.

In addition, the distributions of sow and finishing farms are not reflective of each other between train and 
test sets for all diseases in system B. In particular, the diseases that have similar distributions of sow and finishing 
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farms—PRRS and PEDV—do not have similar distributions of positive and negative samples. The percentage of 
sow farms in the training and test sets are located in Supplementary Table S6.

Finally, as movement data is not available before January 1, 2021, the majority of training samples do not 
have movement data. Of course, as the test set, consisting of the final quarter of samples, falls after this date, all 
of these samples do. As a result, our model infers movement trends from a small portion of training samples: 
87.7%, 72.3%, 82.1% and 75.1% of training samples are lacking movement data for PRRS, PEDV, IAV, and MHP, 
respectively (Supplementary Table S7). The magnitude of the lack of movement data begs the natural question 
of whether this data is worth including whatsoever.

We retain movement data in system B for three reasons. One, to retain consistency with system A, whose 
samples all have movement and movement-derived features. Along these lines, the movement counts are not 
the only movement data-related features; we also derive the Source Distance, Source Test Rate, and Source 
Diagnostic features. Two, removing these features leads to worse model performance and generalization. 
Specifically, for our neural net model with 32, 4, and 32 neurons in three hidden layers, our cross-valida-
tion scores mildly improve without movement or movement-derived features, with balanced accuracies 
of 0.644± 0.05 , 0.789± 0.07 , 0.687± 0.08 , and 0.727± 0.15 for PRRS, PEDV, IAV, and MHP, respectively. 
However, test set scores are 0.462, 0.542, 0.687, and 0.573, respectively, all worse than their counterpart with 
movement data. This suggests that movement data aids in generalization. Furthermore, we note that if move-
ment data is not useful, this would be detected and this data removed in the feature selection process. The 
fact that movement and movement-derived figures are among the most important figures in Fig. 2 suggests 
this is not the case. Third, by illustrating the value of even a limited amount of movement data, we reveal 
potential avenues for performance improvement in the context of additional data.

These factors lead to distribution shift, where the features of the test set do not reflect those of the training 
set. Distribution shift is a known challenge in machine learning as it violates one of the major assumptions of 
machine learning models—that the samples on which they perform inference reflect, in distribution, the samples 
on which they were trained34,35. This is perhaps the major reason why the auto-encoder MLP performs most 
consistently on system B. By learning an efficient representation, it handles distribution shift well as it retains fac-
tors that shift minimally between training and validation sets. This confirms our intuition that the auto-encoder 
model is best able to separate input noise from true input signals compared to other machine learning models, 
an extension of this architecture’s known ability to denoise noisy versions of inputs36.

In this work, we consider all diagnoses as equivalent for both sample definition and feature extraction. In 
future work, it would be illuminating to determine the impacts of different types of diagnostic testing, particu-
larly surveillance laboratory testing versus clinical-ordered laboratory testing. In the former, viral testing is 
performed on a regular basis, generally every two to four weeks, to detect illnesses before they are widespread, 
while in clinical-ordered testing, examinations are performed when there is evidence of an outbreak. Specifically, 
there is significant value in determining the level of efficacy of surveillance testing in predicting future disease 
especially in light of the non-trivial economic costs involved in testing. This can be done by training models on 
surveillance diagnoses and using them to predict, and by extension evaluate on, post-exposure diagnoses. Doing 
so, however, requires knowledge of whether diagnostics fall into the surveillance testing category or the post-
exposure category, information our current dataset does not possess. If future datasets contain this information, 
performing this evaluation would provide significant value to the swine industry as a whole.

Our sow dataset is not annotated with whether samples are collected from sows or piglets. It is common for 
sows to test negative for diseases even as piglets test positive; in future work, it would be illuminating to model 
separate predictions for sows and piglets if such labels were available. In addition, vaccination may lead to posi-
tive diagnoses, particularly when live attenuated vaccines are used. The presence of vaccination data would allow 
for such diagnoses to be excluded, further improving models’ specificity.

