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Purpose: To develop machine learning (ML) models to predict, at baseline, treatment outcomes at month 9 in
patients with neovascular age-related macular degeneration (nAMD) receiving faricimab.

Design: Retrospective proof of concept study.
Participants: Patients enrolled in the phase II AVENUE trial (NCT02484690) of faricimab in nAMD.
Methods: Baseline characteristics and spectral domain-OCT (SD-OCT) image data from 185 faricimab-

treated eyes were split into 80% training and 20% test sets at the patient level. Input variables were baseline
age, sex, best-corrected visual acuity (BCVA), central subfield thickness (CST), low luminance deficit, treatment
arm, and SD-OCT images. A regression problem (BCVA) and a binary classification problem (reduction of CST by
35%) were considered. Overall, 10 models were developed and tested for each problem. Benchmark classical ML
models (linear, random forest, extreme gradient boosting) were trained on baseline characteristics; benchmark
deep neural networks (DNNs) were trained on baseline SD-OCT B-scans. Baseline characteristics and SD-OCT
data were merged using 2 approaches: model stacking (using DNN prediction as an input feature for classical ML
models) and model averaging (which averaged predictions from the DNN using SD-OCT volume and from
classical ML models using baseline characteristics).

Main Outcome Measures: Treatment outcomes were defined by 2 target variables: functional (BCVA letter
score) and anatomical (percent decrease in CST from baseline) outcomes at month 9.

Results: The best-performing BCVA regression model with respect to the test coefficient of determination
(R2) was the linear model in the model-stacking approach with R2 of 0.31. The best-performing CST classification
model with respect to test area under receiver operating characteristics (AUROC) was the benchmark linear
model with AUROC of 0.87. A post hoc analysis showed the baseline BCVA and the baseline CST had the most
effect in the all-model prediction for BCVA regression and CST classification, respectively.

Conclusions: Promising signals for predicting treatment outcomes from baseline characteristics were detected;
however, the predictive benefit of baseline images was unclear in this proof-of-concept study. Further testing and
validation with larger, independent datasets is required to fully explore the predictive capacity of ML models using
baseline imaging data.
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Age-related macular degeneration (AMD) is a leading cause
of vision loss in patients 50 years of age and older and
presents in 2 advanced clinical forms: neovascular AMD
(nAMD) and geographic atrophy.1,2 Neovascular AMD is
characterized by choroidal neovascularization (also called
macular neovascularization) and is associated with vision
loss that, if not properly treated in a timely manner, can
be irreversible.2 Standard of care for nAMD in the past 15
years has been anchored in intravitreal injections of anti-
VEGF agents, administered monthly, bimonthly, and
every 3 months with a treat-and-extend regimen, or on a pro
ª 2023 by the American Academy of Ophthalmology
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re nata (as needed) strategy.3e5 However, data from clinical
practice show a notable contrast between visual gains and
outcomes achieved in the pivotal phase III anti-VEGF trials
in comparison with those seen in the clinical setting, which
has been attributed, among other causes, to undertreatment
and the broad variability in treatment frequency.6,7 In
addition, outcomes reported in clinical trials represent the
“average” patient cohort response rather than the
individualized response of each patient over time,8

whereas broad heterogeneity in the response to treatment
is commonly seen in nAMD.9
1https://doi.org/10.1016/j.xops.2023.100385
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Recently, innovative therapeutic options for nAMD have
been made available, including faricimab.10 This is the first
bispecific antibody designed for intraocular use that blocks
both angiopoietin-2 and VEGF-A, 2 growth factors
thought to play key roles in the pathogenesis of nAMD and
other retinal vascular diseases.11 Faricimab’s clinical
development plan included 1 phase I (NCT01941082) and
2 phase II trials in nAMD (AVENUE [NCT02484690]
and STAIRWAY [NCT03038880]) in which faricimab
was found to be well-tolerated and achieve vision and
anatomical outcomes comparable with intravitreal anti-
VEGF monotherapy.12e14 In the phase III TENAYA (clin-
icaltrials.gov; NCT03823287) and LUCERNE
(NCT03823300) trials, faricimab administered up to every
16 weeks led to improved visual acuity outcomes that were
noninferior to aflibercept, a treatment that targets the VEGF
pathway alone, administered every 8 weeks.15 Given the
variable treatment response in nAMD in clinical practice
and the increasing number of treatment options, the ability
to predict future individual treatment outcomes at baseline
could support drug development and help clinicians make
personalized treatment decisions, potentially improving
patient outcomes while reducing treatment burden.

