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Abstract
Background and Objectives
Elevations in circulating glial fibrillary acidic protein (GFAP), a putative marker of reactive
astrocytosis, have been found to associate with cognitive decline and dementia status. Further
validation in diverse cohorts and evaluation of potential health disparities are necessary for
broader generalization. The goal of this study was to examine the associations between de-
mographics, cardiovascular risk factors, and APOE e4 status with serum GFAP levels among
Mexican American and non-HispanicWhite older adults across the continuum from cognitively
unimpaired to Alzheimer disease dementia.

Methods
Serum GFAP levels were assayed using a Simoa HD-1 analyzer in older adults enrolled in the
observational Texas Alzheimer Research and Care Consortium. Associations between de-
mographic and clinical characteristics with serum GFAP levels were evaluated using linear
regression. The diagnostic accuracy of serum GFAP was further examined using area under the
receiver operating characteristic curves (AUROC) in univariate and adjusted models, and
optimal cut points were derived using the maximum Kolmogorov-Smirnov metric. All models
were also stratified by ethnicity and disease stage.

Results
A total of 1,156 Mexican American and 587 non-Hispanic White participants were included
(mean age = 68 years, standard deviation = 10; 65% female). Older age (β = 0.562 (95% CI
0.515–0.609), p < 0.001), apolipoprotein e4 status (β = 0.139 (95% CI 0.092–0.186), p <
0.001), and cognitive impairment (β = 0.150 (95% CI 0.103–0.197), p < 0.001) were positively
associated with serum GFAP. By contrast, higher body mass index (β = −0.181 (95% CI -0.228
to −0.134), p < 0.001), diabetes (β = −0.065 (95%CI -0.112 to −0.018), p < 0.001), and tobacco
use (β = −0.059 (95% CI -0.106 to −0.012), p < 0.001) were inversely associated with serum
GFAP. AUROC values were generally comparable across ethnicities and model fit improved
with inclusion of additional covariates. However, optimal cut-off values were consistently lower
in Mexican Americans relative to non-Hispanic White participants.

Discussion
The study results highlight the importance of understanding the role of broader demographic
and clinical factors on circulating GFAP levels within diverse cohorts to enhance precision
across clinical, research, and community settings.
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Introduction
The establishment of a biological definition for Alzheimer
disease (AD), characterized by the presence of amyloid beta
(aβ), tau, and neurodegeneration, has afforded new oppor-
tunities for early diagnosis and interventions targeting core
pathologic features.1 Neuroimaging and CSF measures are
considered the gold standard diagnostics; however, there is
now significant momentum to validate blood-based bio-
markers in an effort to increase accessibility, scalability and
affordability.2,3 Blood-based biomarkers further offer the po-
tential to evaluate multiple pathophysiologic features of AD
and related dementias (ADRD), such as neuroinflammation
and glial cell activation.4 In particular, circulating levels of glial
fibrillary acidic protein (GFAP), an intermediate filament
protein of the astrocytic cytoskeleton and putative marker of
reactive astrocytosis,5 have been shown to increase with ce-
rebral aβ burden6-8 and associate with the risk of all-cause and
AD dementia in population-based studies.9,10 In our prior
work examining the serum levels of GFAP, total tau, neuro-
filament light (NFL), ubiquitin carboxyl-terminal hydrolase
LI, soluble CD14, and YKL-40 in Mexican American (MA)
older adults, GFAP alone was associated with incident de-
mentia over a four-year follow-up period.11

Although circulating levels of GFAP and other proteins have
displayed the potential to improve ADRD risk stratification,5-11

previous studies have been largely limited to homogenous
research cohorts, and additional validation in diverse ethnic
and racial cohorts reflective of the broader population is
critical for wide scale implementation.3,12 There is growing
recognition in the field that structural and social determinants
of health, such as access to health care, education, and built
environment, have an important role in explaining variance in
ADRD outcomes.13 Work by our team and others has dem-
onstrated ethnic and racial differences in blood biomarker
levels in minoritized groups that have higher average exposure
to factors linked with health inequities.12,14-16 For example,
among Black and non-Hispanic White (NHW) participants
matched for age, APOE e4 carriage, and cognitive status,
Schindler et al. reported lower accuracy of plasma phos-
phorylated tau (p-tau) 181, p-tau 231, and NFL for CSF
aβ42/aβ40 positivity among Black adults.17 In the HABLE
study of MA and NHW adults, O’Bryant et al. reported lower
plasma aβ40 and NFL and higher total tau levels among MA
participants.18,19 Given the significant heterogeneity across
and within diverse groups,12,17 it is important to understand
the underlying factors that contribute to observed differences.