Conclusions
In this work, we developed ML models for positive infection prediction on swine farms. To address challenges 
with data availability and distribution shift, we combine our ML models with feature selection by permutation 
importance to feed our model the most important features. We show that this feature selection improves gener-
alization. To further address the challenge of distribution shift, we employ an auto-encoder MLP model in the 
system B dataset, which is able to learn an efficient representation of the data and maintain good accuracy. Over-
all, we consider data from two separate farm production systems with low and high data granularity, respectively, 
and show that we can build models that adapt to cases with sparse data, where we infer health trends on farms, 
and cases with granular data, where we are able to predict infection for specific diseases.

We make five key contributions in this work. First, we show that production data and external factors, par-
ticularly weather, aid in infection prediction and are important tools to gauge the probably of having positive 
samples. Second, we are able to predict positive samples and provide positive sample probability at farm level 
on a daily basis. Third, we show that our model has the ability to provide advance warning both seven and 
30 days in advance, a significant benefit in a situation where reaction time is critical in disease prevention and 
alleviation. Fourth, we analyze our results in the context of two farm systems, and show that our model is able 
to generalize to different scenarios of data granularity. Fifth, we show that data availability and distribution shift 
can significantly influence results, and propose methods of handling these challenges.

We achieve a balanced accuracy of 0.853 on the test set in system A with the top six features. In system B, we 
achieve balanced accuracies of 0.585, 0.587, 0.728 and 0.748 with the top six features on the test sets of PRRS, 
PEDV, IAV, and MHP, respectively, primarily due to distribution shift between the training and test sets. In 
addition, we are able to perform early prediction of infection, with good accuracy both seven and 30 days in 
advance. We show that production data, distances to nearest farms, and biosecurity data are important factors 
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in predicting infections. In particular, the significance of biosecurity measures emphasizes the importance of 
taking such measures to prevent disease infection and by consequence outbreaks.

These approaches provide a strong baseline for future work in infection and outbreak prediction. Our next 
steps will be to integrate these approaches into user-friendly platforms such as the Disease BioPortal (https://
bioportal.ucdavis.edu) to facilitate the use and interpretation of these models by veterinarians and other stake-
holders. These models, combined with real-time data streams from swine farms, can be a powerful tool in infec-
tion and outbreak prediction and avoidance in the future at the farm level. In doing so, our approach can have 
a significant impact on both economic and environmental costs by lessening the spread and consequences of 
disease outbreaks in swine populations. The methods and findings of this study have significant implications for 
the swine industry and contribute to the growing body of research on disease prevention and control in animal 
agriculture using machine learning.

Methods
Data
Farm systems
Our analysis focuses on two swine production systems that we refer to as production systems A and B. Produc-
tion system A centers on data collected between 2016 and 2021 on a farm system that consists of over 110 sites. 
For our uses, we consider farms that contain relevant diagnostic data relevant to infection detection; this leaves 
us with 60 total farms, of which 40 are finishing sites and 10 are sow sites. Production system B centers on data 
collected between 2017 and 2022. While this production system consists of 926 sites, we focus on the subset of 
148 farms containing both production and matching diagnostic data. Of these, we match diagnostic data for 
132 NurFin sites, 15 sow sites and 1 boar site, which we group together with the sow sites. Metadata on these 
production systems is available in Supplementary Table S13.

Data is provided in three types of records: diagnostic, movement, and production. Diagnostic data is collected 
by Polymerase Chain Reaction (PCR), enzyme-linked immunoassay (ELISA) and serology testing. Over 98% of 
the diagnostic data used is collected by PCR; a breakdown by disease is available in Supplementary Table S14. 
The diagnostic data used contains both surveillance testing and clinician-ordered testing (because of clinical 
signs of disease). This data is not labelled as being in such groups and as a result we group diagnostics together 
for evaluation. We note that endemic diseases may lay dormant and have outbreaks of infection at non-periodic 
intervals; detection of these positive samples is also valuable and included here. Many diagnostic samples are 
collected on regular intervals, with three, four, seven and twenty-eight day intervals between samples being 
routine in our dataset. However, irregular intervals are also common: there are 343 total unique intervals across 
all diseases and systems. Production data is split into two varieties: sow performance data and nursery/finishing 
performance data (close out). Details on these datasets are summarized in Table 3.

