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Summary.

We introduce a novel method for separating amplitude and phase variability in exponential family 

functional data. Our method alternates between two steps: the first uses generalized functional 

principal components analysis to calculate template functions, and the second estimates smooth 

warping functions that map observed curves to templates. Existing approaches to registration have 

primarily focused on continuous functional observations, and the few approaches for discrete 

functional data require a pre-smoothing step; these methods are frequently computationally 

intensive. In contrast, we focus on the likelihood of the observed data and avoid the need for 

preprocessing, and we implement both steps of our algorithm in a computationally efficient way. 

Our motivation comes from the Baltimore Longitudinal Study on Aging, in which accelerometer 

data provides valuable insights into the timing of sedentary behavior. We analyze binary functional 

data with observations each minute over 24 hours for 592 participants, where values represent 

activity and inactivity. Diurnal patterns of activity are obscured due to misalignment in the original 

data but are clear after curves are aligned. Simulations designed to mimic the application indicate 

that the proposed methods outperform competing approaches in terms of estimation accuracy and 

computational efficiency. Code for our method and simulations is publicly available.
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1. Introduction

In the most common setting for functional data analysis, the basic unit of observation is 

the real-valued curve Y i(t) for subjects i ∈ 1, …, N. More recently, there has been interest in 

exponential family functional data, where Y i(t) comes from a non-Gaussian distribution; it is 

typically assumed that Y i(t) has a smooth and continuous latent mean, μi(t) = E Y i(t) . Our 

motivation is the study of activity and inactivity using data collected with accelerometers, a 

setting with binary functional data. Figure 1 shows binary curves Y i(t) for two participants 

taking the value 1 when the participant is active and 0 when the participant is inactive. 

A solid curve shows an estimate of the smooth latent mean μi(t), interpreted as the 

probability the subject will be active at each minute in the 24 hours of observation. 

Other recent examples of non-Gaussian functional data include agricultural studies on the 

feeding behavior of pigs, spectral backscatter from long range infrared light detection, and 

longitudinal studies of drug use (Serban et al., 2013; Huang et al., 2014; Gertheiss et al., 

2015).

Functional data often include both phase displacement, the misalignment of major features 

shared across curves, and amplitude variability. The process underlying phase variation may 

itself be of interest; additionally, when the interest is primarily in the amplitude variation, 

phase variation can artificially distort analyses of amplitude and mask the shared data 

structure. Methods for curve registration, which transform functional data to align features, 

are focused on addressing the problem of phase variation. The goal of registration is to warp 

the functional domain, which we will refer to as time, so that phase variation is minimized 

and the major features of the curves are aligned. This process necessitates a distinction 

between chronological time ti
* , which is the originally observed time for each subject, 

and internal time (t), which is the unobserved time on which major features are aligned 

across subjects (chronological and internal time are often referred to in the functional data 

literature as clock and system time, respectively). Stated differently, internal time is the true 

but unknown time over which aligned curves are generated and chronological time is the 

shifted time on which misaligned curves are observed. The registration problem amounts 

to recovering the subject-specific warping functions ℎi : t ti
* which map internal time to 

chronological time. Inverse warping functions ℎi
−1 ti

*  can then be used to obtain aligned 

curves Y i(t) from observed data Y i ti
* . To emphasize the conceptual difference between 

chronological and internal times, we index ti
* by subject but do not index t.

We are interested in registering actigraphy data that comes from the Baltimore Longitudinal 

Study of Aging. The BLSA is an observational study of healthy aging and included an 

accelerometer for monitoring activity (Schrack et al., 2014). Our dataset includes 592 

people, for whom accelerometer observations are gathered over 24 hours in one-minute 

epochs giving chronological times on equally spaced grids of length 1440. We are especially 

interested in activity and inactivity, defined using a threshold of raw accelerometer 

observations, as both low activity levels and excessive sedentary behavior have been 

associated with poor health outcomes. Moreover, there is a growing research interest in 

understanding temporal/diurnal patterns of accumulation of sedentary time (Martin et al., 

2014; Diaz et al., 2017). However, those analyses typically report diurnal averages that 
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ignore the differences between subject specific wake time and mix together amplitude and 

phase.