Previous research has indicated that circulating ADRD bio-
marker levels are associated with cardiovascular and broader
medical comorbidities, including obesity, hypertension, and
chronic kidney disease,3,15,20-22 which disproportionately af-
fect minoritized communities.12,23 Therefore, improved un-
derstanding of the role of common comorbidities on ADRD
blood biomarker levels within diverse cohorts may enhance
their validity and generalizability.12,17

The goal of this study was to examine the association between
circulating GFAP with demographics, cardiovascular risk fac-
tors, and APOE e4 status among MA and NHW older adults
across the continuum from cognitively unimpaired (CU) to
dementia due to AD. Based on previous research,23 we hy-
pothesized that MA older adults would present with increased
cardiovascular risk burden relative to NHWparticipants, which
would be associated with serum GFAP levels. In addition, we
further aimed to evaluate whether adjustment for pertinent
demographic and clinical factors improved the diagnostic ac-
curacy of serum GFAP for mild cognitive impairment (MCI)
and dementia among MA and NHW older adults.

Methods
Sample
Assays were conducted on blood specimens obtained at the
baseline visit of the Texas Alzheimer Research and Care
Consortium (TARCC) study, which is a collaborative effort
across 10 academic medical centers in Texas with data col-
lection occurring between 2005 and 2017.24 Participating
sites enrolled and longitudinally followed adults 50 years and
older at the time of recruitment. For the current analyses,
inclusion criteria included MA or NHW ethnicity and avail-
able data on serum GFAP. This study included participants
with unimpaired cognition, MCI, and dementia due to AD.
Individuals with a diagnosis of dementia not due to possible or
probable Alzheimer disease and/or a history of major stroke
were excluded.

Standard Protocol Approvals, Registrations,
and Patient Consents
This study was approved by the institutional review board at
each institution and was conducted in adherence with The
Code of Ethics of theWorldMedical Association. Participants
provided written informed consent before enrollment with
appropriate legal representation for individuals lacking ca-
pacity to consent. University of Texas Health at San Antonio
Institutional Review Board approval was obtained to process

Glossary
AD = Alzheimer disease; APOE = apolipoprotein E; AUROC = area under the receiver operating characteristic curves; BMI =
body mass index; CU = cognitively unimpaired; GFAP = glial fibrillary acidic protein; MA = Mexican American;MCI = mild
cognitive impairment; NFL = neurofilament light; NHW = non-Hispanic White; SBP = systolic blood pressure; TARCC =
Texas Alzheimer Research and Care Consortium.
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and analyze deidentified samples and clinical/demographic
data.

Examination Procedures
Standardized medical histories, physical and neurologic ex-
aminations, and cognitive assessments were conducted in
accordance with National Alzheimer Coordinate Center
Uniform Data Set Version 2.25 Race and ethnicity were
identified by self-report. Response options for race included
(1) White, (2) Black or African American, (3) American In-
dian or Alaskan Native, (4) Native Hawaiian or other Pacific
Islander, (5) Asian, (6) other, or (7) unknown. Participants
were also asked whether they identified as Hispanic and in
response to an affirmative answer were provided with the
following response options: (1) Mexican/Chicano/Mexican
American, (2) Puerto Rican, (3) Cuban, (4) Dominican, (5)
Central American, (6) South American, (7) other, or (8)
unknown.Weight in kilograms and height in centimeters were
obtained for calculation of body mass index (BMI). Systolic
blood pressure (SBP) was evaluated using an automated
brachial cuff in the supine position. Diabetes was assessed by
self-report, medical records, and use of glucose-lowering
medications. Current tobacco use was assessed by self-
reported tobacco use in the past 30 days.