Artificial intelligenceebased tools, including machine
learning (ML), could potentially represent an innovative and
complementary approach to address these unmet needs in
the current management of nAMD as well as in future drug
development. Machine learningebased algorithms have
demonstrated the potential to identify baseline prognostic
factors8 and predict treatment response to or requirements
for anti-VEGF agent using visual or clinical characteristics
and anatomical imaging data taken at the baseline or first
few months of treatment.9

In this proof-of-concept study, we aimed to explore
whether ML using baseline clinical variables and baseline
spectral domain-OCT (SD-OCT) could predict future treat-
ment outcomes for faricimab-treated eyes with nAMD in the
AVENUE trial.
Methods

Source of Data

The AVENUE trial was a double-masked, 36-week, multicenter,
comparator-controlled, parallel group phase II randomized trial in
treatment-naive patients with subfoveal choroidal neovascularization
secondary to nAMD.14 The trial was conducted in accordance with
the Declaration of Helsinki, principles of Good Clinical Practice, and
in compliance with applicable local laws; protocols were approved
by the applicable institutional review boards.14 Written informed
consent was obtained from all patients. The AVENUE trial
comprised 5 treatment arms (Fig 1), including the comparator arm
(ranibizumab dosed every 4 weeks), which was excluded from the
current analysis. Only 1 eye per patient was selected as the study
eye and was included in the study. Details of the trial design and
results have been previously published.14

Of 273 patients enrolled in the AVENUE trial, 204 were ran-
domized to the 4 faricimab treatment arms. Of these, 185 patients
(185 study eyes) had both complete data for demographic and
clinical measurements at day 1 (baseline) and complete data for
best-corrected visual acuity (BCVA) and for SD-OCT central
2

subfield thickness (CST) at month 9 (Fig 2; Table 1). These 185
patients with the complete dataset of interest were included in
the current study.

Outcome Variables and Fold Definitions

In this study, treatment outcomes were defined as either functional
or anatomical.

The functional outcome was defined as the BCVA letter score
at month 9 (the primary outcome measure in the AVENUE trial).
For the functional outcome prediction, a regression problem was
considered. The coefficient of determination (R2) score was used as
the primary metric to evaluate model performance; root mean
squared error and mean absolute error were used as secondary
metrics to assess the performance from different aspects.

The anatomical outcome was defined by the percent decrease in
CST from baseline to month 9. The percent decrease in CST from
baseline was converted to a binary variable (i.e., a variable with
only true/false values) with a threshold of 35%, which was chosen
based on the median percent decrease in CST from baseline of
36.5% observed in the dataset. Thus, the binary variable can be
broadly interpreted as whether a given individual patient exhibited
a reduction in CST greater than the median reduction observed for
all patients in the trial. For the anatomical outcome prediction, the
primary metric was area under the receiver operator characteristic
(AUROC) curve; secondary metrics were accuracy, precision, and
recall. The closest point to the top left corner in the receiver
operator characteristics plot was chosen as the operating point, or
threshold, for accuracy, precision, and recall.

The entire dataset was split at the patient level into 80% (148
patients) training and 20% (37 patients) test sets. The training set
was further divided into 5 folds of equal size to perform cross-
validation (CV). All splits were stratified by the target variable
(quartile for BCVA regression).

Input Variables

Two types of input variables were considered at baseline to predict
the outcome variables: tabular data and image data. Tabular data
are characterized by the fact that the value has an actual meaning of
clinical relevance. Image data do not fall into the category of
tabular data because the meaningful information in an image is the
global structure of the object shown and the value of each indi-
vidual pixel is less meaningful.

Tabular Data. The following tabular variables at baseline were
included: age (years), sex, baseline BCVA letter score, CST (mm),
low luminance deficit, and treatment arm. Central subfield thick-
ness was defined as the average thickness between the inner
limiting membrane (ILM) and the retinal pigment epithelium over
the central 1 mm subfield. Low luminance deficit was defined as
the difference between BCVA and low luminance visual acuity.
The distribution of tabular data is shown in Table 1.