The left panel of Figure 2 shows observed binary curves against chronological time. In 

this plot subjects appear in rows, with active and inactive minutes shown in dark and light 

shades, respectively. This figure clearly shows the variability in the timing of inactivity 

across subjects, who may start or end the day at different times, and may accrue inactive 

minutes in sedentary bouts at different times. Such misalignment attenuates the diurnal 

patterns of activity that we believe to be present based on the naturally occurring circadian 

rhythm. The right panel of Figure 2 shows estimates of the unregistered mean μi ti
*  obtained 

using a Gaussian kernel smoother; these smooths illustrate the phase misalignment across 

subjects. The shift in timing of activity and inactivity is also seen in Figure 1. Specifically, 

the subject in the top row wakes up early, has a peak of activity, and then has a low activity 

level for the rest of the day, while the subject below has a similar but shifted pattern of 

behavior.

We propose novel methods for the registration of exponential family functional data, with 

emphasis on binary curves. Due to data size computational efficiency is critical, and we take 

this into consideration at each step of our method development. Section 2 provides a review 

of relevant literature on registration and exponential-family functional principal components 

analysis; Section 3 details our methods; Section 4 shows simulation results, and Section 5 

applies our method to the BLSA data. We conclude with a discussion in Section 6.

2. Literature Review

Our method draws on two distinct bodies of work in functional data analysis, which we 

review below. First, in 2.1, we review curve registration; this literature is primarily focused 

on Gaussian curves, with relatively little existing work for non-Gaussian curves. Then, in 

2.2, we give an overview of exponential family FPCA, which is itself a relatively new area 

of interest in functional data analysis.

2.1. Registration

Several approaches for registering functional data have been proposed; we review these 

briefly, and suggest Marron et al. (2015) for a more detailed overview. Early approaches 

include dynamic time warping and landmark registration; for some time, however, template 

registration methods have been preferred. Template registration aligns each curve to a 

template curve by optimizing an objective function. This approach necessitates choosing the 

template, the objective function, and the optimization approach.

A common approach to template registration uses functional principal component analysis 

(FPCA) to select the template (Kneip and Ramsay, 2008). First these methods estimate 

the template, and then estimate the warping functions for a given template; these steps 

are iterated until convergence. Warping functions are estimated using a sum of squared 

errors approach, often penalized to enforce smoothness. There is a large registration 

literature operating under and expanding this framework, including Sangalli et al. (2010) 

and Hadjipantelis et al. (2015). Intuitively, functional principal components describe the 
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main directions of variation in a set of curves, making FPCA a natural tool for identifying 

the features to which data is registered.

Srivastava et al. (2011) introduce a metric for calculating warping functions based on the 

Fisher–Rao distance. They calculate a Karcher mean template and define a square root 

slope function transform (SRSF) of the observed curves. Minimizing the L2 norm between 

two SRSFs is equivalent to minimizing their Fisher–Rao distance. Since the SRSF uses the 

derivative of the observed curve, the data to be registered are required to be smooth. The 

Fisher–Rao metric has been the basis for several recent approaches to registration, some 

which compute parameter values using dynamic programming (Srivastava et al., 2011; Wu 

and Srivastava, 2014), and others which use Riemannian optimization (Huang et al., 2014). 

Many of the SRSF-based approaches are implemented in the fdasrvf package (Tucker, 

2017).

Although most work in registration has focused on continuous data, there are two recent 

exceptions. Wu and Srivastava (2014) apply the SRSF approach to binary functional data 

by pre-smoothing data with a Gaussian kernel and registering the resulting smooth curves. 

Panaretos and Zemel (2016) present a theoretical framework for separation of amplitude 

and phase variation of random point processes. The authors formalize a set of regularity 

conditions for warping functions that includes smoothness, proximity to the identity map, 

and unbiasedness, and establish a set of nonparametric estimators. However, since these 

estimators register the unobserved probabilities of the point processes, the authors also begin 

by smoothing binary curves using kernel density estimation.

In contrast to previous literature on registration, we develop an approach that can be applied 

to continuous and discrete data and does not require presmoothing. We also emphasize 

computational efficiency, an important matter given our high-dimensional data application.

2.2. FPCA for Exponential Family Curves

Functional principal components analysis is popular for identifying modes of variation in 

functional data. The most common approaches to FPCA decompose the variance-covariance 

matrix of demeaned functional observations; see Yao et al. (2005) or Goldsmith et al. (2013) 

for details on this approach. Hall et al. (2008) adapted the methods in Yao et al. (2005) for 

binary functional data by positing a smooth latent Gaussian process and then estimating and 

decomposing the covariance of this process. Serban et al. (2013) refined and extended this 

approach by improving approximations in the estimation procedure, increasing accuracy for 

rare events, and allowing spatial structures. However, as demonstrated in Gertheiss et al. 

(2017), the adaptation of Yao et al. (2005) to exponential family data has an inherent bias 

due to reliance on a marginal rather than conditional mean estimate.