We also collect meteorological data from a separate source, motivated by the knowledge that weather condi-
tions can influence local area spread of disease37. We use the World Weather Online API to collect historical 
weather data. Specifically, we consider five meteorological features: maximum and minimum temperatures, 
average humidity, average wind speed, and average wind direction. Finally, we leverage biosecurity data for farms 
in system B: the estimated number of swine on site, the carcass disposal plan, the manure storage method, the 
employee access point plan (describing measures used to cross into the biosecure area), and whether there is a 
shared lagoon.

Table 3.   Data summary.

Production system A

Diagnostic Movement

Production

Biosecurity policySow Close out (finishing farms)

Time granularity Daily Daily Weekly Production Cycle (105–250 
Days)

N/A

Number of farms 60 60 10 40

Number of features 1 1 102 70

Date range 7/2014–11/2021 1/2016–11/2021 1/2016–10/2021 2/2016–8/2021

Description
Diagnostic results of diseases 
tested at specific farm on 
given day

Logs of pig transfers between 
farm pairs on given day

Data collected on sow 
farms

Data collected on finishing 
farms

Production system B

Diagnostic Movement

Production

Biosecurity policySow NurFin

Time granularity Daily Daily Weekly Weekly Per Farm

Number of farms 926 896 16 132 736

Number of features 1 1 137 69 77

Date range 1/2018–7/2022 1/2021–7/2022 1/2017–7/2022 1/2017–7/2022 N/A

Description
Diagnostic results of diseases 
tested at specific farm on 
given day

Logs of pig transfers between 
farm pairs on given day

Data collected on sow 
farms

Data collected on nursing/
finishing farms

Data describing farm 
management policies
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Sample definition
We now discuss the assumptions and methodology behind the samples we use for infection prediction. Specifi-
cally, we explore four main types of potential disease predictors: 

1.	 Direct contact predictors, motivated by the assumption that the transportation of infected pigs would beget 
disease at farms accepting such pigs8. We model this disease pathway with three main types of features: 
movement quantity features, source distance features and source diagnosis features, which consist of the 
number of incoming pigs, the distances of farms sending pigs, and the diagnoses on the farms sending pigs, 
all during the historical window.

2.	 Spatio-temporal predictors attempt to model the local area spread of disease, potentially aided by weather9,37. 
These factors include the distances of the five nearest farms and five meteorological features: maximum and 
minimum temperature, humidity, wind direction, and wind speed.

3.	 Historical predictors, including historical production data, are prompted by the idea that past trends may 
lend insight into future trends. In system B, we focus on three subsets of the production features: mortality-
related, feed related, and cull related. We also include historical testing rates, both on the farm of diagnosis 
and on its source farms (the former only in system B due to issues discussed in the Discussion).

4.	 Farm-specific predictors are static management attributes of a farm that may influence infection propaga-
tion, especially those related to biosecurity. This data is only available in system B. We focus on five main 
policy features: the estimated number of swine on site, the carcass disposal plan, the manure storage method, 
the employee access point plan, and whether there is a shared lagoon. Each of these features consists of 
multiple categories, with the exception of the estimated number of swine on site, which is quantitative. The 
categorical information is one-hot encoded to form numerical features which are concatenated with the rest 
of the feature set. The specific categorical features are available in Supplementary Methods 3.1.

Each predictor consists of a collection of features. Historical predictors and some direct contact predictors are 
compiled from the datasets enumerated previously; a detailed description of this is available in Supplementary 
Methods 3.1.