Image Data. Image data consisted of the macular SD-OCT
images at baseline. All SD-OCT images from study eyes were
taken using Spectralis (Heidelberg Engineering, Inc., Heidelberg,
Germany; Table 2). The SD-OCT image acquisition protocol
varied across patients and sites, and volumetric SD-OCT data
could include 19, 36, 47, or 49 B-scans. In patients imaged with 19
B-scans, the distance between each B-scan was twice that of the B-
scans taken in other patients.

For SD-OCT preprocessing, all B-scans were resampled to the
same pixel resolution and resized to 496 � 512 pixels using
bilinear interpolation. Seventeen B-scans from approximately the
same location were included for each SD-OCT volume; the central
or foveal B-scan was always included, and 8 B-scans were taken
from each side of the central B-scan. Because SD-OCT volumes
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Figure 1. The AVENUE trial design, with the 4 treatment arms included in the current analysis indicated. BCVA ¼ best-corrected visual acuity;
CNV ¼ choroid neovascularization; nAMD ¼ neovascular age-related macular degeneration; Q4W ¼ every 4 weeks; Q8W ¼ every 8 weeks.
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with 19 B-scans had twice the distance between consecutive B-
scans than other volumes, the 16 noncentral B-scans were taken
alternately in SD-OCT volumes with 49, 47, or 36 B-scans (Fig 3).
The suprainner limiting membrane (the region above the inner
limiting membrane or the region of vitreous in the B-scan) was
masked (the pixel values were set to 0). To complement the
small sample size, the following data augmentation techniques
were applied to training images: random rotation (no rotation,
rotation of 5 degrees, rotation of �5 degrees), random left/right
flip, and random translation (vertical translation and horizontal
translation are uniformly distributed over [�50, 50] and [�25, 25]
in pixels, respectively) (Fig 4).

Benchmark ML Models

Two types of models were used corresponding to the 2 types of
input data. The classical ML models took the tabular data as input
data, and the deep neural networks (DNNs) processed the SD-OCT
image data. The classical ML models and the DNNs were used as
the benchmark models because they consisted of a single ML al-
gorithm, whereas the model-stacking and averaging approaches
used 2 algorithms. The results of the classical ML models were
used to see whether improvement can be seen in the model-
stacking and averaging approaches. The model performance of
Figure 2. The AVENUE trial patient disposition for patients included in the
previously published.14 BCVA ¼ best-corrected visual acuity; CST ¼ central s
the deep learning (DL) model was used to understand how well
image information was extracted.

Classical ML Models. To explore models with different
learning mechanisms, we included the following 3 models:
linear (elastic net), random forest (RF), and extreme gradient
boosting (XGBoost16) models, whose hyperparameters were
tuned in the 5-fold CV. For each of the 3 models, 2 instances
were developed: 1 for the BCVA letter score regression and 1
for the percent decrease in CST from baseline classification;
therefore, a total of 6 classical ML models were developed. All
classical ML models were implemented using the Scikit-learn
module in Python.17

DL Model. Deep leaning is a field of ML that uses DNNs. A
DNN learns useful patterns for a prediction in the given dataset by
itself without being manually programmed. The DL model only
took SD-OCT images as input data. The average of predictions for
17 B-scans from the same SD-OCT volume was used for patient-
level prediction. The base architecture for the model was Inception
version 3,18 which is a DNN for image processing. A global
average pooling layer and a dropout layer were inserted before
the output layer. The output layer was regularized with L1
penalty. The DL algorithms were implemented using
TensorFlow19 and Keras20 in Python. Again, 2 separate instances
were developed for each of the 2 prediction problems.
present analysis.a aFull patient disposition for the AVENUE trial has been
ubfield thickness; Q4W ¼ every 4 weeks; Q8W ¼ every 8 weeks.
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Table 1. Patient Demographics and Characteristics at Baseline and Month 9 in Patients Included in This Analysis from the AVENUE
Trial

Baseline (N [ 185) Month 9 (N [ 185)