Clinical Diagnoses
Classifications of CU, MCI, and dementia were assigned
based on the review of clinical and cognitive assessments at
the annual visits. Diagnoses were adjudicated in multidisci-
plinary consensus review conferences comprised at least one
physician, neuropsychologist, and research coordinator. Pos-
sible or probable diagnoses for Alzheimer disease were
assigned based on NINCDS-ADRDA criteria.26 MCI sub-
types (amnestic vs nonamnestic) were determined using
established criteria defined by Petersen et al.27

Blood Draw and Storage
Blood was collected, processed, and stored in TARCC in
alignment with established guidelines.28 In brief, nonfasting
blood was collected by venipuncture in the morning. Serum
tubes were allowed to clot for 30–60 minutes. After centri-
fugation at 2000×g for 10 minutes at room temperature, se-
rum was aliquoted into polypropylene tubes and specimens
were stored in −80°C freezers within 2 hours of collection.
Apolipoprotein E (APOE) genotyping was performed with
PCR as previously described,24 and APOE e4 carrier status
was defined by the presence of at least one e4 allele.

Quantification of Serum Biomarker Levels
GFAP levels were quantified in serum using the Neurology
4-Plex A Kit on a Simoa HD-1 Analyzer (Quanterix, Lex-
ington, MA) at the University of Vermont Laboratory for
Clinical Biochemistry. The analytical range was 0.8—3,420
pg/mL, and the interassay coefficient of variance was 13.9%.
A certified laboratory technician, blinded to clinical and
demographic information, performed all assays between
November and December 2019 using a single batch of
reagents.

Statistical Analyses
Serum GFAP levels had a left-skewed, non-normal distri-
bution and were natural log-transformed and standardized
to z-scores within the cohort before analyses. Demographic
and clinical variables were compared across diagnostic
groups and ethnicities using the chi-squared statistic for
categorical variables or with independent t tests or Mann-
Whitney U tests for continuous variables. For all sub-
sequent analyses, continuous variables were transformed to
z-scores to enable comparisons across outcomes. The as-
sociations between demographic (age, sex) and clinical
(BMI, SBP, diabetes, tobacco use, APOE e4 status, di-
agnostic group) characteristics with serum GFAP were
evaluated using linear regression across the whole sample
and then with stratification by diagnostic group and eth-
nicity. Associations with age and sex were examined with
adjustment for site. All other models were adjusted for age,
sex, and site. In exploratory analyses, interaction terms
between ethnicity and demographic and clinical charac-
teristics were added. The diagnostic accuracy of serum
GFAP was examined using area under the receiver oper-
ating characteristic curves (AUROC) from pairwise logistic
regression models for the whole sample and then with
stratification by ethnic group and sex. Model 1 included
standardized log-transformed GFAP and adjustment for
site. Model 2 also included adjustment for age, sex, and site,
and Model 3 also included adjustment for age, sex, site,
BMI, diabetes, tobacco use, and APOE e4 status. Com-
parisons of the models were performed using the test by
Delong et al.29 In supplementary analyses, AUROC was
performed for amnestic MCI rather than all subtypes of
MCI. Optimal cut points and their sensitivity and speci-
ficity were derived using the maximum Kolmogorov-
Smirnov metric.30 Statistical tests were 2-sided, and
statistical significance was set at p < 0.05. For all models
evaluating associations with demographic and clinical var-
iables, p values were Bonferroni-corrected for the number
of independent variables, which placed the raw p value for
statistical significance at p < 0.006. Analyses were con-
ducted on participants with available data, and participants
with missing values were excluded from analyses (missing
age N = 5, BMI N = 31, missing SBP N = 48, missing
ethnicity N = 16). Statistical analyses were performed using
SPSS version 28.

Data Availability
All data that support our findings, which we can legally share,
are accessible by request through TARCC: ais.swmed.edu/
redcap/surveys/?s=CX8MJ4Y7XD. This study is reported in
accordance with the STROBE checklist (eAppendix 1, links.
lww.com/WNL/D50).