At a high level, we define a sample as follows. Suppose we have a diagnosis (negative or positive) at farm i on 
day T. We examine the features over a temporal window WT ,n of n days ending on day T − 1 : [T − n− 1,T − 1] 
and compile either their mean or sum over that time period for continuous and count-based features, respectively. 
Note that after normalization, these are equivalent. This leaves us with features that are a temporal snapshot of 
the various predictors over the n days preceding the diagnosis. As a result of the back-dating method used to 
define features, temporal windows may overlap. The only exception to this definition is our usage of close out 
data in system A, which is collected at a temporal granularity too low for consideration by a recent window. For 
these predictors, we use the close out data from the most recently completed production cycle as predictors as 
in Shamsabardeh et al.27. In combining sow and finishing farms into one sample set, there are production fea-
tures that exist only in one farm type and are missing in the other (pregnancy rates on sow farms, for example). 
We impute using the mean of existing samples as necessary to unify our farm types into a joint sample set. We 
expect this imputation to have at most a minor effect on model performance as the imputation values retain the 
distribution of the original data to the maximal extent possible.

A simplified example of sample definition is available in Fig. 5. Let the final day in Fig. 5 correspond to 
day 0; we have negative diagnoses occurring at Farms A, a sow farm, and B, a finishing farm, on day −1 and 0, 
respectively, from which we define one sample each. Farm A, a sow farm, includes the weighted average of the 
sow data collected during the current and previous cycle as well as the diagnoses at days −5 and −13 . Farm B 

Figure 5.   An example of the data collected for two samples using a 14 day window, with a Farm A at top and 
a Farm B at bottom. Green and red boxes denote days with a negative and positive diagnosis, respectively. 
We consider the data to be 0-indexed from the right so that samples A and B are taken on days −1 and 0, 
respectively.
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includes the diagnoses from Farm A as well as its own historical diagnosis at day −9 . As Farm B is a finishing 
farm, we include the data from the close out cycle ending in day −3 in the sample.

Resultant sample set
Using the aforementioned sample scraping process, we build tabular sample sets for different window lengths: 
14, 30, 60 and 90 days in system A. In system B, we focus on a 60 day window. As window lengths may extend 
past the first available day with data, some potential samples end up being discarded, leading to variations in 
the number of samples and slightly lower numbers of samples than there are diagnoses. Our final sample set for 
system A consists of 1014, 1007, 991, and 972 samples for windows of 14, 30, 60 and 90 days, respectively. In 
all cases the dataset is imbalanced in system A: the positive class is only 11.1%, 11.2%, 11.4% and 11.2% of all 
samples when n = 14, 30, 60 and 90 , respectively. The number of features varies slightly, with longer window 
lengths having additional source features as movements have more opportunity to occur in longer windows. 
Additionally, the number of samples decreases with window length as only samples whose entire historical 
window is contained in the dataset are included.

Due to improved diagnostic data availability in system B, we are able to perform experiments for four respec-
tive diseases: PRRS, PEDV, IAV and MHP. Here, we focus on a window length of 60 days and obtain a sample set 
for system B consisting of 3215, 3366, 681, and 343 total samples for PRRS, PEDV, IAV and MHP, respectively, 
of which 708, 475, 271 and 97 are positive, respectively (Supplementary Tables S8 and S9). While the sample 
counts for some diseases—specifically, IAV and MHP—are relatively limited, we have a more balanced sample 
set overall than in system A. This balance, however, is not stable in time, with earlier samples—which compose 
the training set—having different distributions than the test set. As a result, our model maintains higher perfor-
mance in system A than in system B, despite the latter appearing to have a more balanced dataset at first glance.

Machine learning
We consider six machine learning models with different combinations of the features to determine the model that 
generalizes and performs best. Specifically, we consider logistic regression, support vector machines, decision 
trees, gradient boosting, and random forests in both systems; in system B, we also consider a neural network 
model. The model pipeline consists of five stages: standardization, feature selection, dimension reduction, model 
inference and threshold evaluation.

The standardization stage consists of subtracting each feature by its mean and then dividing by its standard 
deviation in order to make the features scale-invariant. In the feature selection stage, we select an optimal subset 
of features to maximize performance of the model. As a benchmark, we first analyze models with all features 
before performing a feature selection. Following this, we utilize a dimension reduction by principal component 
analysis (PCA) to reduce the dimension of the data to improve the model’s ability to generalize. In system B, we 
use a dimension reduction across all features. In system A, we explore both a standard dimension reduction as 
well as a stratified dimension reduction, wherein we perform two dimension reductions, one each for the sow 
and close out features, and then recombine them with the other features post-reduction. Due to the imbalance 
between classes in this binary classification, we select balanced accuracy as the metric to evaluate model perfor-
mance. Additional details and motivation on these choices and stages are available in Supplementary Methods 3.3.

