Skip to main content
. 2023 Aug 18;4(2):100385. doi: 10.1016/j.xops.2023.100385

Table 3.

Test Results of Best-Corrected Visual Acuity Regression for Each Model

Model R2 (95% CI) RMSE (95% CI) MAE (95% CI)
Benchmark models
 Linear 0.306 (−0.0702, 0.584) 12.8 (8.85, 16.9) 9.46 (7.08, 12.1)
 Random forest 0.0825 (−0.499, 0.513) 14.7 (9.71, 19.4) 10.4 (7.29, 13.7)
 XGBoost 0.297 (−0.143, 0.606) 12.8 (8.5, 17.3) 9.46 (6.95, 12.2)
 Deep neural network 0.0786 (−0.246, 0.351) 14.7 (10.3, 19.0) 10.9 (8.12, 14.2)
Model stacking
 Linear 0.308 (−0.0261, 0.583) 12.7 (8.61, 16.9) 9.02 (6.39, 11.9)
 Random forest 0.147 (−0.413, 0.566) 14.1 (9.26, 18.5) 10.0 (7.21, 13.2)
 XGBoost 0.292 (−0.0708, 0.561) 12.9 (8.73, 17.0) 9.29 (6.68, 12.1)
Model averaging
 Linear 0.270 (0.0358, 0.479) 13.1 (9.20, 16.8) 9.80 (7.36, 12.6)
 Random forest 0.201 (−0.107, 0.456) 13.7 (9.44, 17.8) 10.1 (7.46. 13.0)
 XGBoost 0.273 (0.00396, 0.478) 13.0 (9.10, 16.7) 9.80 (7.37, 12.5)

CI = confidence interval; MAE = mean absolute error; R2 = coefficient of determination; RMSE = root mean squared error; XGBoost = extreme gradient boosting.