Skip to main content
. 2023 Sep 1;13(10):6710–6723. doi: 10.21037/qims-22-1059

Table 5. Performances of the HLG-ML model, radiologists, and YEARS algorithm in diagnosing APE in the validation group.

Methods AUC (95% CI) Sensitivity (95% CI), % Specificity (95% CI), % Youden index
HLG-ML 0.810 (0.669, 0.952) 87.1 (70.2, 96.4) 75.0 (42.8, 94.5) 0.621
Reader 1 0.508 (0.335, 0.681) 51.6 (33.1, 69.8) 50.0 (21.1, 78.9) 0.016
Reader 2 0.504 (0.354, 0.654) 25.8 (11.9, 44.6) 75.0 (42.8, 94.5) 0.008
Reader 3 0.527 (0.363, 0.691) 38.7 (21.8, 57.8) 66.7 (34.9, 90.1) 0.050
YEARS algorithm 0.618 (0.469, 0.767) 90.3 (74.2, 98.0) 33.3 (9.9, 65.1) 0.237

HLG-ML, holistic lung graph-based machine learning; APE, acute pulmonary thromboembolism; AUC, area under the curve; CI, confidence interval.