Probabilistic FPCA is an appealing alternative to the covariance smoothing approach. This 

framework conceptualizes PCA as a likelihood-based model, can be approached from a 

Bayesian perspective, and easily accounts for sparse or irregular data. Tipping and Bishop 

(1999) introduce probabilistic PCA, and a related approach is used by James et al. (2000) 

for functional data. van der Linde (2008) extends probabilistic FPCA to binary and count 

data through a Taylor-approximated likelihood function, while Goldsmith et al. (2015) 
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uses a fully Bayesian parameter specification for generalized FPCA and function-on-scalar 

regression. Because these approaches often relate the expected value of observed data 

to a smooth latent process through a link function, they are referred to as methods for 

generalized FPCA or GFPCA. Because all parameters are estimated simultaneously rather 

than sequentially, the probabilistic framework avoids the bias inherent in the covariance 

decomposition approach.

Our contributions to this literature focus on improving accuracy and efficiency for binary 

FPCA by estimating parameters in a probabilistic framework using a novel variational EM 

algorithm. To do this, we adapt the approach developed by Jaakkola and Jordan (1997) for 

logistic regression, which has since been extended to (non-functional) binary PCA (Tipping, 

1999) and multi-level PCA (Yue, 2016). These methods rely on a variational approximation 

to the Bernoulli likelihood that is a true lower bound and allows for closed form updates of 

parameters. In contrast to van der Linde (2008), which uses a second-order Taylor expansion 

of the log likelihood to approximate a lower bound to the true distribution, our variational 

approximation is a true lower bound. While our method is optimized for binary data, similar 

derivations are possible for functional data from other exponential family distributions.

Consistent with this literature modeling exponential family curves, we assume a latent 

Gaussian process (LGP) generative model for our exponential family functional data. The 

LGP model assumes an unobserved smooth mean curve that serves as a “functional” 

natural parameter for the corresponding exponential family and from which the observed 

exponential family functional data is stochastically generated. In the case of binary data, the 

latent process is an unobserved smooth probability curve.

3. Methods

We first introduce the conceptual framework for our approach. Our goal is to estimate 

inverse warping functions ℎi
−1 which map unregistered chronological time ti

* to registered 

internal time t such that ℎi
−1 ti

* = t. Then for subject i, the unregistered and registered 

response curves are Y i ti
*  and Y i(t) = Y i ℎi

−1 ti
* , respectively. Without loss of generality, 

we assume both t* and t are on [0, 1]. We require that functions ℎi
−1 are monotonically 

increasing and satisfy the endpoint constraints ℎi
−1(0) = 0 and ℎi

−1(1) = 1. Notationally, we 

combine warping functions with exponential family GFPCA through the following:

E Y i ℎi
−1(ti

*) ∣ ci, ℎi
−1 = μi(t)

g μi(t) = α(t) + ∑
k = 1

K
cikψk(t) . (1)

The aligned response curves Y i ℎi
−1 ti

*  for each ti
* ∈ [0,1] arise from the canonical 

exponential family of distributions with density

P Y i ℎi
−1(ti

*) ∣ μi(t) = exp (Y i{ℎi
−1(ti

*)}g{μi(t)}−b[g{μi(t)}])/φ + c[Y i{ℎi
−1(ti

*)}, φ]
(2)
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where E Y i ℎi
−1 ti

* ∣ μi(t) = μi(t) = b′ g μi(t) , V ar Y i ℎi
−1 ti

* } ∣ μi(t) = b″ g μi(t) φ, and φ is 

the dispersion parameter. The subject-specific means μi(t) implicitly condition on parameters 

in model (1) and are used as templates in our warping step. Through link function g, 

the μi(t) are related to a linear predictor containing the population level mean α(t) and a 

linear combination of population level basis functions ψ(t) and subject-specific score vectors 

ci ∼ N 0, IK × K . This formulation assumes that registered curves can be decomposed using 

GFPCA and, in doing so, places both registration and GFPCA in a single model.

Our estimation method is based on model (1) and alternates between the following steps:

1. Subject-specific means μi(t) are estimated via probabilistic GFPCA, conditional 

on the current estimate of inverse warping functions ℎi
−1 ti

* .

2. Inverse warping functions ℎi
−1 are estimated by maximizing the log likelihood of 

the exponential family distribution under monotonicity and endpoint constraints 

on ℎi, conditional on the current estimate of μi.

We iterate between steps (1) and (2) until curves are aligned.

Similar registration approaches for continuous-valued response curves have used the squared 

error loss for optimizing warping functions which, in a Gaussian setting, is equivalent 

to maximizing the likelihood function. However, our likelihood-based approach, which 

registers non-Gaussian data by extending the exponential-family framework, is novel. 