Results
Participant Characteristics
A total of 1,743 participants (65% female; mean age 69 ± 10)
were included in this study, of which 1,156 self-identified as
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MA ethnicity and 587 self-identified as NHW ethnicity. As
compared with the NHW participants, MA participants were
younger, more commonly female, had less education, and had
higher BMI, SBP, diabetes prevalence, and tobacco use
(Table 1). APOE e4 carrier status was lower in the MA par-
ticipants. Serum GFAP values increased with advancing dis-
ease severity across the sample. However, in unadjusted
models, MA participants had lower serum GFAP values rel-
ative to NHW participants across the whole sample and with
stratification by the diagnostic group.

Associations Between Demographic and
Clinical Variables With Serum GFAP
In models adjusted for site, older age was associated with
higher GFAP levels, and there were also strong trends toward
a positive association with female sex (Table 2). All sub-
sequent models were adjusted for age, sex, and site. Across the
sample, APOE e4 carriage and the presence of cognitive im-
pairment (MCI or dementia) were associated with higher
GFAP levels. By contrast, higher BMI, diabetes, and tobacco
use were associated with lower GFAP levels. SBP was not
significantly associated with serum GFAP. The pattern of
results was largely consistent in models stratified by the di-
agnostic group. However, sex only reached statistical signifi-
cance with Bonferroni adjustment in the MCI and dementia
groups, and diabetes only reached significance in the CU and
dementia groups. Tobacco use was only significant in the CU
group, and APOE e4 status was only significant in the MCI
group.

Associations Between Demographic and
Clinical Variables With Serum GFAP With
Stratification for Ethnicity
The associations between demographic and clinical fac-
tors with serum GFAP were typically consistent between
ethnicities across the sample and by the diagnostic group
(Table 3). However, sex was not significantly associated
with serum GFAP in the MCI or dementia groups among
MA participants. Diabetes displayed more consistent
negative associations with GFAP across diagnostic groups
among NHW participants relative to MA participants,
whereas BMI was more consistently associated with lower
GFAP across diagnostic groups in MA participants relative
to NHW participants. Tobacco use only reached statisti-
cal significance in the CU group, and APOE e4 was only
significant in the MCI group among MA participants. In
both MA and NHW participants, the presence of cogni-
tive impairment was significantly associated with serum
GFAP; however, the standardized beta was almost 3 times
larger among NHW participants. Exploratory analy-
ses (eTable 1, links.lww.com/WNL/D51) indicated sig-
nificant interactions between ethnicity with age
and diabetes, alongside a strong trend for cognitive
impairment.

In models stratified by the diagnostic group, there was a
significant interaction between ethnicity and diabetes for
the MCI group and a significant interaction between eth-
nicity and APOE e4 carriage for the dementia group.

Table 1 Demographic and Clinical Characteristics of the Cohort (N = 1743)

Overall Cognitively unimpaired Mild cognitive impairment Dementia

MA
participants
N = 1,156

NHW
participants
N = 587

MA
participants
N = 702

NHW
participants
N = 161

MA
participants
N = 314

NHW participants
N = 111

MA
participants
N = 140

NHW
participants
N = 315

Age, y 66 ± 9a 74 ± 8 63 ± 8a 72 ± 8 70 ± 9a 73 ± 9 75 ± 8 74 ± 9

Female, N (%) 814 (70)a 319 (54) 510 (72) 105 (65) 212 (68)a 51 (46) 92 (66)a 163 (52)

Education, y 10 ± 5a 15 ± 3 10 ± 5a 16 ± 2 10 ± 4a 15 ± 2 9 ± 5a 15 ± 3

BMI, m/kg2 31 ± 6a 27 ± 4 31 ± 7a 27 ± 4 31 ± 6a 28 ± 4 29 ± 5a 26 ± 4

Systolic Blood
Pressure, mm Hg

139 ± 21a 134 ± 18 137 ± 21a 130 ± 17 139 ± 19 135 ± 18 145 ± 21a 135 ± 17

Diabetes, N (%) 272 (23)a 50 (9) 177 (25)a 12 (7) 66 (21) 14 (13) 29 (21)a 24 (8)

Current Tobacco Use,
N (%)

120 (10)a 29 (5) 79 (11)a 6 (4) 25 (13) 10 (9) 16 (11)a 13 (4)

Presence of APOE «4
Allele, N (%)

237 (21)a 282 (48) 129 (18) 32 (20) 55 (18)a 45 (41) 53 (38)a 205 (65)