Important predictors
We assess the relative importance of each feature to the highest-performing models—random forests in system 
A and MLPs in system B—via two approaches: a permutation feature importance and a forward feature impor-
tance, similar to Shapley values38,39. Note that these analyses do not precisely determine which features are the 
best predictors but rather which features are most important to a particular model; as the model is not perfect, 
feature importance is at best a biased estimator of the predictive value of particular features.

In the first case, the values of a single feature are randomly shuffled in the validation set and the model’s score 
is compared to its score pre-permutation; the difference is defined to be the permutation feature importance of 
the shuffled feature. This shuffling is repeated multiple times—in our case, five—for each feature. A higher score 
represents a higher contribution to the model from that feature: removing that feature provides a larger decrease 
in performance relative to others.

Permutation feature importance can fail to accurately analyze feature importance when features are highly 
correlated, either by assigning uniformly lower importance values to each member of a set of correlated features 
or by assigning group’s entire feature importance to one of the correlated features.

To address this limitation, we also consider a marginal feature importance, which proceeds as follows. We 
begin by training sets of models M1, ...,Mm where the model set Mi consists of a subset of models 

{M
j
i |j = 1, ...,

(

m
i

)

 trained on a feature set Xj
i , a combination of i features taken from the m total features.

Armed with these models, we can compute the performance gain provided by any given feature a: we simply 
determine the pairwise difference in the scores of models of size i such that a /∈ X

j
i with corresponding models 

of size i + 1 that contain the same sets of features as those of size i but with the addition of a. The performance 
gain of feature a is the mean of all of these pairwise differences.

Consider the following simplified example. Suppose we train a model with three tabular features a, b, c. Then 
the performance gain provided by feature a is the mean of the scores of the set {Mabc −Mab,Mab −Mb,Mac −Mc} . 
Performing this forward feature importance across model combinations requires training the model for every 
possible combination of features, which is computationally infeasible with large numbers of features. For example, 

in system A, with 219 features, this requires the training of 
∑219

n=1

(

219

n

)

≈ 8.425 · 1065 models. As a result, we 
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split the features into their respective sources and perform this feature analysis across these smaller splits of 
feature groups.

Performance with selected important predictors
Given the knowledge of feature importance, we retrain the model with selected sets of features to find the feature 
subset with the best predictive power. Specifically, we add an additional step to the pipeline before the dimension 
reduction in which we select a subset of features to pass to the remaining steps in the model. In order to select 
these features, we determine the permutation importance of the features through a cross-validation procedure 
utilizing a random forest classifier. This cross-validation is performed on every training fold of the overall five-
fold cross validation. In other words, it is a cross-validation within a cross-validation.

Early prediction
It is valuable to be able to detect warning signs of infection in the near or more distant future, so as to be able to 
prevent or mitigate the impacts of infections with sufficient lead time. To evaluate the model’s ability to perform 
future forecasting and provide infection predictions with lead times, we define two new sets of samples with lags 
of 7 and 30 days using data from system A. In other words, given a diagnosis on day T and a window of length 
n, the feature collection window WT ,n is the time range [T − n− l,T − l] , where l ∈ {7, 30} is the lag amount; 
we use a 60-day historical window here. This allows us to build a model to predict infection with 7- and 30-day 
advance warning.

Data availability
The data analyzed in this study is subject to the following licenses/restrictions: the dataset used in this study 
cannot be publicly available due to privacy agreements. Requests to access these datasets should be directed to 
Beatriz Martínez-López, beamartinezlopez@ucdavis.edu. The code used in this study can be made available upon 
request. Requests to access the code should be directed to Avishai Halev, ahalev@ucdavis.edu.
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