In contrast to registration methods for discrete functional data, we register observed 

binary curves using smooth templates rather than aligning pre-smoothed functional data. 

Because our application has 592 subjects measured at 1440 time points each, computational 

efficiency is critical. To this end, we develop a novel fast approach to binary FPCA in Step 

1, which we describe in Section 3.1, and optimize speed in estimating warping functions in 

Step 2, which we describe in Section 3.2.

3.1. Binary FPCA

We first detail our novel EM approach to binary FPCA. Model (1) provides a conceptual 

framework, assuming that each curve Y i(t) is evaluated over internal time t ∈ [0,1]. In 

practice, data for subject i is observed on the discrete grid, ti = ti1, …, tiDi , which may be 

irregular across subjects, and therefore (in contrast to t) is indexed by subject. Functions 

indexed by the vector ti are Di × 1 vectors of those functions evaluated on the observed time 

points (e.g., Y i ti = Y i ti1 , …, Y i tiDi
T  and ψk ti = ψk ti1 , …, ψk tiDi

T . The population level 

mean α(t) and principal components ψk(t), 1 ≤ k ≤ K, are expanded using a fixed B-spline 

basis, Θϕ(t), of Kϕ basis functions θ1(t), …, θKϕ(t). Let Θϕ ti  be the Di × Kϕ B-spline matrix 

evaluated at ti and a 1 × Kϕ vector when evaluated at a single point tij; then α ti = Θϕ ti αΘ and 

Ψ ti = ψ1 ti , …, ψK ti = Θϕ ti ΨΘ where the vector αΘ and matrix ΨΘ of size Kϕ × K contain 

the spline coefficients for the mean and principal components, respectively. Observed on the 

discrete grid ti, the linear predictor in (1) becomes

g{μi(ti)} = Θϕ(ti) (αΘ + ΨΘci) . (3)
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We estimate parameters in model (3) using an EM algorithm that incorporates a variational 

approximation. We assume ci ∼ MVN(0, I). For the binary case that is our main interest, g( ⋅ )
is the logit function, for each point on the grid for the ith subject, Y i tij ∼ Bernoulli μi tij

where μi tij = P Y i tij = 1 ∣ ci . It is convenient to rewrite the probability density function as

P Y i(tij) ∣ ci = g−1 {2Y i(tij) − 1}{Θϕ(tij) (αΘ + ΨΘci)} , (4)

so that the full unobserved joint likelihood for the observations and score vectors is

L(Y , c) ∝ ∏
i = 1

I
∏
j = 1

Di

g−1 {2Y i(tij) − 1}{Θϕ(tij) (αΘ + ΨΘci)}

× ∏
i = 1

I
exp − ci

T ci

2 .
(5)

Let scalar Ai tij = Θϕ tij αΘ + ΨΘci  and λ(z) = 0.5 − g−1(z)
2z . A variational approximation to 

(4), based on the approximation in Jaakkola and Jordan (1997), is

P{Y i(tij) ∣ ci, ξi(tij)} = g−1{ξi(tij)}exp 2Y i(tij) − 1 Ai(tij) − ξi(tij)
2

+λ ξi(tij) Ai(tij)2 − ξi(tij)2
(6)

and is further discussed in Web Appendix A. The resulting variational joint likelihood is

L(Y , c) ∝ ∏
i = 1

I
∏
j = 1

Di

P Y i(tij) ∣ ci, ξi(tij) × ∏
i = 1

I
exp − ci

T ci

2 . (7)

We use an EM algorithm to obtain parameter estimates from (7) by (i) finding the posterior 

distribution of the scores; (ii) maximizing L(Y , c) with respect to ξ; and (iii) maximizing the 

variational likelihood with respect to αΘ and ΨΘ. These three steps are described in Sections 

3.1.1, 3.1.2, and 3.1.3; more details and simulations comparing to other GFPCA methods 

are given in the Appendix. A solution is attained when the squared difference between 

parameter estimates and their previous solution become arbitrarily small.

3.1.1. Calculating posterior scores.—The posterior scores for each subject, derived 

via Bayes’ rule, follow a multivariate normal distribution ci ∣ Y i ti , ξi ti ∼ MVN mi, Ci  with:

Ci = IK × K − 2ΨΘ
T Θϕ(ti)Tdiag[λ{ξi(ti)}]Θϕ(ti)ΨΘ

−1

and

mi = Ci ΨΘ
T Θϕ(ti)T{Y i(ti) − 1

2}

+2ΨΘ
T Θϕ(ti)Tdiag[λ{ξi(ti)}]Θϕ(ti)αΘ
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where ξi ti  is a vector of length Di and diag λ ξi ti  is a Di × Di diagonal matrix.

