Skip to main content
. 2023 Sep 15;13(10):6876–6886. doi: 10.21037/qims-23-423

Table 2. Diagnostic performance of AI on a per-patient and per-vessel basis.

Dataset Stenosis Basis Sensitivity (%) Specificity (%) PPV (%) NPV (%)
Internal (Dataset-ISQ) ≥50% Per-vessel (n=1,956) 89.2 (86.3, 91.8) 97.1 (96.2, 98.0) 90.7 (87.9, 93.5) 96.6 (95.6, 97.4)
Per-patient (n=652) 91.9 (88.3, 94.9) 93.2 (90.7, 95.7) 90.6 (87.1, 93.9) 94.1 (91.6, 96.2)
≥70% Per-vessel (n=1,956) 89.8 (84.9, 94.1) 98.4 (97.9, 98.9) 83.4 (77.6, 88.5) 99.1 (98.6, 99.5)
Per-patient (n=652) 94.2 (89.2, 98.1) 95.8 (94.1, 97.4) 80.8 (73.5, 87.7) 98.9 (97.9, 99.6)
External (Dataset-ESQ) ≥50% Per-vessel (n=768) 89.0 (82.7, 93.8) 97.3 (96.0, 98.6) 87.7 (81.4, 93.3) 97.6 (96.3, 98.7)
Per-patient (n=256) 88.0 (81.0, 94.4) 94.5 (90.7, 97.6) 90.0 (83.3, 95.6) 93.4 (89.2, 96.8)
≥70% Per-vessel (n=768) 86.8 (76.8, 95.3) 98.6 (97.6, 99.4) 82.1 (69.8, 92.3) 99.0 (98.3, 99.7)
Per-patient (n=256) 91.9 (82.6, 100.0) 97.3 (94.9, 99.1) 85.0 (72.5, 94.6) 98.6 (96.8, 100.0)

Values in parentheses are 95% confidence intervals. AI, artificial intelligence; PPV, positive predictive value; NPV, negative predictive value; ISQ, internal stenosis quantification; ESQ, external stenosis quantification.