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A B S T R A C T   

Background and purpose: Magnetic Resonance Imaging (MRI) is widely used in oncology for tumor staging, 
treatment response assessment, and radiation therapy (RT) planning. This study proposes a framework for 
automatic optimization of MRI sequences based on pulse sequence parameter sets (SPS) that are directly applied 
on the scanner, for application in RT planning. 
Materials and methods: A phantom with seven in-house fabricated contrasts was used for measurements. The 
proposed framework employed a derivative-free optimization algorithm to repeatedly update and execute a 
parametrized sequence on the MR scanner to acquire new data. In each iteration, the mean-square error was 
calculated based on the clinical application. Two clinically relevant optimization goals were pursued: achieving 
the same signal and therefore contrast as in a target image, and maximizing the signal difference (contrast) 
between specified tissue types. The framework was evaluated using two optimization methods: a covariance 
matrix adaptation evolution strategy (CMA-ES) and a genetic algorithm (GA). 
Results: The obtained results demonstrated the potential of the proposed framework for automatic optimization 
of MRI sequences. Both CMA-ES and GA methods showed promising results in achieving the two optimization 
goals, however, CMA-ES converged much faster as compared to GA. 
Conclusions: The proposed framework enables for automatic optimization of MRI sequences based on SPS that are 
directly applied on the scanner and it may be used to enhance the quality of MRI images for dedicated appli
cations in MR-guided RT.   

1. Introduction 

Magnetic Resonance Imaging (MRI) has been integrated into 
oncology for staging, assessing tumor response, and also for radiation 
therapy (RT) planning, with the advantages of superior soft-tissue im
aging contrast and continuous real-time imaging, which can facilitate 
tumor and organ-at-risk delineation as well as image registration [1–5]. 
The large variety of imaging contrasts in MRI is associated with a large 
number of different pulse sequence parameter sets (SPS), which have a 
direct impact on image quality and efficiency of further image pro
cessing. Depending on the sequence and the clinical objective, these SPS 
can consist of up to 30 different parameters (repetition time (TR), echo 
time (TE), flip angle (FA), bandwidth (BW), turbo factor (TF) and 

averages, etc.). Each of these parameters directly influences image 
contrast, image quality, or acquisition time. As many pulse sequences 
are often not fully optimized to the needs of a specific clinical scenario, 
additional sequence optimization is often performed manually, which 
can be cumbersome and time-consuming. Machine learning-based 
models can help to simplify and automate such tasks, however, to 
train these models a large amount of data with different SPS needs to be 
collected and analyzed. Again, manual acquisition of this data at the 
scanner is a time-consuming procedure that requires repeated human 
interventions to change the SPS settings, and automation of this acqui
sition process is preferred. For this, several tools have been presented in 
literature. “Pulseq” [6] is a high-level, flexible, and hardware- 
independent open-source framework for the rapid development, 
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representation, and execution of magnetic resonance (MR) sequences. 
This tool allows users to create customized sequences by applying 
different schemes of RF pulses and gradients. By utilizing the Pulseq 
interpreter, these sequences can be exported and executed on a MRI 
device. 

Recently, the self-learning framework ‘MR-zero’ [7], utilizing the 
Pulseq-tool, has been proposed, which adapts and optimizes MRI se
quences based on a Bloch equation simulation. The generated pulse 
sequence, still requires knowledge of Bloch simulation in order to 
perform MR sequence optimization. In the more advanced version “MR- 
double-zero” [8], the “Pulseq” tool is still utilized to remotely control the 
scanner, however, the optimization directly operates on the acquired 
imaging data without requiring a Bloch simulation model or any further 
human interaction. As a prerequisite for implementing clinical se
quences with Pulseq, a detailed prior knowledge of the manufacturer 
pulse schemes with the exact timings of the gradients and RF pulses used 
in the respective clinical sequence is required. The clinical sequence has 
then to be built from scratch within Pulseq mimicking as closely as 
possible the selected sequence. 

Just recently, a real-time scanner remote control tool ‘Access-i’ 
(Siemens Healthineers, Erlangen, Germany) has been introduced, which 
resolves this problem by allowing the user to access all sequences 
implemented on the scanner and to change MRI parameters via a script. 