Age, mean (SD) [range], years 78.5 (8.77) [55, 96] e
Sex, n e
Male 60
Female 125

Treatment arm, n e
Arm B 40
Arm C 40
Arm D 41
Arm E 64

BCVA, mean (SD) [range], ETDRS letter score 55.6 (12.1) [24, 83] 63.4 (16.1) [14, 89]
CST, mean (SD) [range], mm 461 (131) [230, 899] 287 (71.1) [188, 602]
LLD, ETDRS letter score, mean (SD) [range] 20.3 (9.9) [0, 43] e
Percent decrease in CST from baseline, mean (SD) [range], mm e 0.341 (0.206) [�0.656, 0.692]

Arm B ¼ faricimab 1.5 mg every 4 weeks; Arm C ¼ faricimab 6.0 mg every 4 weeks; Arm D ¼ faricimab 6.0 mg every 4 weeks to week 12, followed by every
8 weeks; Arm E ¼ ranibizumab 0.5 mg every 4 weeks to week 8, followed by faricimab 6.0 mg every 4 weeks; BCVA ¼ best-corrected visual acuity;
CST ¼ central subfield thickness; LLD ¼ low luminance deficit; SD ¼ standard deviation.
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ImageNet21 pretrained weights were used as the initial point of
training. The training details common to both BCVA regression
and percent decrease in CST from baseline classification (except
where explicitly noted) were as follows: the model was trained
with the Adam optimizer22 with a learning rate of 10�6 using
batches of 8 SD-OCT images for 180 epochs. Dropout was
applied after average pooling and before the output layer during
training with 0.95 probability. The L1 penalty coefficient was 0.1
for BCVA regression and 0.05 for percent decrease in CST from
baseline classification. For training of the BCVA model, mean
squared loss was used, and for training of the CST model, binary
cross-entropy loss was used.

Model-Stacking and Model-Averaging Approaches. The
classical ML models and the DL model only used either the tabular
or the SD-OCT image data. We proposed 2 approaches to combine
tabular data and SD-OCT image data: model stacking and model
averaging.

Model-stacking23 involved a 2-stage approach. At the first stage,
the DL model was trained, and the resulting prediction was used as 1
of the input features into the classical ML model at the second stage
(Fig 5). For the first stage CV, 5-fold CV was used to tune hyper-
parameters of the DL models. In iteration i (i ¼ 1, 2, 3, 4, 5) of the
second stage 5-fold CV, the prediction of the DL model from iter-
ation i of the first stage CV was used as 1 of the input features. Six
models were developed using the model-stacking approach.

In the model-averaging approach, the classical ML models and
DL models were trained separately. The final prediction was the
Table 2. Summary of Spectral D

Patients, n Number of Scans Taken Dimensio

158 49
25* 19
1 47
1 36

*In these 25 patients, the distance between each B-scan was twice that of the
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(equally weighted) average of the classical ML model prediction
(on tabular data) and the DL model prediction (on SD-OCT data;
Fig 5). Again, 6 models were developed using the model-averaging
approach.

Testing Procedure

To calculate the test metrics, classical ML models were retrained
on the entire training dataset with the optimal hyperparameters
found in 5-fold CV. DL models were used in an ensemble way
(i.e., the average of 5 DL models [from each 5-fold CV iteration]
was used).

The methods used to examine the impact of clinical features on
outcome variables are summarized in the Supplement (available at
https://www.ophthalmologyscience.org).

Results

CV Metrics

The CV results for BCVA regression are shown in Figure 6.
The R2 (standard deviation [SD]) values of benchmark
classical ML models, whose inputs are tabular data were
0.35 (0.14) for linear model, 0.39 (0.16) for RF, and 0.36
(0.17) for XGBoost. The image-based DNN model had a
mean R2 (SD) value of 0.26 (0.08). In BCVA regression, for
omain-OCT B-Scans Taken

n of B-Scan (Pixels) Area Covered by Each Scan (mm2)

496 � 512 2 � 6
496 � 758 2 � 4.5
496 � 512 2 � 6
496 � 512 2 � 4

B-scans taken in other patients.

https://www.ophthalmologyscience.org


Figure 3. Representation of B-scans selected for spectral domain-OCT reprocessing, according to the number of scans in each volume. (Left) OCT volume
with 49 B-scans, (Right) OCT volume with 19 B-scans.