Serum GFAP, pg/mL,
Median (Q1–Q3)

154
(108–222)a

345
(206–488)

134 (98–186)a 214
(151–371)

172
(120–250)a

253 (170–380) 275
(180–453)a

429
(308–583)

Abbreviations: APOE = apolipoprotein E; BMI = body mass index; GFAP = glial fibrillary acidic protein; MA = Mexican American; NHW = non-Hispanic White.
Group differences were assessed with independent t tests or Mann-Whitney U tests for continuous variables and the χ2 statistic for categorical variables. All
values represent mean ± SD unless otherwise noted.
a p < 0.05.
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Table 2 Standardized Beta Results From Regression Models Examining Associations With Serum GFAP

All Cognitively unimpaired Mild cognitive impairment Dementia

Age β = 0.562 (95% CI 0.515 to 0.609) p < 0.001a β = 0.555 (95% CI 0.488 to 0.622) p < 0.001a β = 0.615 (95% CI 0.520 to 0.710) p < 0.001a β = 0.300 (95% CI 0.208 to 0.392) p < 0.001a

Female sex β = 0.061 (95% CI 0.014 to 0.108) p = 0.007 β = 0.089 (95% CI 0.022 to 0.156) p = 0.009 β = 0.140 (95% CI 0.045 to 0.235) p = 0.004a β = 0.158 (95% CI 0.066 to 0.250) p < 0.001a

BMIb β = −0.181 (95% CI −0.228 to −0.134) p < 0.001a β = −0.201 (95% CI −0.268 to −0.134) p < 0.001a β = −0.179 (95% CI −0.274 to −0.084) p < 0.001a β = −0.153 (95% CI −0.245 to −0.061) p < 0.001a

SBPb β = −0.016 (95% CI −0.063 to 0.031) p = 0.371 β = 0.018 (95% CI −0.029 to 0.058) p = 0.519 β = −0.085 (95% CI −0.180 to −0.010) p = 0.022 β = 0.018 (95% CI −0.074 to 0.110) p = 0.678

Diabetesb β = −0.065 (95% CI −0.112 to −0.018) p < 0.001a β = −0.097 (95% CI −0.164 to −0.030) p < 0.001a β = 0.042 (95% CI −0.053 to 0.137) p = 0.264 β = −0.145 (95% CI −0.237 to −0.053) p < 0.001a

Tobaccob β = −0.059 (95% CI −0.106 to −0.012) p = 0.001a β = −0.099 (95% CI −0.166 to −0.032) p < 0.001a β = −0.029 (95% CI −0.124 to 0.066) p = 0.434 β = −0.048 (95% CI −0.140 to 0.044) p = 0.263

APOE «4b β = 0.139 (95% CI 0.092 to 0.186) p < 0.001a β = 0.059 (95% CI −0.008 to 0.126) p = 0.034 β = 0.179 (95% CI 0.084 to 0.274) p < 0.001a β = 0.074 (95% CI −0.018 to 0.166) p = 0.087

Cognitive
Impairmentb

β = 0.150 (95% CI 0.103 to 0.197) p < 0.001a

Abbreviations: 95% CI = 95% confidence interval; APOE = apolipoprotein E; BMI = body mass index; Cognitive Impairment = mild cognitive impairment and dementia vs cognitively unimpaired; GFAP = glial fibrillary acidic
protein; SBP = systolic blood pressure.
Standardized beta values derived from regressionmodels examining associations with serumGFAP in thewhole sample and by the diagnostic group.Models for age and sexwere adjusted for site. All othermodels adjusted for
site, age, and sex.
a p < 0.006 level of significance after Bonferroni correction for 8 independent variables.
b Adjustment for age and sex.
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Table 3 Standardized Beta Results From Regression Models Examining Associations Between Demographic and Cardiovascular Risk Factors With Serum GFAP Stratified by
Ethnicity

