Skip to main content
. 2023 Sep 11;13(10):6735–6749. doi: 10.21037/qims-22-1073

Table 5. The performance of the LR classifier in distinguishing between luminal and nonluminal breast cancer.

Regions Cohort AUC (95% CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%)
Rapid Training 0.744 (0.651, 0.823) 63.77 82.05 70.37 86.27 56.14
Validation 0.718 (0.564, 0.842) 65.52 75.00 68.89 82.61 54.55
Medium Training 0.623 (0.525, 0.715) 62.32 58.97 61.11 72.88 46.94
Validation 0.578 (0.421, 0.723) 48.28 81.25 60.00 82.35 46.43
Slow Training 0.755 (0.663, 0.832) 66.67 76.92 70.37 86.27 56.14
Validation 0.616 (0.460, 0.757) 48.28 81.25 60.00 82.35 46.43
Combined Training 0.804 (0.716, 0.874) 73.54 66.25 74.87 90.06 69.65
Validation 0.634 (0.477, 0.772) 59.45 72.50 62.69 84.37 41.84
Whole lesion Training 0.597 (0.498, 0.690) 17.39 100.00 47.22 100 40.63
Validation 0.571 (0.415, 0.718) 72.41 56.25 66.67 75.00 52.94

ACC, accuracy; AUC, area under the receiver operating characteristic curve; CI, confidence interval; LR, logistic regression; NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity.