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Abstract

Wildfire activity is increasing in the continental U.S. and can be linked to climate change effects, 

including rising temperatures and more frequent drought conditions. Wildfire emissions and large 

fire frequency have increased in the western U.S., impacting human health and ecosystems. 

We linked 15 years (2006–2020) of particulate matter (PM2.5) chemical speciation data with 

smoke plume analysis to identify PM2.5-associated nutrients elevated in air samples on smoke-

impacted days. Most macro- and micro-nutrients analyzed (phosphorus, calcium, potassium, 

sodium, silicon, aluminum, iron, manganese, and magnesium) were significantly elevated on 

smoke days across all years analyzed. The largest percent increase was observed for phosphorus. 

With the exception of ammonium, all other nutrients (nitrate, copper, and zinc), although not 

statistically significant, had higher median values across all years on smoke vs. non-smoke days. 

Not surprisingly, there was high variation between smoke impacted days, with some nutrients 

episodically elevated >10,000% during select fire events. Beyond nutrients, we also explored 

instances where algal blooms occurred in multiple lakes downwind from high-nutrient fires. In 

these cases, remotely sensed cyanobacteria indices in downwind lakes increased two to seven days 

following the occurrence of wildfire smoke above the lake. This suggests that elevated nutrients 

in wildfire smoke may contribute to downwind algal blooms. Since cyanobacteria blooms can be 

associated with the production of cyanotoxins and wildfire activity is increasing due to climate 

change, this finding has implications for drinking water reservoirs in the western United States, 

and for lake ecology, particularly alpine lakes with otherwise limited nutrient inputs.
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Introduction

Wildfires are natural disturbances in many ecosystems and can provide positive benefits, 

such as the creation of early seral habitats.1 However, climate change effects, including 

rising global temperatures and increased fuel aridity, are increasing wildfire activity in the 

United States (number of fires, area burned by fires, and fire season length).2–7 This trend 

is exacerbated in California5,6,8 and other regions of the western United States in recent 

years.4,9,10 Fires generate particulate matter (PM) and gas-phase pollutants such as ozone, 

carbon monoxide, and nitrous oxides.11,12 PM mobilizes chemical species with potential 

impacts on downwind ecosystems.13–15 Altogether, fires can lead to negative impacts on air 

quality and wildlife.16

Among many other effects, wildfires likely impact downwind ecosystems through 

the mobilization of nutrients such as nitrogen,12,17–20 potassium,19,21–27 and 

phosphorus.20,28–32 Elevated phosphorus and nitrogen in PM2.5 (PM ≤ 2.5 μm in diameter) 

have been identified during fires in California,33 Africa,29 and Australia.18 Similarly, 

atmospheric phosphorus concentrations have been elevated during biomass burning seasons 

in the Amazon14,30 and surrounding Lake Tahoe (western United States).34 The atmospheric 

lifetimes of PM2.5 can range from days to weeks, with potential to undergo reactions with 

strong acids during long-range transport to transform phosphorus- and nitrogen-containing 

particles into more soluble (bioavailable) forms.20,35 There has been an approximately 40% 

increase in atmospheric phosphorus deposition globally compared to pre-industrial times, 

attributed in part to biomass burning.36 More recently, atmospheric phosphorus deposition in 

the western United States has increased 50–100% from 2002–2012 in some subbasins of the 

Rocky Mountains37 while nitrogen fluxes from fires have increased 326% from 2002–2012 

(0.11 to 0.49 Tg/year).38

Atmospheric deposition can be an important source of nutrients to remote, oligotrophic 

lakes39,40 and marine ecosystems20,41 where phosphorus and/or nitrogen are often the 

limiting nutrients for aquatic primary productivity, including the production of algal 

blooms.42–45 Freshwater eutrophication from increased nutrient loadings and other 

environmental stressors (such as increased temperature46) can cause harmful algal blooms 

(HABs) consisting of cyanobacteria.47,48 HABs can produce toxins that are harmful to 
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human and animal health, and make water non-potable.49,50 The frequency and intensity 

of HABs may be increasing globally along with rising global temperatures.46,51–54 As 

the formation of HABs can be related to multiple stressors, there is potential that wildfire-

influenced nutrient emissions serve as an additional stressor to the onset of HABs.

Here, we investigated the nutrients associated within wildfire smoke for the entire western 

United States over a 15 year period. Specifically, we analyzed data from 309 air quality 

monitoring stations from 2006 through 2020 in 11 U.S. western states to enable long-

term study of airborne nutrient concentrations on wildfire smoke days vs non-smoke 

impacted days. In doing so, we identified PM2.5-associated nutrients that were statistically 

elevated on smoke days. In addition, we identified four case study fires with elevated 

atmospheric phosphorus and other nutrients. Air mass trajectories and satellite cyanobacteria 

measurements were analyzed for the case study fires to probe the effects of nutrient 

emissions on downwind lakes. Specifically, this study focused on addressing the following 

research questions:

1. What are the concentrations of atmospheric phosphorus and other nutrients on 

smoke days compared to non-smoke days in the western United States?

2. What are the temporal trends for nutrients released by fire?

3. Are there cases where nutrients in wildfire smoke are associated with 

cyanobacteria abundance in downwind lakes?

Addressing these research questions will increase our understanding of the potential 

mobilization of nutrients from fires. Further, quantifying and understanding the nutrients 

emitted during wildfires in the western United States will provide insight into nutrient 

emissions from biomass burning in other regions around the globe. Lastly, it may also help 

water quality managers anticipate and react to potential effects to aquatic systems, such as 

the possibility that smoke from fires contribute to HABs in downwind lakes and reservoirs.

Methods

Smoke plume identification

To characterize smoke impacted days vs non-smoke impacted days, the Hazard Mapping 

System (HMS) fire and smoke product (https://www.ospo.noaa.gov/Products/land/hms.html) 

provided by the National Oceanic and Atmospheric Administration (NOAA) was used 

to identify daily smoke plumes in the atmospheric column.55,56 Satellites with horizontal 

resolution ranging from 375 m – 2 km (for the S-NPP + NOAA-20 and GOES-16 East 

+ West satellites, respectively) detect smoke plumes by combining multi-spectral imaging 

and temperature thresholds. These detected smoke plumes are then manually analyzed to 

determine if smoke is active at that location. The HMS product is made publicly available 

and updated daily. It has been extensively validated by prior studies,57,58 showing only a 

~2% false positive rate resulting from highly reflective clouds and water surfaces.58 For this 

study, the HMS product was combined with PM2.5 speciation air quality data to compare 

airborne chemicals present within and outside of smoke plumes.
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Particulate matter (PM2.5) measurements

Aerosol chemical speciation data were collected from EPA’s Air Quality System (AQS, 

https://www.epa.gov/aqs)59 stations located in 11 western states (Washington, Oregon, 

California, Montana, Idaho, Wyoming, Utah, Colorado, New Mexico, Arizona, and Nevada) 

during the years 2006–2020 (Figure 1). Data from April 1 – December 31 were analyzed 

to encompass the fire season, per previous work.33 PM2.5 measurements are taken once 

every 3 – 6 days, depending on the station. PM2.5 samplers and operational requirements 

are described in EPA’s Quality Assurance Guidance document.60 X-ray fluorescence was 

used to quantify elements while liquid chromatography was used for ion analysis. The 

limit of detection is <1 μg/m3 and varies per pollutant.60 Samplers are cleaned every five 

days and calibrated, at minimum, every thirty days.60 Field and laboratory blanks are also 

analyzed to eliminate potential contamination from field and laboratory equipment.60 Only 

chemical species identified as macro- or micronutrients for plant life were analyzed in 

this study.61,62 The 13 species selected for analysis were phosphorus, nitrate, ammonium, 

calcium, potassium, sodium, silicon, copper, aluminum, iron, manganese, magnesium, 

and zinc. Speciated PM2.5 measurements were labeled as smoke-impacted if the monitor 

location fell within an HMS smoke plume on the day of measurement (Table S1).33 

Concentration differences for each species (in μg/m3 and % above average) were calculated 

on smoke-impacted and non-smoke days for each station to account for station-specific 

differences.33 In addition, a permutation test was used to determine if smoke and non-smoke 

day concentrations were significantly different for each species and each year, for data 

grouped by station and year.33,63 Data were excluded from the permutation test if fewer than 

20 overall or 4 smoke-impacted measurements were observed at a station in a year. Data 

processing was conducted in Python version 3.8.3 and the permutation test was run in R 

version 4.1.3.

Identification of case study fires

To explore possible linkages between nutrients mobilized by fire and cyanobacteria blooms, 

we identified the date and location of the ten highest phosphorus measurements on 

smoke- versus non-smoke impacted days (Figure S1, Figure 2). We then used NASA 

Worldview Earth Observing System Data and Information Systems (EOSDIS, https://

worldview.earthdata.nasa.gov/) satellite images to confirm active fires with visible smoke 

plumes in the atmospheric column at these locations (Figure S2).64,65 This resulted in four 

case study fires used for additional analysis: the Zaca, La Brea, Williams, and Carr Fire 

events in California (Figure 3, Figure S3). For comparison and to account for station-specific 

background concentrations, “No Fire” dates were chosen as the nearest date prior to the fire 

with no visible smoke plume observed in the atmospheric column. For each case study, the 

burn boundaries were downloaded from the Monitoring Trends in Burn Severity (MTBS) 

site and plotted with ArcGIS Pro version 2.8.6.

Air trajectory modeling

After identifying case study fires, NOAA’s Hybrid Single-Particle Lagrangian Integrated 

Trajectory (HYSPLIT, https://www.ready.noaa.gov/HYSPLIT.php) model was used to 

simulate the trajectory of air masses before and after passing through each monitoring 
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station (and does not include deposition flux estimates).66,67 HYSPLIT was first utilized to 

calculate backward trajectories starting at the corresponding AQS station and date of the 

highest phosphorus measurement for each fire, and then initiating traces every 3 h for 24 

h (8 total traces) at 10 m above ground level. Representative backward trajectories were 

overlaid with the burn boundary of each fire in ArcGIS Pro version 2.8.6. All backward air 

mass trajectories passed over or near (<70 km) the associated fire boundaries (Figure 4).

HYSPLIT was also utilized to initiate forward trajectories every 3 hours for 72 hours (24 

total trajectories) at 10 m above ground level. Heat maps were generated by plotting the 

percentage of trajectories passing through each grid square (Figure 4). This analysis was 

used to identify lakes downwind of high phosphorus and nutrient measurements.

Satellite cyanobacteria measurements

In the lakes identified downwind, satellite remote sensing data was obtained from 

the San Francisco Estuary Institute (https://fhab.sfei.org/) to quantify cyanobacteria 

concentrations.68 Satellites measure the spectral shape at 681 nm that covers spectral 

peaks in chlorophyll absorption and fluorescence, and a spectral shape at 620 nm which 

is sensitive to phycocyanin.69,70 Phycocyanin is used to distinguish cyanobacteria from 

phytoplankton.70–72

The MERIS sensor onboard the Envisat satellite operated from 2002 – April 2012, while the 

OCLI sensor onboard the Sentinel-3 satellite was used for measurements from April 2016 – 

current. There are no available data for April 2012 – April 2016. Both the MERIS and OCLI 

satellites use images with nadir pixel resolution of 300 m x 300 m. Each satellite orbits with 

a revisit frequency of approximately 2–3 days. In 2018 a second Sentinel-3 satellite became 

operational with the same orbits where Sentinel-3B was 140° out of phase with Sentinel-3A, 

effectively doubling the number of observations at a given location.

The cyanobacteria index (CIcyano) was calculated using a spectral shape algorithm initially 

described by Wynne et al.,73 then revised and updated by Lunetta et al.74 based on new 

conditions from Matthews et al.75 with a detailed description of the algorithm evolution 

described in Coffer et al.76 The CIcyano a unitless index value, which was multiplied by 

a constant to obtain a scale of 1–1000 by the San Francisco Estuary Institute. Satellite 

observations were aggregated into 10-day composites that preserved the maximum data 

value for each pixel. Grey pixels represent non-detections due to quality flagging for issues 

such as glint, mixed land and water, cloud cover, or cloud shadow and are excluded in this 

analysis. Black pixels were below the detection limit of the sensor and were assigned a 

value of 0 but still used in computation of lake-wide CIcyano values. The two pixels nearest 

shore or overlapping with land are discarded in the final image.76 The remaining pixels are 

colored based on their CIcyano index value, with cool colors such as purple representing low 

CIcyano and warm colors such as red representing high CIcyano. Pixel values are weighted 

the same, regardless of their location within the lake. The time series plots show the mean 

value of the 10-day composites in each water body. Though this method of remote sensing 

can experience interference with clouds, haze, snow, and ice, studies comparing satellite 

cyanobacteria measurements with in situ measurements show good agreement.77–80
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Water quality measurements

Lastly, for the downwind lakes identified, we searched for water quality measurements 

coinciding with the years of the relevant fires using three databases: the California Water 

Data Library (https://wdl.water.ca.gov/waterdatalibrary/Map.aspx); the U.S. Geological 

Survey (USGS) National Water Information System (https://waterdata.usgs.gov/nwis); and 

the Water Quality Data Portal (https://www.waterqualitydata.us/), a U.S. government 

database associated with the U.S. Environmental Protection Agency, USGS, states, and other 

partners. In all, we found monthly water quality data for only two of the lakes. For these two 

lakes, we downloaded monthly water temperature, dissolved oxygen, specific conductance, 

and nutrient data (N, P) for the year of the fire, plus the year preceding and the year after. 

There was either no data for the remaining lakes or data had been collected in years not 

coinciding with the relevant fires. In many of these lakes, the most recent water quality data 

had been collected decades prior to the fire.

Results

Particulate matter chemical composition on smoke-impacted vs. non-smoke days

Smoke-impacted days made up 9.2 – 16.2% of all measurements across all years, with the 

range depending on the chemical species (Table S1). Median values were higher on smoke 

days for all species except ammonium (Figure 2, Figure S1). Most species analyzed (with 

the exceptions of ammonium, nitrate, copper, and zinc) were significantly elevated on smoke 

days with a p-value <0.05 across all stations and all years (Figure 2, Figure S1, Table S2). 

With the differences in observed concentrations spanning orders of magnitude (Figure 2A, 

Figure S1A), we also investigated the percent increase in concentration on smoke days vs. 

non-smoke days for all years (Figure 2B, Figure S1B). All species analyzed were 21 – 

226% higher on smoke-impacted days compared to non-smoke days, with maximum percent 

changes over 1200% for all species (Table S3). The largest percent increase was observed 

for phosphorus. Mean phosphorus increases were 226% higher on smoke days compared 

to non-smoke days when comparing station-specific means, with high values measured at 

certain monitors on select smoke days. For example, the highest value measured (0.08 

μg/m3) was ~86,000% higher than the non-smoke average at the station located in Los 

Olivos, California. This measurement was linked to the La Brea fire of 2009.

Median percent increases on smoke days were analyzed as a function of year for phosphorus 

and nitrogen-containing species to address research question #2. We did not observe a 

consistent trend but rather episodically elevated concentrations for some years, especially 

for phosphorus. For example, smoke days in the year 2012 resulted in phosphorus 494% 

above the median on non-smoke days (Figure 2C). Phosphorus was significantly elevated 

with p-values <0.05 for the years 2007 and 2008, and all years 2012 and beyond (Table S2). 

In contrast, ammonium and nitrate were not statistically elevated on smoke days for any year 

(Table S2). Average percent change in concentration on smoke days compared to non-smoke 

days for each species and year are listed in Table S4.
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Particulate matter composition during selected fires

For all case study fires, the amount of phosphorus increased along with nitrate, 

potassium, manganese, and zinc (Figure 3). These fires were chosen based on phosphorus 

concentrations above the mean by 10,000% or more; yet in absolute concentrations, rather 

than percentage increase, phosphorus was not the main component of wildfire smoke during 

these fires. By concentration, the smoke plumes of these fires were dominated by nitrate 

and potassium (though these species were also present during no-fire days at the same 

locations, Table S5). Of the case study fires addressed herein, the La Brea and Williams 

fires were associated with the highest phosphorus concentrations of 0.08 and 0.05 μg/m3, 

respectively. Similar atmospheric phosphorus concentrations of 0.01 – 0.075 μg/m3 have 

been reported during wildfires in rural California.40 Relative abundances of each species 

analyzed are shown in Figure S4 and Table S5 for each case study fire and associated 

non-fire measurement at the same location. It is important to note that phosphorus was not 

present during non-fire days at these four locations (Table S5).

Cyanobacteria abundance in lakes downwind of fires

In answer to the third question regarding a potential association between nutrients mobilized 

by fire and cyanobacteria in downwind lakes, satellite imagery showed a spike in 

cyanobacteria abundance following wildfire-related nutrient concentrations in smoke. In the 

absence of deposition flux estimates, comparing images captured before and after the La 

Brea Fire high nutrient measurement indicates an increases in cyanobacteria concentrations 

at two downwind lakes, Lake Cachuma and Lake Casitas (Figure 5, Figure S5). The CIcyano 

of Lake Cachuma increased from 1.0 (no cyanobacteria) to 6.7 (some cyanobacteria) within 

seven days from the start of the La Brea Fire (Table 1). A similar pattern was observed for 

Lake Casitas with CIcyano values increasing from 1.0 to 1.8 after the start of the La Brea 

Fire. Cyanobacteria remained elevated for ~10 days in each lake before returning to levels 

observed before the start of the fire. These were not the only cyanobacteria blooms present 

at these lakes in the years surrounding the La Brea Fire and, from what we can discern, not 

all blooms were correlated with overhead smoke. However, the increase in cyanobacteria in 

August 2009 days after intersection with high nutrient-containing wildfire smoke suggests 

nutrients from fire may be a contributing factor to the onset of cyanobacteria blooms.

The same analysis was performed for lakes downwind of the Zaca Fire, with observable 

increases in cyanobacteria present for three lakes near the fire boundary (Figure 6). Pyramid 

Lake increased in CIcyano from 10.7 to 46.5 after the start of the Zaca Fire (Table 1). 

The Perris Reservoir and Mystic Lake both experienced marked increases in CIcyano after 

the Zaca Fire, from 1.0 to 39.4 and 26.6 to 436.4, respectively. Pyramid Lake and Perris 

Reservoir showed a fairly unique response to fire, with no/minimal cyanobacteria blooms 

observed during the surrounding years. In contrast, cyanobacteria blooms were frequent in 

Mystic Lake during the years analyzed. However, in August 2007 Mystic Lake exhibited 

minimal cyanobacteria until overlap with nutrient-containing wildfire smoke, suggesting 

cyanobacteria indices were influenced by nutrient additions from smoke in this instance. For 

ease of viewing, zoomed in satellite images of every lake are provided in Figure S5. Overall, 

satellite imagery showed increased cyanobacteria abundance in lakes 50–230 km downwind 

from the Zaca Fire.
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Similarly, satellite imagery shows increased cyanobacteria abundance in lakes up to 185 km 

downwind from the Carr Fire (Figure 7). Eagle Lake and Tule Lake experienced similar 

CIcyano increases of 1.4 to 2.4 and 1.4 to 2.7, respectively, after the highest nutrient 

measurement associated with the Carr Fire. Though Tule Lake is much closer to the AQS 

station than Eagle Lake (19 km and 133 km, respectively), both are located similar distances 

from the Carr Fire burn boundary (~140 km; Table 1). Honey Lake and Red Rock Lake 

experienced slightly more intense cyanobacteria blooms after the Carr Fire, with CIcyanos 

increasing from 5.1 to 14.6 for Honey Lake and from 9.9 to 13.8 for Red Rock Lake. Of 

all lakes investigated near the Carr Fire, the West Valley Reservoir experienced the largest 

increase in CIcyano after the start of the fire (1.1 to 224.8). This was the most severe bloom 

observed at West Valley Reservoir for the year of 2018 and the years pre- and post-fire. 

Though other lakes experienced blooms in the years surrounding the Carr Fire, the pre- and 

post-fire satellite imagery show an increase in cyanobacteria abundance after intersection 

with nutrient-containing wildfire smoke.

Some commonalties are evidenced when examining these blooms. A two-to-seven-day 

delay was observed between high nutrient wildfire smoke concentrations and the associated 

increase in cyanobacteria abundance across all fires. Similar bloom formation timelines have 

been reported for marine algal blooms after receiving nutrient inputs.81,82 Moreover, all the 

blooms occurred alongside August fires when water temperatures were undoubtedly warm 

and favorable for cyanobacteria growth. Cyanobacteria analysis was not performed for the 

Williams Fire due to lack of satellite data for September 2012.

Water quality in lakes downwind of fires

As noted previously, we located monthly water quality data for two lakes (Perris Reservoir 

and Pyramid Lake) coinciding with the timing of the relevant fire (the Zaca Fire, August 

2007). These lakes both experienced the highest monthly water temperatures of the year in 

July and August, leading up to- and during the month of the Zaca fire (Figure S7, Figure 

S8). Samples also recorded a sharp decline in dissolved oxygen in September of 2007 

(Figure S7, Figure S8), suggestive of an algal bloom the prior month.83,84 By contrast, we 

did not observe significant changes in concentrations of nitrate-N, total N, total P, or specific 

conductance in the lakes at the monthly timestep coinciding with the fire or subsequent algal 

bloom.

Discussion

Overall, we observed elevated nutrients associated with PM2.5 during wildfires in the 

western United States. Most nutrients analyzed were statistically elevated on smoke days 

(Table S2), with phosphorus the most elevated of all nutrients when considered on a 

percentage basis. Of the many nutrients shown to be elevated here, phosphorus and the 

nitrogen-containing species are likely the most relevant for eutrophication in downwind 

freshwater ecosystems, and therefore we focus mostly on those results in this section. For 

each of the case study fires investigated, phosphorus concentrations ranged from 0.01 – 

0.08 μg/m3 and were not present on non-fire days at the same locations while nitrogen 

concentrations ranges from 1.6 – 4.4 μg/m3 (84 – 3278% higher than concentrations on non-
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fire days at the same locations, Figure 3, Table S5). Each case study fire was associated with 

two to five downwind lakes displaying observable increases in cyanobacteria abundance. 

This is suggestive that mobilization and subsequent atmospheric deposition of airborne 

nutrients from wildfires may be contributing to downwind algal blooms in some cases.

Mobilization of atmospheric nutrients from wildfires

Whereas our study focused on the potential for atmospheric deposition, most related studies 

to date have focused on movement of nutrients via waterways. In a recent review, Paul et 

al. found that nutrients typically increase in nearby waterways and may stay elevated for 

several years following fire.85 In most cases, nutrient concentrations returned to starting 

levels within two to four years, however nutrient levels in some fire-impacted streams 

remained elevated up to ten years post fire.86,87 Several studies have reported increased 

primary productivity for up to three years following wildfire-influenced nutrient fluxes from 

runoff.88–91 These studies all focused on runoff as the mechanism by which nutrients enter 

local waterways. However, we show that nutrients can be mobilized and transported long 

distances in the air and across watershed boundaries.

Previous studies have identified wildfire-related mobilization of nitrogen-containing species. 

A recent nitrogen inventory states nitrogen emissions in the United States are largely driven 

by the agriculture sector and are trending downward, though N emissions from forest fires 

are becoming significant in some basins in the western United States.38 In 2020, fires 

contributed up to 83% of total nitrogen emissions in the western United States.92 Lightning 

is a natural ignition source for fires and also contributes to the amount of nitrogen in 

the atmosphere.93,94 In this work, we generally found higher PM2.5-associated nitrate but 

lower PM2.5-associated ammonium. Boaggio et al. 2022 analyzed a subset of the data 

included in this study and also reported lower ammonium concentrations on smoke days 

in California.33 Other studies have reported seasonal contributions of ammonium nitrate 

to PM, with summertime concentrations in California appreciably lower than wintertime 

concentrations (3.2 μg/m3 vs 8.4 μg/m3, respectively).95,96 This is likely due to enhanced 

partitioning of ammonium into the particle phase during lower temperatures.95 Our analysis 

was limited to the fire season (April 1 – December 31),33 hereby missing the majority 

of wintertime ammonium measurements. Additionally, the high temperature of fires97 

drives the ammonium-ammonia equilibrium to favor gas-phase ammonia98,99 which was 

not measured in the PM2.5 dataset analyzed herein. Finally, a laboratory-based study found 

ammonia is retained in soil by fire-derived organics.100 Altogether, these likely account for 

the decreased amounts of ammonium observed across smoke-days in this study.

Studies of wildfires in remote regions have identified elevated atmospheric phosphorus in 

the Amazon Rainforest,14,30 Africa,29 Australia,18 and Lake Tahoe,34 similar to observations 

reported herein. Like nitrogen, approximately 90% of national phosphorus inputs are 

attributed to agriculture.37 Estimated phosphorus emissions from wildfires range from 0.6 × 

1010 g/year101 to 2.5 × 1012 g/year.34–36,102–104 Approximately 10% of global phosphorus 

emissions are attributed to fires.20 Phosphorus and other nutrients contained in plant biomass 

and the forest floor are mobilized by fire and through increased soil particle aeolian transport 

during and after the fire.20,105,106 Phosphate/phosphorus actively adsorbs to solid surfaces in 
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soil.107 Silicon, an element commonly found in soil and fertilizers,108,109 was statistically 

elevated for many of the same years as phosphorus, thus supporting this hypothesis.

The National Atmospheric Deposition Program routinely monitors the atmospheric 

concentration and deposition of nitrogen-containing species.110 Both ammonia and nitrate 

deposition have been decreasing in the western United States for the past decade (< 3 

kg/ha in 2021 compared to ~4 kg/ha in 2011).110 However, several studies examining total 

NOx or organic nitrogen have identified increased nitrogen deposition after wildfires.92 

In 2020, fires were attributed to a 78% increase (from 7.1 to 12.6 kg/ha) in nitrogen 

deposition in California.92 Our study, particularly the case study fire analysis, identified 

wildfire smoke concentrations of PM2.5-associated nitrate with potential for deposition in 

downwind environments.

In contrast, atmospheric phosphorus concentrations and deposition are less frequently 

monitored.111 Atmospheric phosphorus deposition was generally small but increased 50–

100% (0.05 – 0.25 kg/ha) from 2002–2012 in some areas near the Rocky Mountains.37 

Few additional studies have investigated atmospheric phosphorus deposition following 

wildfires in the western United States. Phosphorus in streams increased 40x after fire 

during a period of no precipitation, suggesting dry deposition as the leading pathway of 

nutrient transport.112 Other studies have identified atmospheric deposition of phosphorus 

as an important contributor to phosphorus accumulation in alpine lakes.40,113 Phosphorus 

concentrations in lakes and streams are increasing in the western United States, likely 

influenced by increases in atmospheric deposition.40,114 As lakes have longer water 

residence times than streams and rivers, fire effects on lake ecosystems are more prolonged 

than for other freshwater systems.115 Phosphorus is often the limiting nutrient in aquatic 

systems to produce algal blooms,42–45 therefore understanding phosphorus and nutrient 

mobilization is crucial when considering regional water quality.

Nutrients and other factors that affect cyanobacteria blooms

Higher temperatures, sunlight, and excess nutrients create favorable conditions for the 

formation of cyanobacteria blooms.116 Rising global temperatures are increasing the 

growing period of cyanobacteria,46 and cyanobacteria blooms themselves may also 

contribute to warming water temperatures through the absorption of sunlight.117,118 

Warming of water bodies contributes to thermal mixing, usually leading to nutrient depletion 

and algal blooms during early summer.119 This effect was observed most readily in the 

springtime blooms on Lake Cachuma for all years analyzed (Figure 5c). Here, we observed 

wildfire-associated cyanobacteria blooms later in the summer (August). Water temperatures 

above 25°C favor cyanobacteria growth over other species of green algae.46,120 The water 

quality data included herein (Figure S7, Figure S8) show water temperatures slightly above 

25°C in two of the lakes identified. Although we did not have water temperature data for 

the remaining lakes, water temperatures were likely highest during August relative to other 

times of the year in those lakes as well. Thus, warmer water temperatures likely were 

an antecedent condition before any potential nutrient deposition from the fires, suggesting 

water temperature is a critical covariable that contributes to cyanobacteria blooms during fire 

season.
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Changes in sunlight due to smoke could also impact bloom activity. One recent article found 

wildfire-induced smoke coverage reduced incident radiation and heat transfer to mountain 

lakes, hereby altering lake ecology.121 The authors noted an increase to primary production 

in shallow waters due to a release from photoinhibition.121 To evaluate this mechanism of 

smoke-influenced cyanobacteria bloom production, we investigated the smoke coverage for 

all case study fires. Smoke remained present in the atmospheric column from August 8 – 

20, 2009 following the La Brea Fire, July 29 – August 25, 2007 for the Zaca Fire, and from 

July 20 – September 3, 2018 for the Carr Fire. While smoke coverage overlaps with the 

cyanobacteria blooms observed on lakes near the La Brea Fire, smoke was present in the 

atmospheric column for two to three weeks prior to the cyanobacteria blooms near the Zaca 

and Carr Fires. For these examples, cyanobacteria blooms were only observed following 

high airborne nutrient pulses over lakes, suggesting atmospheric deposition as a contributing 

factor in bloom formation. Scordo et al. 2021 also noted primary production at the surface of 

the lake increased linearly with PM2.5 mass concentrations present in smoke and stated one 

possible explanation as deposition of nutrients from ash.121 The higher trophic status and 

light attenuation of the case study lakes compared to the clear mountain lake used in Scordo 

et al.121 suggests that photoinhibition was not a major factor in the cyanobacteria blooms 

investigated herein.

Deposition from a summertime wildfire could lead to an infusion of nutrients to the top of 

the water column at a time of year when the water temperature is already warm. Deposition 

of iron from wildfires has been shown to trigger algal blooms in marine ecosystems.122 In 

this study, iron was not always higher during the case study fires when compared to non-fire 

days at the same locations, and moreover it is unlikely these freshwater systems are iron 

limited (Figure 3, Table S5). Instead, it is more likely that nitrogen or phosphorus limits 

primary productivity in these lakes. While some lakes are nitrogen limited,123 most lakes 

in California are phosphorus limited.42,44,124,125 The concentration of nitrogen-containing 

species was higher during the case study fires, yet these species were also present in the air 

during non-fire days. By contrast, phosphorus was only present at the case study locations 

in smoke plumes and absent on non-smoke days (Figure 3, Table S5). This suggests the 

primary limiting nutrient may have been phosphorus, causing the observed increase in 

CIcyano in downwind lakes, but we cannot definitively separate out its effects from nitrogen 

and other nutrients.

Like other studies downwind of wildfire,14,15,39,41,45,103,122 nutrient concentrations in the 

downwind waterbody were generally lacking in this study, with the exception of two lakes. 

Water sampling downwind of fires can be difficult given the stochastic nature of when and 

where fires occur and whether smoke will intercept a waterbody. Additionally, the temporal 

and spatial coverage of existing sampling networks are sparse compared to air quality data. 

By contrast, it is much easier to collect local water quality data in burned watersheds, likely 

explaining in part why the preponderance of the scientific literature has focused on local 

effects to date.85 Nevertheless, other studies, especially in coastal systems, are suggestive 

of a mechanistic linkage between smoke from fires and primary production, even without 

water quality data.14,15,39,122 Here, the drop in dissolved oxygen (Figure S7, Figure S8) 

likely indicates a preceding algal bloom. The monthly nitrate data also show that nutrient 

concentrations in the water column can be low in late summer relative to the rest of the 
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year. This suggests that nutrients delivered to the water surface could help contribute to an 

algal response. Otherwise, however, the monthly data do not have the temporal resolution to 

confirm whether or not a depositional effect from the fire occurred. Given that the blooms 

occurred days after the fire, any depositional changes in monthly chemistry data are likely 

to be masked by biological uptake. Thus, there were relatively high nutrient concentrations 

in smoke from these fires, the smoke intercepted the lakes, and there were algal blooms 

subsequent to smoke exposure, but we cannot quantify nutrient concentration changes in the 

water column in response to the smoke. Perhaps, as this potential relationship becomes more 

well known, rapid response water quality sampling could be conducted downwind of fires to 

help fill in this data gap.

There were similarities across all cyanobacteria blooms described herein following the 

intersection with wildfire smoke. The average increase in CIcyano for all lakes investigated 

was 73.0, though this was highly variable (range 0.8 – 409.8). An increase in CIcyano 

was observed two to seven days after intersection with high nutrient wildfire smoke 

concentrations. Most blooms persisted for 7–14 days, with the exception of the Mystic 

Lake bloom that lasted over 21 days. No precipitation was recorded during or immediately 

after the case study fires. In the absence of precipitation or runoff, dry deposition is the 

hypothesized route of transport for nutrients to lakes.91,112 Air mass trajectories support the 

atmospheric transport of nutrients to the selected lakes.

We investigated the change in CIcyano for all lakes associated with case study fires as a 

function of lake surface area, depth, and volume, yet the conclusions that can be drawn are 

fairly limited given the small number of lakes analyzed. Surface area may have had some 

influence on CIcyano. For example, the change in CIcyano was similar for both West Valley 

Reservoir and Mystic Lake when accounting for surface area, though Mystic Lake had a 

significantly higher CIcyano (436.4 and 224.8, respectively; Figure S9). For the La Brea 

fire, the change in CIcyano at Lake Cachuma was higher than Lake Casitas (5.7 and 0.8, 

respectively), and was likely influenced by the larger surface area for nutrient deposition, 

closer proximity to the fire, and shallower lake depth allowing for sunlight penetration and 

mixing that promotes cyanobacteria growth (Table S6, Figure 1).48,126

For cases where depth could be determined, lakes with shallow depths generally experienced 

more severe blooms. Mystic Lake experienced the most severe bloom of all lakes examined 

during the Zaca Fire, likely due to the shallow depth (2 m) of the lake (Table S6). The most 

notable bloom following the Carr Fire occurred at West Valley Reservoir; the shallow depth 

of this lake (1–3 m) also likely contributed to the intense increase in CI observed (Table S6). 

By contrast, there was not an observable relationship between CIcyano and lake volume for 

the lakes examined in this study.

In addition to lake properties, we also considered the distance from fire boundaries to 

AQS stations and lakes. Previous studies have observed correlations between proximity of 

monitoring stations to burned areas and high species concentrations.33 In both the La Brea 

and Williams fire examples, AQS stations were present 15–25 kilometers from the fire burn 

boundaries. In contrast, the Zaca and Carr fires were much farther from their associated AQS 

stations (~140 kilometers). Though these fires burned significantly more acreage (Table 1), 
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they were not associated with higher nutrient concentrations than the La Brea and Williams 

fires. For the La Brea fire, the lake closest to the fire burn boundary experienced higher 

cyanobacteria activity. However, this trend was not observed for the lakes associated with 

the Carr and Zaca fire events. Given the small sample size of case study fires used in this 

study, the conclusions regarding distance are fairly limited.

If indeed contributing to algal bloom formation as suggested here, the mobilization and 

deposition of nutrients from wildfire has implications for communities and waterbodies 

far downwind and even upslope, like alpine systems. Cyanobacteria blooms can produce 

cyanotoxins, such as microcystins127 and cylindrospermopsin,128 both of which have 

recommended levels for safe consumption in drinking water (1.6 μg/L for microcystin129 

and 3 μg/L for cylindrospermopsin).130 These toxins require purification, often by 

oxidation131 or ozonolysis,132 when present in drinking water supplies. For example, toxic 

algae blooms in Oregon’s Detroit Lake contained cylindrospermopsin and microcystin, 

which impacted drinking water for 200,000 people in the surrounding communities in 

2018.133,134 Cyanobacteria blooms can also affect secondary drinking water standards, such 

as taste and odor.135 Overall, cyanobacteria blooms are becoming a threat to inland water 

quality and aquatic ecosystems.136

In addition to health impacts, cyanobacteria blooms can lead to decreased dissolved oxygen 

levels,137–139 altered light and heat transport in water bodies,139 and negative impacts on 

biota.116,139 Aquatic light reduction may affect the vertical distribution and productivity of 

primary producers, thus altering the food-web structure.139 Several studies have noted a 

reduction in abundance or diversity of macroinvertebrates17,140–143 and fish144,145 following 

fire-related eutrophication and increased cyanobacteria. These, in turn, can lead to negative 

impacts on fishing industries, recreation, and tourism.146 There is some evidence to suggest 

eutrophic lakes are increasing across the United States, with increases in lake and stream 

phosphorus most exacerbated in the western United States.114 An increase in phosphorus 

deposition from fires could impact downwind lakes and the detriment of their aquatic life.

Another potential link between wildfires and cyanobacteria bloom formation is the use 

of phosphorus-based fire retardants, which have been shown to stimulate algae growth at 

concentrations <1 mg/L.147 While fire retardant usage was not quantified in this study, 

the use of phosphorus-based fire retardants is increasing148 and expected to promote 

algal growth near fire boundaries. Similarly, wildfire-driven deforestation has been linked 

to enhanced nutrient loadings of nitrogen and phosphorus, leading to eutrophication to 

downstream water bodies.149 Our results suggest a systematic study linking fires to 

cyanobacteria growth is warranted.

Limitations

Our study contains limitations that should be considered when interpreting results. First, the 

use of remote-sensing data for both smoke plume detection and cyanobacteria abundance 

contains inherent limitations. The smoke plumes from HMS are representative of smoke 

throughout the entire atmospheric column, not just at the surface. This may have decreased 

the difference between smoke and non-smoke nutrient concentrations if the smoke plume 
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was high in the atmospheric column but not measured by ground-based monitors. Other 

studies have identified increased PM2.5 on days before and after HMS-identified smoke 

events when using daily measurements.150 With the measurements used herein taken less 

frequently (every 3 – 6 days depending on the station) we expect a minimal effect on 

the results of this study. However, accounting for these two limitations would likely 

increase the magnitude of our fire-mobilized nutrient estimates. Additionally, HMS satellite 

products could potentially miss smoke due to cloud coverage, hereby mislabeling smoke and 

non-smoke days. Similarly, the MERIS and OCLI satellite sensors have interference with 

smoke, glint, clouds, and cloud shadows. This could reduce the magnitude of cyanobacteria 

measurements if smoke was consistently over a given lake during image acquisition. 

The lakes analyzed herein were at least 300m x 300m to be resolvable by MERIS and 

OCLI, so results may be different for smaller aquatic systems. Pixels along the land-water 

interface were excluded automatically with the satellite algorithms, though this can be where 

bloom biomass accumulates due to wind advection. Lastly, the satellites only measure the 

surface of the water column and may under-represent cyanobacteria in well-mixed lakes. 

Taken together, all of these limitations suggest we may be under-reporting cyanobacteria 

abundances in these bodies of water.

Next, the AQS data contained varying numbers of measurements for each type of chemical. 

Of the 15 years of data analyzed for this study, measurements ranged from as high as 1,931 

for potassium, manganese, zinc, silicon, and iron, but were as few as 620 for ammonium. 

The significantly fewer data points for ammonium could explain why there was not a 

strong correlation with fire activity. Similarly, each species measured contained a portion 

of measurements at 0 (Table S1), which likely resulted in lower average concentrations 

and smaller differences between smoke and non-smoke days. The highest phosphorus 

measurement on smoke days (0.08 μg/m3 associated with the La Brea fire) resulted in a 

very high (~86,000%) percent above average for the year 2012 at that station. This percent 

calculation was based on just two non-zero measurements and highlights episodically high 

concentrations that may not always be consistently observed.

Finally, in contrast to the 15 years of airborne nutrient data, we were limited in the 

number of fires we could investigate for a potential linkage between wildfire smoke 

and algal blooms. Using four high phosphorus fires, we identified 10 total lakes near 

each fire boundary with increases in cyanobacteria abundance. Further studies should 

consider expanding the spatial extent to find more fires with accompanying cyanobacteria 

measurements, if available. We were also limited by the paucity of water quality data in 

most cases. Lastly, deposition flux estimates were not attainable in the current work but 

represent an important next question in determining a relationship between fire emissions 

and aquatic ecosystem effects. Future modeling work may be necessary to determine 

wildfire-influenced nutrient fluxes to water surfaces.

Conclusions

In this study, we examined the mobilization of nutrients by wildfire smoke over a 15 

year period in the western United States, and observed increased airborne concentrations 

of phosphorus, nitrate, potassium, manganese, copper, zinc, aluminum, silicon, calcium, 
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iron, magnesium, and sodium in wildfire-influenced PM2.5. Of all nutrients, phosphorus 

increased the most on smoke days (averaged 226% higher on smoke days compared to 

non-smoke days, with a percent change of approximately 86,000% at its maximum). In 

four high phosphorus case study fires, we further observed a potential link between high 

nutrients in smoke and an increase in cyanobacteria abundance in multiple downwind lakes. 

Cyanobacteria blooms occur naturally from a multitude of stressors, particularly increased 

temperature and nutrient loading. We propose that fire-driven nutrient mobilization could be 

an additional stressor contributing to the formation of blooms given the proper antecedent 

conditions, like elevated water temperatures.

With climate change expected to increase both fire and cyanobacteria bloom activity in the 

continental United States in the coming years, it is vital to further understand if a link exists 

between these two environmental trends. The findings presented herein warrant the need for 

future studies systematically investigating the relationship between wildfire emissions and 

downwind lake eutrophication, including in regions outside of the western United States.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Environmental Significance Statement

Wildfire activity is increasing with a warming climate. Wildfires mobilize chemicals 

in smoke with potential impacts to communities and ecosystems far downwind. 