3.1.2. Maximizing L(Y , c) with respect to ξ.—We maximize the variational 

likelihood with respect to ξi
2, obtaining

ξ i(tij)2 = EP post Ai(tij)2

= αΘ
TΘϕ(tij)TΘϕ(tij)αΘ + 2αΘ

TΘϕ(tij)TΘϕ(tij)ΨΘmi

+ tr ΨΘ
T Θϕ(tij)TΘϕ(tij)ΨΘCi + mi

TΨΘ
T Θϕ(tij)TΘϕ(tij)ΨΘmi

where the expectation is taken with respect to the posterior distribution P ci ∣ Y i ti , ξi ti , 

using estimates of αΘ and ΨΘ from the previous iteration.

3.1.3. Maximizing L(Y , c) with respect to αΘ and ΨΘ.—In this step, we jointly 

estimate vectors of spline coefficients, which distinguishes our approach from previous 

binary PCA techniques and which entails additional complexity in the derivation of updates. 

The introduction of the spline basis and associated coefficients lowers the dimensionality of 

the estimation problem and enforces smoothness of the resulting μi(t).

In order to obtain updates for our population-level basis coefficients, we introduce a new 

representation of the model which is mathematically equivalent to the parameterization in 

model (4) and easier to maximize. Let si = ci
T, 1 T  of dimension (K + 1) × 1 and Φ = ΨΘ

T , αΘ
T

of dimension (K + 1) × Kϕ, and vec(Φ) be a vectorized version of Φ with dimension 

Kϕ(K + 1) × 1. We can rewrite Ai ti  as Ai ti = Θϕ ti αΘ + ΨΘci = Θϕ ti ⊗ si
T vec(Φ), where ⊗

is the Kronecker product. Maximizing the variational log-likelihood in this reparameterized 

form gives updates

vec(Φ) = − ∑
i

2Θϕ(ti)Tdiag[λ{ξi(ti)}]Θϕ(ti) ⊗ sisi
T)

−1

∑
i

Y i(ti) − 1
2

T
{Θϕ(ti) ⊗ s i

T}

where si = mi
T, 1 T  and sisi

T = Ci + mimi
Tmi

mi
T 1

. The first K rows of vecΦ are the K columns of 

ΨΘ, and the last Kϕ rows are μΘ.

3.2. Binary Registration

We now turn to the second step in our iterative algorithm, in which warping functions 

are estimated for each subject conditionally on the target function μi(t). Conceptually, our 

approach is to maximize the exponential family likelihood function given by integrating the 

density in equation (2) over time. We maximize with respect to the inverse warping function 

ℎi
−1 ti

* , subject to the constraint that ℎi
−1 ti

*  is monotonic with endpoints fixed at the minimum 

and maximum of our domain. For binary data we maximize the Bernoulli log-likelihood
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l(ℎi
−1; Y i, μi) = ∫ Y i(ti

*)log μi{ℎi
−1(ti

*)} + {1 − Y i(ti
*)}

log [1 − μi{ℎi
−1(ti

*)}] .
(8)

Again, functions are observed on a discrete grid in practice, and we differentiate 

between subject-specific finite grids for chronological time ti
* = ti1

* , …, tiDi
*  and internal time 

ti = ti1, …, tiDi . Using notation similar to Section 3.1, we let Y i ti
* , Y i ti , and ℎi

−1 ti
*  be Di × 1

vectors corresponding to observed responses, registered responses, and inverse warping 

functions, respectively. We expand ℎi
−1 ti

*  using a B-spline basis, Θℎ ti
* , of dimension Di × Kℎ

to take the form ℎi
−1 ti

* = Θℎ ti
* βi = ti. The Kℎ × 1 vector of spline coefficients βi allows us to 

express ℎi
−1 ti

* , and is the target of our estimation problem. We estimate βi separately for each 

subject using constrained optimization and loop over subjects.

We modify the conceptual likelihood in equation (8) to incorporate the spline basis 

expansion of ℎ−1 and to express data over the observed finite grid, which yields

l{βi; Y i(ti
*), μi( ⋅ )} ∝ ∑

j = 1

Di

Y i(tij
*)logμi{Θℎ(tij

*)βi}

+{1 − Y i(tij
*)}log 1 − μi{Θℎ(tij

*)βi} .
(9)

Recall that μi( ⋅ ) from (3) is the subject-specific mean found in the FPCA step. Estimates 

are constrained to be monotonic with fixed endpoints. The constraints ensure that our 

resulting estimates for t are monotonic and span the desired domain. We implement 

these constraints using linear constraint matrices, which we provide in Appendix A. The 

constrained optimization can be made more efficient with an analytic form of the gradient. 

The gradient for the general exponential family case and for the Bernoulli loss in particular 

also appear in Appendix A.

3.3. Implementation

Our methods are implemented in R and are publicly available on GitHub as part of the 

registr package (Wrobel, 2018). For Step 1, binary FPCA is custom-written with a C++ 

backend for estimation. For Step 2, we implement linearly constrained optimization with 

the constrOptim() function, which uses an adaptive barrier algorithm to minimize an 

objective function subject to linear inequality constraints. If an analytic gradient of the 

objective function is not provided, then Nelder–Mead optimization is used, otherwise BFGS, 

a gradient descent algorithm, is used. By implementing an analytic gradient we improve 

accuracy and computational efficiency of our estimation.

Though our simulated and real data examples are observed on a dense regular grid, 

the registr package handles both sparse and irregular functional data. For visualizing 

results, registr is compatible with refund.shiny, an R package that produces interactive 

graphics for functional data analyses (Wrobel et al., 2016).
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4. Simulations

We assess the accuracy and computational efficiency of our method using data simulated to 

mimic our motivating study, and compare to competing approaches described below.

4.1. Simulation Design

Binary functions in simulated datasets are designed to exhibit a circadian rhythm, so that 

simulated participants are more likely to be inactive at the beginning and end of the domain 

(“day”) and more likely to be active in the middle of the day. Overall activity levels vary 

across simulated participants, as do the timing of the active period. Participants exhibit two 

main active periods separated by a dip, which is consistent with the BLSA data.

We first generate a grid of chronological times ti
*, which is equally spaced and shared across 

subjects. We generate inverse warping functions ℎi
−1 ti

*  using a B-spline basis with 3 degrees 

of freedom; coefficients are chosen from a uniform(0,1) distribution and placed in increasing 

order to ensure monotonically increasing warping functions. The internal times ti for each 

subject are obtained by evaluating the inverse warping functions at ti
*. We simulate latent 

probability curves over internal time, μi ti , from the model

E Y i(ti) ∣ ci = μi(ti)
g μi(ti) = α(ti) + ci × ψ(ti) (10)

where α ti  and ψ ti  are constructed using a B-spline basis and ci ∼
i . i . d

N(0,1). For each 

tij ∈ i, j = 1, …, Di, binary observations Y i tij  are sampled independently over j from a 

Bernoulli distribution with μ tij .

Unregistered data Y i t* , observed over the grid ti
*, are defined by the warping functions ℎi ti . 

Figure 3 shows an example of a single simulated dataset, including latent probability curves 

on both ti
* and t (first row, first and second columns) and observed binary data (second row, 

first and second columns).

We evaluate the performance of our algorithm as a function of sample size and grid length. 

We simulate 25 datasets for each combination of sample sizes (50, 100, and 200) and grid 

lengths (taking values 100, 200, 400). For each dataset, we apply the methods in Section 3, 

denoted registr in text and figures below, setting Kϕ = 9, Kℎ = 3, and using 1 FPC.

To provide a frame of reference, we compare our approach with two approaches based on 

the SRSF framework, both of which are implemented in the time_warping() function in 

the fdasrvf package (Tucker, 2017). Both implementations use smoothed versions of the 

binary data but use different optimization methods. The first uses dynamic programming, 

which is the default optimization choice for the fdasrvf software, and is denoted svrf-dp in 

text and figures below. The second uses Riemannian optimization and is denoted svrf-ro. For 

both competing approaches, observed binary data was smoothed using a box filter, which 

is built into the fdasrvf software. The number of box filter passes is a tuning parameter 

that must be selected, and we found that the overall registration results were sensitive to this 
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choice. We considered several values (25, 50, 100, 200, and 400); in the following, we use 

200 passes, which generally lead to better performance in our simulations.

Methods are compared in terms of estimation accuracy and computation time, with 

accuracy quantified using mean integrated squared error (MISE). For each subject, 

integrated squared error calculations are made comparing the estimated inverse warping 

functions for each method, ℎi
−1 ti

* , to the true inverse warping functions ℎi
−1 ti

*  such that 

ISE = ∫0
1 ℎi

−1 ti
* − ℎi

−1 ti
* 2dti. MISE is then the average of ISEs across subjects. A sensitivity 

analysis of our method’s performance across values of Kϕ and Kℎ is given in the Appendix.

4.2. Simulation Results

Figure 3 shows a simulated dataset with 100 subjects observed over a grid with 200 time 

points. From left to right, columns show observed (unregistered) data; data observed on the 

true internal time t; and data aligned using the registr method, the srvf-dp method, and the 

srvf-ro method. The top row shows the latent mean curves, the middle row shows plots 

of observed binary data, and the bottom row shows inverse warping functions using true 

internal time t and estimated internal times t registr, t svrf − dp, and t svrf−ro. The latent probability 

curves illustrate the structure of the simulated data and the relative magnitudes of phase and 

amplitude variability. Binary curves illustrate the observed data, and include two periods of 

higher activity for each subject.

The results for registr in this example are encouraging, both for the latent curves and 

for the binary activity data in that phase variation is largely removed. Some amount of 

misalignment remains, which is attributable to the inherent sampling variability introduced 

when binary points are generated from the latent probabilities. The srvf-dp method also 

works reasonably well, although visual inspection of the probability curves and binary data 

suggests somewhat poorer alignment. The srvf-ro method has poorest alignment, although it 

also performs reasonably well and captures the major features in the data.

Figure 4 summarizes results across simulated datasets at different sample sizes and grid 

lengths; for reference, the data in Figure 3 has a median MISE for the registr method relative 

to other datasets generated with 100 subjects and 200 time points. The columns of Figure 4, 

from left to right, show results for datasets with 50, 100, and 200 subjects, respectively, and 

grid lengths of 100, 200, and 400 are shown within each panel. The top row shows box plots 

of MISE and the bottom row shows median computation times. Across all settings, registr 
outperforms both srvf-dp and srvf-ro methods in terms of the MISE; this is consistent with 

observations in Figure 3. With respect to computation time, although the methods are similar 

for small sample sizes and grid lengths, registr and srvf-ro scale as these increase, while the 

burden grows dramatically for srvf-dp.

5. Analysis

We now apply our method described in Section 3 to the BLSA data. These data contain 592 

subjects with activity counts every minute over 24 hours, for a total of 1440 measurements 

per subject. BLSA participants wore the accelerometer for 5 days; we average across these 
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days to establish a typical diurnal pattern for each participant, and then threshold the result 

at values of 10 counts per minute to obtain the binary activity curve to be registered. We 

fix the dimensions of the B-spline basis functions to Kϕ = 8 and Kℎ = 4 and number of FPCs 

to K = 2. Total computation time was 17 minutes. In the following, we discuss registered 

activity profiles using language that refers to times of day. However, it is important to 

remember throughout this section that registered curves are observed on internal time rather 

than chronological time, and times of day are person-specific in that sense.

Figure 5 shows the registered curves from the BLSA dataset, which can be compared with 

the observed data in Figure 2. After registration, there are two clear activity peaks: people 

tend to be active for an extended period of time after they wake up; this period is followed 

by a mid-day dip in activity, and a second, smaller, period of activity in the afternoon 

and evening. Figure 6 emphasizes this point, and the effect of registration, by plotting the 

subjects from Figure 1 after registration. The data for these two subjects are more closely 

aligned, as are the latent probabilities curves estimated from the aligned data. The left panel 

of Figure 5 shows the inverse warping functions which transform the BLSA data from the 

unregistered to the registered space.

The results of the applying the registration method to these data are consistent with 

expectations, in that the diurnal activity pattern observed across subjects after registration 

contains both morning and afternoon active periods and a period of relative inactivity around 

lunchtime. These results also emphasize the importance of assessing and removing phase 

variability in studies of daily activity patterns. The existence and number of “chronotypes,” 

or subjects who intrinsically prefer certain hours of the day (like the colloquial night owls or 

early birds), is the subject of intense debate in the circadian rhythm literature (Adan et al., 

2012). Aligning observed activity data as a processing step may help inform this debate, and 

our results are consistent with the existence of distinct chronotypes in this population. The 

supplementary materials contain additional analysis results for the registration of data from 

each day of the week separately. These results are similar to those presented in this section.

6. Discussion

We present a novel approach to curve registration for functional data from exponential 

family distributions which avoids the need for pre-smoothing, and our attention to 

computational efficiency is necessitated by our data. Simulations suggest our approach 

compares favorably to competing methods in the settings we examined. Our scientific results 

are plausible and meaningful in the context of activity measurement. Finally, our code for 

registration and binary probabilistic FPCA is publicly available in the registr package.