This study proposes a framework for automatic optimization of MRI 
sequences based on SPS that are directly applied on the scanner. Two 
clinically relevant optimization goals were pursued: i) achieving the 
same signal and thus contrast as in a target image, and ii) maximizing 
the signal difference between specified tissue types. Furthermore, the 
proposed framework is evaluated using two different optimization 
methods, a covariance matrix adaptation evolution strategy (CMA-ES) 
and a genetic algorithm (GA). The obtained results demonstrate the 
potential of the proposed framework for automatic signal difference 
optimization of MRI sequences, which can improve the application of 
MRI for application in radiotherapy planning. 

2. Material and methods 

2.1. Phantom material 

Measurements were performed in a cylindrical water phantom 
equipped with seven in-house fabricated substitutes having different 
contrasts. The substitutes were kept in place by a PMMA-ring and con
sisted of different concentrations of agarose (Ag) (AgaroseHEEO Ultra- 
Quality, Carl RothGmbH&Co. KG, Karlsruhe, Germany), in-house pro
duced nickel-diethylenetriaminepentaacetic acid (Ni-DTPA), and po
tassium chloride (KCl) (≥99 %, 5 %, Carl RothGmbH&Co. KG, 
Karlsruhe, Germany). The contrast of Ni-DTPA doped agarose gel was 
customized to obtain different T1 and T2 relaxation times in MRI by 
adjusting the concentrations of Ni-DTPA and agarose [9]. Ni-DTPA 
primarily reduces T1 relaxation time, while a higher concentration of 
agarose primarily decreases T2 relaxation time. Additionally, KCL is 
added to adjust the CT value. The substitutes were composed of different 
concentrations of Ag, Ni, and KCL to create seven different contrasts 
[10] (see Table 1). As containers, plastic conical centrifuge tubes (50 ml, 
diameter: 28 m, FalconTM, Thermo Fisher Scientific Inc., Waltham, 
USA) were used. 

2.2. Scanner interface 

All measurements were performed on a 1.5 T MAGNETOM Sola MR 
scanner (Siemens Healthineers, Erlangen, Germany) using the 20-chan
nel head coil. To enable the “on-the-run” optimization process, the MR 
scanner was remotely controlled by Access-i (Siemens Healthineers, 
Erlangen, Germany). The optimization process was run on a local 
computer (Intel(R) Core(TM) i5-9400, 2.9 GHz CPU, 6 cores and 16 GB 
RAM) instead of the host computer of the MRI scanner. By running the 
optimization process on a separate computer, we were able to optimize 
the MR sequence parameters based on the acquired images without 
interfering with the operation of the scanner using an in-house devel
oped Python code. In the next step, optimized SPS are automatically 
executed, and the optimization loop is terminated if the objective 
function or parameter values no longer change with respect to a pre
defined threshold value. 

2.3. Optimization process 

The SPS was optimized for a 2D turbo spin echo (TSE) sequence with 
a constant bandwidth of 186 Hz/pixel, resolution of 0.4 × 0.4 mm2, slice 
thickness of 5 mm and turbo factor of 30 with an echo spacing of 11 ms. 
TE, TR and refocussing FA as main contributors to contrast, were used as 
optimization parameters and were allowed to vary within a specific 
range (TE: 12 ms–114 ms, TR: 500 ms –2300 ms and FA: 140◦–180◦). 

The optimization workflow deals with image data obtained for 
discrete parameter sets directly from the scanner using the Access-i tool. 
Consequently, gradient-based optimization methods are not applicable 
since they require a smooth function to calculate the derivatives. We 
therefore employed two different evolutionary algorithms for evalua
tion: The genetic algorithm (GA) [11] and the covariance matrix adap
tation evolution strategy (CMA-ES) [12]. GA is an evolutionary 
algorithm that searches for optimal solutions through selection, cross
over, and mutation. Through successive iterations, it creates a popula
tion of potential solutions, evolves them through crossover and 
mutation, and selects individuals with the highest objective function 
values to reproduce the new population and converge to the global 
optimum solution. In contrast, CMA-ES uses a probabilistic approach 
that adapts the search distribution using the covariance matrix to focus 
on promising areas of the search space. This allows efficient convergence 
to the global optimum solution. Both algorithms were implemented 
using the Multi-objective Optimization in Python (PyMOO) framework 
[13]. For GA, we used tournament selection, simulated binary crossover, 
and polynomial mutation strategies with a default probability of 0.9. For 
CMA-ES, a sigma value of 0.2 was used. Further, elitism approach was 
not incorporated into the execution of either algorithm. The workflow 
was designed to continuously update the SPS and to subsequently 
execute it on an MR scanner using the Access-i tool, which then results in 
new image data. In this loop, the signal difference between a predefined 
regions of interest (ROI) in the substitutes was optimized. 