In this study, particulate matter (PM2.5) nutrients were elevated on wildfire smoke 

days compared to non-smoke days, with the exception of ammonium. For example, 

phosphorus concentrations in smoke from one fire were ~86,000% higher than days 

without smoke and reached a maximum value of 0.08 μg/m3. Downwind of several high 

nutrient fires, remotely sensed cyanobacteria abundances increased in the days following 

intersection with smoke. This is suggestive of a relationship between nutrients from 

wildfire smoke and cyanobacteria bloom formation, with potential to impact drinking 

water and aquatic ecosystems in the western United States and other fire-prone regions.
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Figure 1. 
Air Quality System (AQS) speciation network monitors for PM2.5 locations active at some 

point during 2006–2020.
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Figure 2. 
A) Absolute change in concentration (μg/m3) and B) percent change in concentration on 

smoke days compared to non-smoke days at each monitoring station, for phosphorus and 

nitrogen-containing chemicals, across all years (2006–2020). Each black dot represents a 

single monitoring station for one year. The diamonds represent the average values across all 

stations and years, while the orange horizonal lines symbolize the median values. Median 

values are higher on smoke days for phosphorus and nitrate, but lower for ammonium. The 

number of measurements (n) is listed after each species. Boxes represent 25–75th quartiles 

while whiskers represent 5–95th quartiles. Concentrations for all species investigated are 

shown in Figure S1. C) Median percentage change in concentration for phosphorus and 

nitrogen-containing chemicals on smoke days compared to non-smoke days, separated by 

year.
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Figure 3. 
The chemical species profile for the A) Zaca, B) La Brea, C) Williams, and D) Carr 

fire events in California. Species were plotted on different concentration axes for easier 

visualization. Ammonium was not measured during the selected fire events. No Fire dates 

were chosen as the nearest date preceding the fire with no visible smoke observed in the 

atmospheric column. Relative abundance of each species is shown in Figure S4; percent 

differences in chemical species during case study fires compared to the nearest no-fire date 

at the same location are shown in Table S5.
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Figure 4. 
HYSPLIT backward (top row) and forward (bottom row) trajectory plots corresponding 

to the Zaca Fire, La Brea Fire, Williams Fire, and Carr Fire. Backward trajectories were 

initiated at the corresponding Air Quality System (AQS) station for 24 h at 10 m above 

ground level, with markers labeling the location of the air mass every 1 h starting at the 

AQS station and working towards the fire boundary. Representative backward trajectories 

were overlaid with the burn boundary for the corresponding fire to verify plumes traveled 

over/near fire locations before sampling at AQS stations. Forward trajectories were initiated 

from the corresponding AQS station every 3 h at 10 m above ground level. The contours 

represent the percentage of trajectory endpoints in each grid cell divided by the total number 

of trajectories calculated. Forward trajectories were used to identify lakes downwind of high 

nutrient measurements.
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Figure 5. 
A) Satellite images of cyanobacteria concentrations in the Santa Barbara area of California 

on August 19, 2009, five days after high nutrient concentrations in smoke from the La 

Brea Fire. The red star on the map marks the nearest Air Quality System (AQS) station 

and the orange area on the map represents the La Brea Fire burn boundary. Satellite 

imagery showing pre- and post-fire cyanobacteria abundances for each lake are shown in 

the bottom left and Figure S5. B) One month and C) annual April-December time series of 

cyanobacteria indices (CIcyano) for Lakes Cachuma and Casitas. The orange shaded regions 

represent smoke coverage over the lakes.
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Figure 6. 
A) Satellite images of cyanobacteria concentrations in the Santa Barbara area of California 

on August 19, 2007, five days after high phosphorus concentrations in smoke from the Zaca 

Fire. Lakes with observed increased in cyanobacteria index (CIcyano) are circled and shown 

in detail on the top right with comparison to satellite images captured pre-fire. The red star 

on the map marks the nearest Air Quality System (AQS) station and the orange area on the 

map represents the Zaca Fire burn boundary. B) One month and C) annual April-December 

time series of CIcyano for Mystic Lake, Pyramid Lake, and Perris Reservoir. Plots are 

colored based on the circled locations on the maps. The orange shaded regions represent 

smoke coverage over the lakes.
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Figure 7. 
A) Satellite images of cyanobacteria concentrations in Northern California on August 27, 

2018, twelve days after high nutrient concentrations in smoke from the Carr Fire. Lakes 

with observed increased in cyanobacteria index (CIcyano) are circled and shown in detail 

on the bottom left with comparison to satellite images captured pre-fire. The red star on the 

map marks the nearest Air Quality System (AQS) station and the orange area on the map 

represents the Carr Fire burn boundary. B) Annual April-December time series of CIcyano 

for all lakes circled. Plots are colored based on the circled locations on the maps. The orange 

shaded region represents smoke coverage over the lakes. Monthly CIcyano plots for these 

lakes are shown in Figure S6.
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Table 1.

Case study fires with area burned, airborne phosphorus and nitrogen concentrations, downwind lakes, lake 

distance from fire and Air Quality System (AQS) station, and pre- and post-fire cyanobacteria index (CIcyano) 

values. Pre-fire CIcyano were taken 5 days before the start of the fire. Post-fire CIcyano represent the 

maximum value detected 5–12 days after each corresponding fire. CIcyano values correspond to the dates and 

images shown in Figure S5.

Fire Area burned 
(hectares)

P,N at AQS 
station 
(μg/m3)

Downwind lakes Lake 
distance 
from fire 
(km)

Lake 
distance 
from AQS 
station 
(km)

Pre-fire CI 
(cyanobacteria 
index)

Post-fire CI 
(cyanobacteria 
index)

La Brea 36,215 .08, 4.5
Lake Cachuma 31 15 1.0 6.7

Lake Casitas 89 60 1.0 1.8

Zaca 97,208 .01, 1.7

Pyramid Lake 56 72 10.7 46.5

Perris Reservoir 230 160 1.0 39.4

Mystic Lake 230 160 26.6 436.4

Carr 92,936 .01, 1.6

Eagle Lake 140 133 1.4 2.4

Tule Lake 140 19 1.4 2.7

Honey Lake 170 180 5.1 14.6

Red Rock Lake 185 132 9.9 13.8

West Valley 
Reservoir 175 105 1.1 224.8
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