Our approach assumes exponential family functional data is generated from a latent 

Gaussian process. While this is a common modeling choice for binary functional data 

that works well in practice, it may not provide a suitable framework for theoretical 

considerations in which the grid size goes to infinity. Possible future work building on 

Descary and Panaretos (2016), which considers modeling continuous functional data with 

both low rank structure and local correlation in the Gaussian setting, may provide a 

scientifically meaningful way forward but is beyond our current scope.
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Though registr outperformed the SRSF-based approaches in our simulations, we expect 

that the SRSF method will be better suited to some cases including, potentially, smooth 

Gaussian curves. Indeed, when curves are absolutely continuous SRSF has the added 

theoretical benefits of translation and scale invariance and consistency of the warping 

procedure. For discrete data or noisy Gaussian data, where a smoothing parameter must 

be chosen before applying SRSF methods, it is unclear if any method will be uniformly 

superior and we recommend considering multiple approaches to registration.

Because of the nature of our application, we optimize performance for registering binary 

curves. While our method can be applied to functional data from any exponential family, one 

will not reap the computational benefits we highlight here without at least some additional 

work optimizing the FPCA algorithm for additional distributions; computationally efficient 

implementations for the Poisson distribution will be relevant for studies using accelerometer 

data. For our application, we chose to threshold activity count data and register the resulting 

binary curves, which aligned general patterns of activity and inactivity. Though we could 

have chosen to register the raw counts using a Poisson distribution, exploratory analyses 

suggested that aligning raw activity counts may be overly influenced by extreme values.

Though we focus on amplitude alignment for this article, the inverse warping functions 

contain information on phase variation and are potential analysis objects for future scientific 

work. Subsequent analyses will examine whether aligned data are more clearly affected by 

covariates like age and sex, and how the phase alignment relates to these covariates. Finally, 

we note that our emphasis has been on the temporal structure of inactivity, and additional 

work to connect these results with the accrual of sedentary minutes in bouts is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Points are binary curves for two subjects from the BLSA data before registration, where 

values of 1 and 0 represent activity and inactivity, respectively. The solid curves are 

estimates of the latent probability of activity, μi(t), and are fit for each subject using kernel 

smoothers.
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Figure 2. 
Plots of the unregistered data for 592 subjects at all 1440 minutes observed. At left is a 

lasagna plot, where row is the binary curve for a single subject and inactive and active 

observations are colored in light and dark shades, respectively. The rows are sorted by age, 

so that youngest subjects are at the bottom of the plot and oldest subjects are at the top. At 

right are smoothed curves for each subject, fit using kernel smoothers. This figure appears in 

color in the electronic version of this article.
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Figure 3. 
For top and center rows, from left to right we have: unregistered curves, curves registered 

using true inverse warping functions, curves registered using registr method, curves 

registered using fdasrvf method with dynamic programming optimization, curves registered 

using fdasrvf method with Riemannian optimization. The top row shows the true latent 

probability curves which are used to generate the binary curves but not used to estimate 

warping since they are unknown in a real data application. The middle row shows the binary 

curves as a heatmap-style plot, as in Figure 2. The bottom row shows the true, registr 
method, fdasrvf method with dynamic programming, and fdasrvf method with Riemannian 

optimization inverse warping functions. This figure appears in color in the electronic version 

of this article.
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Figure 4. 
This figure shows mean integrated squared errors (top row) and median computation times 

(bottom row) for registr (darkest shade), srvf-dp (medium shade), and srvf-ro (lightest 

shade) methods across varying sample sizes and grid lengths. The columns, from left to 

right, show sample sizes 50, 100, and 200, respectively. Within each panel we compare grid 

lengths of 100, 200, and 400. This figure appears in color in the electronic version of this 

article.
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Figure 5. 
Plots of the registered BLSA data. Left panel shows inverse warping functions from 

alignment of the data; center panel shows a plot of the aligned binary data; and right 

panel shows smooths of the aligned data. See Figure 2 for the unregistered data. This figure 

appears in color in the electronic version of this article.
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Figure 6. 
These are binary curves for the same two subjects from the BLSA data as in Figure 1 but 

now the curves are registered. Here, the lines represent estimates of the latent probability 

that come from our binary FPCA algorithm.

Wrobel et al. Page 21

Biometrics. Author manuscript; available in PMC 2023 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary.
	Introduction
	Literature Review
	Registration
	FPCA for Exponential Family Curves

	Methods
	Binary FPCA
	Calculating posterior scores.
	Maximizing L˜(Y,c) with respect to ξ.
	Maximizing L˜(Y,c) with respect to αΘ and ΨΘ.

	Binary Registration
	Implementation

	Simulations
	Simulation Design
	Simulation Results

	Analysis
	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