2.4. Clinical use cases 

2.4.1. Achieving the same signal as in a target image 
Pursuing this goal is reasonable, e.g. if diagnostic MR images are to 

be included into treatment planning for an 0.35 T MR-Linac, which can 

Table 1 
Contrast materials providing specific T1 and T2 values at a 1.5 T MRI and 0.35 T MR-Linac. Values as reported in [10].   

Container #1 #2 #3 #4 #5 #6 #7 

1.5 T T1 420 ± 1 523 ± 1 984 ± 3 1097 ± 4 629 ± 1 876 ± 4 882 ± 2 
T2 67 ± 1 93 ± 2 110 ± 2 46 ± 1 57 ± 1 296 ± 3 107 ± 2  

0.35 T T1 575 ± 4 733 ± 4 1108 ± 4 1155 ± 4 707 ± 4 1106 ± 5 1051 ± 5 
T2 75 ± 5 100 ± 5 119 ± 4 45 ± 1 61 ± 3 311 ± 13 110 ± 5  
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exhibit different image signals and thus contrasts between different 
structures. Using the images from the diagnostic MRI and optimizing the 
SPS to obtain a similar signal as the MR-Linac may facilitate image 
processing steps like registration. Also other scenarios, where the target 
image is acquired at the same device with different sequences or SPS are 
conceivable. 

For this, we consider that the scanner generates a signal mi in sub
stitute i which shall match the signal ti of the same substitute in the 
target image acquired under different conditions, without an initial 
image registration process. The optimization of the SPS involves several 
steps: First, a set of either predefined or randomly selected parameters is 
sent to the scanner for data acquisition. Following the acquisition, the 
substitutes are automatically segmented using region-growing segmen
tation algorithm [14,15] and the average signal of each individual ROI 
mi is determined. The differences of the signals mi and ti determines the 
mean-square error (MSE) loss function L (Fig. 1), which is sent to the 
optimizer to update the SPS. Finally, the updated parameters are 
transferred back to the scanner for the next iteration. This process is 
repeated until the objective function is below a certain threshold value. 
Fig. 1 displays the pipeline for ‘on-the-run’ automatic sequence 
optimization. 

In our experiments, we used a 0.35 T MR-Linac (MRIdian Linac, 
Viewray Inc., Oakwood, USA) image as a target image (TR = 2000 ms, 
TE = 35 ms, TF = 15, BW = 202 Hz/pixel, FA = 180◦ and resolution =
0.78x0.78 mm2). The SPS on the MAGNETOM Sola MR Scanner resulted 
in optimization image m that is optimized during the process. 

2.4.2. Maximizing the signal difference between different tissue types 
This use case maximizes the signal difference and thus contrast be

tween specified adjacent tissues to improve the conditions for auto
mated segmentation of tumors and/or organs at risk. For this, we start 
with a set of either predefined or randomly selected parameters and 
automatically segment the substitutes in the acquired images. Then, the 
contrast between neighbouring pairs of substitutes is calculated as the 
signal difference of mi and mj (i < j). As each signal difference in the 
objective function represents a different clinical objective, this problem 
can be considered as a multi-objective optimization (MOO) problem. As 
MOOs are computationally expensive and time-consuming, it is difficult 
to solve such a problem directly by measurements on the scanner. 
Therefore, the classical approach of considering a weighted sum of the 
individual objective functions is applied to arrive at a single objective 
function [16]: 

F =
∑

i,j
λij
(
mi − mj

)2 with i = 1⋯(n − 1), j = (i + 1)

Where the λij are the weights of the objective functions terms 
(
mi − mj

)2. 

To evaluate the performance of the multi-objective optimization algo
rithm, we conducted experiments with different weighting factors. To 
begin, we initialized the weights for all containers (λ12, λ23, λ34, λ45, λ56, 
λ67) to 1 and performed optimization. We then changed the weighting 
factors λ34 and λ45 to 5, while keeping the other weights (λ12, λ23, λ56, 
λ67) equal to 1 and evaluated the resulting contrasts. 

3. Results 

3.1. Achieving the same signal as in a target image 

Fig. 2 compares the loss functions for both optimization methods 
applied in this study. GA needed a larger number of iterations to 
converge as compared to CMA-ES. Nevertheless, both methods ulti
mately converged to the same objective function and parameter values 
(FA: 180◦, TE: 50 ms, TR: 2010 ms). For the CMA-ES optimization 
method, the optimization required 73 iterations (time: ~2.5 h) to 
converge, while the GA optimization took 172 iterations (time: ~4h). 
The overall experimental duration includes: acquisition time (10–40 s), 
total number of acquisitions, time required for remotely control MRI 
using Access-i, and optimization computation, the first two being the 
limiting factors. 