Kikuchi et al � ML to Predict Faricimab Treatment Outcome in nAMD
the functional treatment outcome prediction, model-stacking
and model-averaging showed improvements in CV metrics
compared with the benchmark classical ML models, with a
larger improvement seen with model-stacking (Fig 6); this
was apparent across the linear, RF, and XGBoost models.
The highest R2 value was observed with model-stacking
in the linear model (0.43 [0.13]).
Figure 4. Image augmentation process. Rotation, flipping, and translation are a
degrees, flipping, vertical translation of 50 pixels, and horizontal translation o
purpose of illustration. ILM ¼ inner limiting membrane.
For the anatomical treatment outcome prediction, the CV
results for percent decrease in CST from baseline classifi-
cation (threshold of 35%) are shown in Figure 7. The mean
(SD) AUROC of the benchmark classical ML models were
0.89 (0.05) for the linear model, 0.89 (0.04) for RF, and 0.88
(0.05) for XGBoost. The result for DNN was a mean
AUROC (SD) of 0.77 (0.11). No clear improvement was
pplied randomly in the training. For the presented example, rotation of 5
f 25 pixels were applied. Augmentations shown here were applied for the
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Figure 5. Overview of the benchmark models, model-stacking, and model-averaging. Baseline characteristics are tabular data. aClassical ML models are
either linear model, random forest, or XGBoost. bFinal prediction is either BCVA at month 9 or the probability of having >35% decrease in CST from
baseline. BCVA ¼ best-corrected visual acuity; CST ¼ central subfield thickness; DNN ¼ deep neural network; ML ¼ machine learning;
XGBoost ¼ extreme gradient boosting.
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observed in CV metrics between models with respect to
benchmark classical ML models, model-stacking, and
model-averaging (Fig 7). The highest mean AUROC value
was 0.89 (0.04) for the XGBoost model with model-
stacking, and the highest accuracy value was 0.87 (0.05)
for the RF model with model-stacking.
Test Metrics

For the functional treatment outcome prediction, consid-
ering BCVA regression, the benchmark linear model, RF,
and XGBoost had R2 values of 0.31, 0.08, and 0.30,
respectively. The DNN showed an R2 value of 0.08. The
highest R2 value for a model-stacking or model-averaging
instance was 0.31 for model-stacking with linear model
Figure 6. Cross-validation (CV) results of best-corrected visual acuity regressio
mean absolute error (MAE) in CV. Crosses represent the mean score of 5 folds
metric score for each fold. BM ¼ benchmark; DNN ¼ deep neural network; M
mination; RF ¼ random forest; RMSE ¼ root mean squared error; XGBoost ¼
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(Table 3; Fig 8). The highest R2 value and lowest root mean
squared error and mean absolute error values were observed
with the linear model (model-stacking; Table 3). Overfitting
was most prominent for the RF models.

For percent decrease in CST from baseline classification,
the benchmark linear model, RF, and XGBoost had
AUROC values of 0.87, 0.80, and 0.80, respectively. The
DNN had an AUROC value of 0.70. The highest AUROC
value for a model-stacking or model-averaging instance was
0.86 for model-stacking with linear model, which makes the
benchmark linear model the best-performing model
(Table 4; Fig 9).

Results regarding the impact of clinical features in
benchmark models and model-stacking approach on
outcome variables were obtained from SHAP analysis
(SHapley Additive exPlanations24) (Supplement Material;
n, for (A) R2 scores in CV, (B) root mean squared error in CV, and (C)
; error bars represent the standard deviation of 5 folds; circles represent the
A ¼ model averaging; MS ¼ model stacking; R2 ¼ coefficient of deter-
extreme gradient boosting.



Figure 7. Cross-validation (CV) results of percent decrease in central subfield thickness from baseline classification, for (A) area under the receiver operator
characteristic curve (AUROC) in CV, (B) accuracy in CV, (C) precision in CV, and (D) recall in CV. Crosses represent the mean score of 5 folds; error
bars represent the standard deviation of 5 folds; circles represent the metric score for each fold. BM ¼ benchmark; DNN ¼ deep neural network;
MA ¼ model averaging; MS ¼ model stacking; RF ¼ random forest; XGBoost ¼ extreme gradient boosting.