To visualize the progress of the optimization process, the image 
contrast at 10, 20, 30, 50, and 73 iterations obtained with the CMA-ES 
method is displayed and compared with the target image (T) acquired 
at the 0.35 T MR-Linac. The very good agreement between the optimized 
and the target image indicates successful optimization of the signal 
distribution. Fig. 3 illustrates the parameters development throughout 
the optimization process. 

3.2. Maximizing the signal difference between different tissue types 

The CMA-ES and GA methods were also evaluated with respect to 
maximizing the signal difference between selected substitutes, where 
CMA-ES required fewer iterations than GA. Therefore, only the final 
results obtained from CMA-ES are presented. Table 2 presents the results 
of the optimization method for the two analysed cases. Case 1 (all 
weights = 1) resulted in rather low contrast between substitutes 3/4 and 
4/5, respectively. Case 2 (λ34 = λ45 = 5) markedly improved the contrast 
between substitutes 3/4 and 4/5, however, on the cost of a decreased 
contrast between the other substitutes. We found (FA: 173◦, TE: 91 ms, 
TR: 2090 ms) and (FA: 180◦, TE: 11 ms, TR: 700 ms) as the optimal 
parameter values for Case 1 and Case 2, respectively. Fig. 4 further gives 
a visual representation of these results. 

4. Discussion 

In the present study, we demonstrated a proof-of-concept for fully 
automatic optimization of signal differences in MRI sequences by 
applying the sequence of SPS directly on the scanner. The optimization 
was performed for a 2D TSE sequences due to its relatively short 
acquisition time. We optimized the signal differences by changing the 
three parameters TR, TE, and FA, however, more parameters could in 
principle be included. 

Furthermore, our study demonstrated how MR sequences can be 
optimized specifically for application in radiotherapy using two clinical 
use cases: (i) achieving the same signal as in a target image and (ii) 
maximizing the signal difference between different tissue types. Use case 
(i) improves radiotherapy planning in MRgRT, where diagnostic MRI 
images may be used and registered to images obtained at the MR-Linac 
[17–19]. This registration will be facilitated, if the image from the 
diagnostic MRI is optimized to have the same signal as the target image 
from the MR-Linac. Use case (ii) on the other hand, is useful to better 
distinguish adjacent tissue structures and to automatically delineate 
them for treatment planning. 

In this study, we evaluated two optimization algorithms based on 

Fig. 1. Flow chart of the proposed “on-the-run” optimization workflow. The 
optimizer uses the Access-i tool to send the sequence parameters to a real MR 
scanner, resulting in a set of four MR images (population size of four). These 
images are then compared to the target to calculate the mean squared error 
(MSE). The MSE is then fed back to the optimizer to update the sequence pa
rameters until the optimum solution is achieved. 
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evolutionary strategies: GA and CMA-ES. Each iteration of the algo
rithms runs on a specific population size, determining how many sam
ples have to be acquired and evaluated per iteration. We tested different 
population sizes, with 2–5 acquisitions and found that a population size 
of 4 was most suitable for both GA and CMA-ES based on time efficiency. 
Here, CMA-ES required 73 iterations (resulting in a total of 292 acqui
sitions), while GA required 172 iterations (resulting in a total of 688 
acquisitions). 

Furthermore, comparison of the two optimization methods suggests 
that CMA-ES converges faster and should therefore be preferred over the 
GA algorithm. It is important to note, however, that the required pop
ulation size and the number of iterations may differ significantly 
depending on the number of sequence parameters included in the 
optimization and the resulting complexity of the objective function. As a 
proof-of-principle, we only optimized for three sequence parameters in 
this study. Regarding population size, there is a trade-off between 
slowing down the optimization by larger population sizes and insuffi
cient diversity if the size is too small. 

As an alternative to the employed optimization algorithms, one 
could also use a discrete gradient descent optimization method [20], a 
derivative-free approach for solving unconstrained non-smooth opti
mization problems. This method is based on the concept of discrete 
gradients, which can approximate the sub-gradients of a wide range of 
non-smooth functions. Furthermore, this method can improve compu
tational efficiency, as it requires a small population size, therefore 
requiring a smaller number of image acquisitions. Previous studies 
[21–23] have shown that this method is computationally efficient in 
solving non-smooth optimization problems. 

In contrast to the present approach, SPS optimization based on Bloch 
equations can be performed, which may be faster compared to real 
acquisition optimization as it does not require a MR device. However, it 
heavily relies on the knowledge of Bloch simulation to implement a 
specific sequence and accurate T1 and T2 relaxation times for each tis
sue, which are not necessarily known. In contrast, our proposed method 

operates directly on the MR scanner without prior knowledge and sim
plifies the optimization process and makes it more practical. 

In addition, some limitations should be addressed. First, the potential 
influence of gradient heating and field drifts due to such a long 
measuring time must be acknowledged, as they may affect image quality 
and measurement accuracy [24,25]. Secondly, the phantom was newly 
prepared following the recipe as described in [10]. However, the T1 and 
T2 values were not verified again. Thirdly, some MR parameters were 
not accessible using Access-i, such as echo spacing and echo-train- 
length/turbo-factor, which also play an important role in contrast for
mation. Finally, the optimal parameters obtained by using the proposed 
workflow may be different from clinically used parameters and while 
the new contrast may be beneficial for a certain application, it may come 
along with a suboptimal diagnostic image quality. 

In this proof-of-principle study, the optimization was performed on a 
phantom and for clinical implementation, the optimized sequences need 
also to be tested in-vivo. While phantoms measurements are useful to 
establish and calibrate an optimized sequence, images may additionally 
be affected by differences in object size, conductivity and by complex 
physiological and/or dynamical conditions within the human body. 
Therefore, the contrast obtained with the optimized SPS has to be 
validated in humans. As the optimization of the rather simple and fast 
TSE already took almost 3 h, it may not be feasible to perform the full 
optimization in-vivo, however, the SPS could be pre-optimized in 
anthropomorphic phantoms and the obtained SPS may be used as a 
starting point for further optimization in vivo. This approach may 
significantly reduce the required optimization times in humans. 

Further, more clinical sequences may be integrated into the opti
mization pipeline, for example, the 3D True Fast Imaging with Steady 
State Free Precession used for planning at the MRIdian MR-Linac. 
Finally, further studies have to investigate additional optimization pa
rameters such as contrast-to-noise (CNR), signal-to-noise ratio (SNR) 
and acquisition time. 

In conclusion, the proposed framework for an automatic multi- 

Fig. 2. A comparison of the MSE loss functions for the GA and CMA-ES optimization methods. Additionally, five images at different iteration numbers (10, 20, 30, 50 
and 73) for the CMA-ES method as well as the target image (T) are shown. Note: Images represent one sample image out of a population size of four acquired with 
various parameter combinations. As a result of the stochastic feature of the GA, the intensity distribution of image 3 is not between image 2 and image 4. In contrast, 
MSE loss represents the average loss of all four images. 
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paratactic optimization of SPS directly on MRI scanner has the potential 
to enhance the quality of MRI images for specialized purposed in 
MRgRT. The optimization workflow was established and exemplarily 
tested for two clinical use cases: (i) achieving the same signal as in a 
target image, and (ii) maximizing the signal difference between different 
tissue types. Evaluation of two optimization methods based on evolu
tionary strategies suggests that CMA-ES is an efficient approach to 

improve the signal as in a target image or to optimize signal difference 
between two given tissues. The presented method may be extended by 
including additional sequence parameters and image quality goals and 
therefore provides a flexible tool for optimizing MR image sequences for 
different clinical needs. 

Fig. 3. Shows the development of TE (a), TR (b) and FA (c) parameters during the optimization process. CMA-ES converges in fewer iterations compared to GA, 
although both methods results in the same final parameter values. 

Table 2 
Signal and contrast for the measured substitutes for two different sets of weighting factors.  

Container 1  2  3  4  5  6  7 

Case 1 (λ12 = λ23 = λ34 = λ45 = λ56 = λ67 = 1) 

Signal [a.u]  715.43   232.46   826.68   940.52   894.82   1227.79   494.94 
Contrast [a.u]   482.97  594.22   113.84   45.70  332.97   732.85   

Case 2 (λ12 = λ23 = λ56 = λ67 = 1, λ34 = λ45 = 5) 

Signal [a.u]  688.79   612.78   1030.27   1627.86   1126.77   1095.36   1213.98 
Contrast [a.u]   76.01   417.49   569.59   501.09   31.41   118.59   
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