Kikuchi et al � ML to Predict Faricimab Treatment Outcome in nAMD
available at https://www.ophthalmologyscience.org). For
BCVA regression, baseline BCVA was consistently found
to be the most impactful feature. In the model-stacking
approach, the prediction from DNN was found to be the
second most important among linear model, RF, and
XGBoost. The impact of the other features was mostly
limited. On the other hand, for the CST classification, the
baseline CST was found to be the most impactful feature
throughout benchmark models and model-averaging
approach. The baseline BCVA and DNN predictions were
also found to be impactful on the prediction. The baseline
BCVA was ranked as the second most important feature in
the benchmark models and third most impactful in model-
stacking approach, whereas the DNN prediction was sec-
ond most impactful in all models in the model-stacking
approach. Additionally, comparisons of the predictions
with true data are summarized in the Supplement (available
at https://www.ophthalmologyscience.org).
Discussion

In this proof-of-concept study, benchmark models and 2
novel approaches, involving modeling multimodal inputs
7
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Table 3. Test Results of Best-Corrected Visual Acuity Regression for Each Model

Model R2 (95% CI) RMSE (95% CI) MAE (95% CI)

Benchmark models
Linear 0.306 (�0.0702, 0.584) 12.8 (8.85, 16.9) 9.46 (7.08, 12.1)
Random forest 0.0825 (�0.499, 0.513) 14.7 (9.71, 19.4) 10.4 (7.29, 13.7)
XGBoost 0.297 (�0.143, 0.606) 12.8 (8.5, 17.3) 9.46 (6.95, 12.2)
Deep neural network 0.0786 (�0.246, 0.351) 14.7 (10.3, 19.0) 10.9 (8.12, 14.2)

Model stacking
Linear 0.308 (�0.0261, 0.583) 12.7 (8.61, 16.9) 9.02 (6.39, 11.9)
Random forest 0.147 (�0.413, 0.566) 14.1 (9.26, 18.5) 10.0 (7.21, 13.2)
XGBoost 0.292 (�0.0708, 0.561) 12.9 (8.73, 17.0) 9.29 (6.68, 12.1)

Model averaging
Linear 0.270 (0.0358, 0.479) 13.1 (9.20, 16.8) 9.80 (7.36, 12.6)
Random forest 0.201 (�0.107, 0.456) 13.7 (9.44, 17.8) 10.1 (7.46. 13.0)
XGBoost 0.273 (0.00396, 0.478) 13.0 (9.10, 16.7) 9.80 (7.37, 12.5)

CI ¼ confidence interval; MAE ¼ mean absolute error; R2 ¼ coefficient of determination; RMSE ¼ root mean squared error; XGBoost ¼ extreme gradient
boosting.
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for predicting the treatment outcome to faricimab at month 9
in patients with nAMD from baseline data, were developed
and evaluated systematically. Overall, our models suggest
the potential of using ML-based algorithms to predict future
treatment outcomes in this context. We discuss herein the
interpretation of the results of the ML models presented in
this study.

First, we evaluated benchmark classical ML models. For
BCVA regression, the linear and XGBoost models achieved
a test R2 score of approximately 0.3, which is consistent
with a similar previous analysis of a DL model using OCT
images to predict BCVA.25 The RF model in this study was
overfitted to the training set, and the performance was rather
unstable, as indicated by large confidence intervals. For the
percentage decrease in CST from baseline classification, the
linear benchmark model had the highest AUROC value of
0.87 and an accuracy of 0.84. All classical ML models
showed significant predictive power, as demonstrated by
the lower confidence interval being distant from 0.5.

The performance of the benchmark DL models was low
for both BCVA regression and CST reduction classification.
There are 3 possible reasons for this. The first is that the
correlation between anatomical features detected by SD-
OCT (e.g., CST) and functional features (e.g., those
Figure 8. Test results of best-corrected visual acuity regression, for (A) coeffic
squared error (RMSE) in CV, and (C) mean absolute error (MAE) in CV. Diam
confidence intervals (bootstrap number ¼ 1000). BM ¼ benchmark; DNN ¼
R2 ¼ coefficient of determination; RF ¼ random forest; XGBoost ¼ extreme g
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measured with BCVA) is weak, as previously shown.26,27 In
fact, this weak correlation between specific imaging
biomarkers on SD-OCT and visual function as measured
by BCVA has been a matter of debate.28,29 Although this is
more relevant to BCVA regression, it is also relevant to the
CST reduction classification, as BCVA was an impactful
feature for percent decrease in CST from baseline
classification (Supplement Material; available at https://
www.ophthalmologyscience.org) and the BCVA
information cannot be interpreted entirely in SD-OCT
imaging.

The second reason is likely the small sample size, which
was a main limitation of this study. Although pretraining on
ImageNet eased and stabilized the training process to some
extent, there was still a large gap between the number of
parameters and the sample size; Inception version 3 has
approximately 24 million parameters, whereas the number
of B-scans used to train each DL model was approximately
2000 (w17 B-scan � 148 patients � 0.8; where 0.8 rep-
resents the portion of training samples in each CV iteration
[4 folds for training]). Furthermore, 17 B-scans from the
same volume typically looked similar to each other in regard
to clinically relevant image biomarkers, which implies that
the effective sample size was even smaller.
ient of determination (R2) scores in cross-validation (CV), (B) root mean
onds represent the metric calculated on the test set; error bars represent 95%

deep neural network; MA ¼ model averaging; MS ¼ model stacking;
radient boosting.

https://www.ophthalmologyscience.org
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Table 4. Test Results of Central Subfield Thickness Reduction Rate Classification for Each Model

Model AUROC (95% CI) Accuracy (95% CI) Precision (95% CI) Recall (95% CI)

Benchmark models
Linear 0.872 (0.731, 0.976) 0.838 (0.730, 0.976) 0.895 (0.762, 1.00) 0.810 (0.643, 1.00)
Random forest 0.795 (0.641, 0.934) 0.811 (0.676, 0.919) 0.792 (0.650, 0.958) 0.905 (0.619, 1.00)
XGBoost 0.795 (0.643, 0.934) 0.784 (0.676, 0.919) 0.760 (0.619, 0.950) 0.905 (0.654, 1.00)
Deep neural network 0.702 (0.509, 0.883) 0.757 (0.595, 0.892) 0.833 (0.650, 1.00) 0.714 (0.435, 0.941)

Model stacking
Linear 0.860 (0.719, 0.971) 0.838 (0.730, 0.946) 0.800 (0.690, 1.00) 0.952 (0.632, 1.00)
Random forest 0.827 (0.677, 0.956) 0.811 (0.703, 0.946) 0.792 (0.654, 1.00) 0.905 (0.579, 1.00)
XGBoost 0.799 (0.633, 0.947) 0.838 (0.730, 0.946) 0.826 (0.666, 0.957) 0.905 (0.762, 1.00)

Model averaging
Linear 0.753 (0.573, 0.909) 0.784 (0.649, 0.919) 0.842 (0.682, 1.00) 0.762 (0.480, 0.950)
Random forest 0.813 (0.660, 0.942) 0.784 (0.703, 0.919) 0.842 (0.652, 1.00) 0.762 (0.591, 1.00)
XGBoost 0.824 (0.671, 0.943) 0.784 (0.649, 0.919) 0.760 (0.636, 1.00) 0.905 (0.476, 1.00)

AUROC ¼ area under the receiver operator characteristic curve; CI ¼ confidence interval; XGBoost ¼ extreme gradient boosting.
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The final reason for low performance could be that our
DL modeling approach lacks the learned interaction be-
tween B-scans. Our approach of simply taking the average
of predictions on 17 B-scans may not be optimal because the
central B-scans may be more informative than the off-center
Figure 9. Test results of percent decrease in central subfield thickness from ba
curve (AUROC) in cross-validation (CV), (B) accuracy in CV, (C) precision i
the test set; error bars represent 95% confidence intervals (bootstrap number ¼
averaging; MS ¼ model stacking; RF ¼ random forest; XGBoost ¼ extreme gr
B-scans. An alternative approach would be to introduce the
learned interaction by replacing the average with learned
weights30 or even process the 3-dimensional OCT volume
directly. In view of these additional complexities and
given the small sample size, a simple modeling strategy
seline classification, for (A) area under the receiver operator characteristic
n CV, and (D) recall in CV. Diamonds represent the metric calculated on
1000). BM ¼ benchmark; DNN ¼ deep neural network; MA ¼ model

adient boosting.
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was adopted in the present context of this initial proof of
concept study.

We compared the results of the benchmark classical ML
models with model-stacking and model-averaging. In the
BCVA regression, model-stacking improved the perfor-
mance of the linear and RF models from the corresponding
benchmark results in all metrics, and model-averaging
improved the performance of the RF model in all metrics.
In terms of R2 score, the percentage improvement was
0.65% for the linear model with model-stacking; improve-
ments for the RF model were 78% with model-stacking and
144% with the model-averaging approach. In fact, the
model-stacking approach made the linear model the best-
performing model for the regression problem.

In the CST reduction classification, improvements in
AUROC (the primary metric) were observed for both
model-stacking and model-averaging with the RF and
XGBoost models, but not for the best-performing model,
which was the benchmark linear model. Although the
model-stacking and model-averaging approaches did not
significantly improve the highest performing model, it did
substantially increase the performance of those models with
low performance in most cases. This observation suggests
that the variance explained by the SD-OCT image data
probably overlaps the variance explained by the tabular
data, but when the relationship between the tabular data and
the target variable was not learned well, the image data
could complement it.

To summarize model performance, the linear model in
model-stacking and the benchmark linear model were the
best-performing models for BCVA regression and percent
decrease in CST classification, respectively. The model-
stacking and model-averaging approaches did not improve
the best primary metrics, but they helped stabilize the model
performance.

In addition to the model performance, the interpretability
of the models is also a relevant concern in clinical appli-
cations. According to the SHAP analysis for the benchmark
classical ML models and model-stacking approach, baseline
BCVA, and baseline CST were consistently the most im-
pactful features for BCVA regression and CST classifica-
tion, respectively. This suggests that the level of the
corresponding feature at baseline is strongly tied with future
status after the treatments. Looking at the relationship be-
tween BCVA (functional) and CST (anatomical), we see
asymmetry. Baseline CST was not impactful for the pre-
diction of BCVA, but baseline BCVA had a coherent impact
on CST classification. In the model-stacking approach, the
model prediction was found to be impactful, but this should
be interpreted with the caveats discussed next. Other fea-
tures, including low luminescence deficit, which was
reportedly predictive of the BCVA response for anti-VEGF
therapy,31 were not found to be consistently impactful for
the model prediction. The potential reason for this could
be the small sample size, which hinders the ability to
detect the signal from noise. Due to its low performance,
we did not conduct interpretability analyses for the DL
models.

Taking a closer look at the development of the model-
stacking approach, we should highlight that the CV of
10
the model stacking in this analysis used the same folds in
the first and second stages. Consequently, there was an
indirect information leakage, and the CV results of model
stacking were optimistic. Although nested CV or using a
holdout set for the second stage CV would be ideal, the
aforementioned approach was justified in this case because
(1) DL training cannot be run too many times due to
limited computational resources and (2) the size of the
training set was limited.

An end-to-end DL model was used to extract informa-
tion from SD-OCT images. An alternative approach would
be to use a segmentation model for known biomarkers
using a list of potential predictors preselected by experts.
The advantage of our approach is that the DL model may
find new patterns or biomarkers by learning important
features directly from the images by itself. In this sense,
end-to-end DL models could lead to clinical and scientific
insights unrestricted by the use of a priori selected bio-
markers. However, in some cases, clinicians may find
segmentation-based models using well-known image bio-
markers more easily interpretable.

In summary, this is the first study to demonstrate that ML
using baseline data can be used to predict specific functional
and anatomical future treatment outcomes with faricimab, a
new treatment option for patients with nAMD. Two
methods were tested to merge the clinical tabular data and
the SD-OCT imaging data. This proof-of-concept study was
designed to test an ML approach and algorithm for pre-
dicting faricimab treatment outcomes in a small sample of
nAMD patients; it was not intended to be a comprehensive
study evaluating differences between treatment arms. Our
modeling approach delivered moderately good predictive
values despite limitations in the sample size. Results indi-
cate that further studies are warranted to fully explore the
predictive capability of the models with or without SD-OCT
image data and to validate the presented methodology on a
larger and independent dataset. With further improvement
and validation of this emerging technology, these models
could potentially help identify patient populations with
certain characteristics or treatment requirements, which may
be relevant for targeted drug development. Ultimately, these
artificial intelligenceebased approaches could enable clini-
cians to make timely and personalized treatment decisions
for patients with nAMD to achieve the best possible out-
comes for each patient.
Data Sharing
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