Overall Cognitively unimpaired MCI Dementia

MA participants
N = 1,156

NHW participants
N = 587

MA participants
N = 702

NHW participants
N = 161

MA participants
N = 314

NHW participants
N = 111

MA participants
N = 140

NHW participants
N = 315

Age β = 0.604
(95% CI 0.546 to 0.662)
p < 0.001a

β = 0.392
(95% CI 0.311 to 0.473)
p < 0.001a

β = 0.483
(95% CI 0.409 to 0.556)
p < 0.001a

β = 0.469
(95% CI 0.314 to
0.623)
p < 0.001a

β = 0.639
(95% CI 0.528 to 0.750)
p < 0.001a

β = 0.479
(95% CI 0.293 to 0.665)
p < 0.001a

β = 0.306
(95% CI 0.140 to 0.472)
p < 0.001a

β = 0.298
(95% CI 0.188 to 0.408)
p < 0.001a

Female Sex β = 0.084
(95% CI 0.026 to 0.142)
p = 0.004a

β = 0.188
(95% CI 0.107 to 0.269)
p < 0.001a

β = 0.110
(95% CI 0.036 to 0.184)
p = 0.004a

β = 0.219
(95% CI 0.064 to
0.373)
p = 0.005a

β = 0.108
(95% CI −0.003 to
0.219)
p = 0.057

β = 0.368
(95% CI 0.182 to 0.554)
p < 0.001a

β = 0.187
(95% CI 0.021 to 0.353)
p = 0.025

β = 0.181
(95% CI 0.071 to 0.291)
p = 0.001a

BMIb β = −0.184
(95% CI −0.242 to
−0.127)
p < 0.001a

β = −0.132
(95% CI −0.213 to
−0.051)
p < 0.001a

β = −0.198
(95% CI −0.272 to
−0.124)
p < 0.001a

β = −0.133,
(95% CI −0.287 to
0.021)
p = 0.056

β = −0.164
(95% CI −0.275 to
−0.053)
p < 0.001a

β = −0.116
(95% CI −0.302 to
0.007)
p = 0.146

β = −0.172
(95% CI −0.338 to
−0.006)
p = 0.031

β = −0.113
(95% CI −0.223 to
−0.003)
p = 0.036

SBPb β = 0.037
(95% CI −0.021 to
0.095)
p = 0.126

β = −0.028
(95% CI −0.109 −0.053)
p = 0.440

β = 0.079
(95% CI 0.005 to 0.153)
p = 0.022

β = −0.029
(95% CI −0.183 to
0.125)
p = 0.667

β = −0.038
(95% CI −0.149 to
0.073)
p = 0.389

β = −0.157
(95% CI −0.343 to
0.029)
p = 0.049

β = 0.134
(95% CI −0.032 to
0.300)
p = 0.101

β = −0.017
(95% CI −0.227 to
−0.007)
p = 0.757

Diabetesb β = −0.023
(95% CI −0.035 to
0.081)
p = 0.333

β = −0.160
(95% CI −0.241 to
−0.079)
p < 0.001a

β = −0.085
(95% CI −0.159 to
−0.011)
p = 0.010

β = −0.134
(95% CI −0.288
−0.020)
p = 0.044

β = 0.124
(95% CI 0.013 to 0.235)
p = 0.004a

β = −0.211
(95% CI −0.398 to
−0.025)
p = 0.007

β = −0.075
(95% CI −0.241 to
0.091)
p = 0.342

β = −0.190
(95% CI −0.300 to
−0.080)
p < 0.001a

Tobacco Useb β = −0.064
(95% CI −0.122 to
−0.006)
p = 0.007

β = −0.029
(95% CI −0.110 to
0.052)
p = 0.412

β = −0.124
(95% CI −0.198 to
−0.050)
p < 0.001a

β = 0.027
(95% CI −0.127 to
0.181)
p = 0.695

β = −0.003
(95% CI −0.114 to
0.108)
p = 0.939

β = −0.085
(95% CI −0.271 to
0.101)
p = 0.280

β = −0.032
(95% CI −0.198 to
0.134)
p = 0.693

β = −0.039
(95% CI −0.500 to
−0.280)
p = 0.473

APOE «4b β = 0.108
(95% CI 0.050 to 0.166)
p < 0.001a

β = 0.151
(95% CI 0.070 to 0.232)
p < 0.001a

β = 0.037
(95% CI −0.037 to
0.111)
p = 0.263

β = 0.146
(95% CI −0.008 to
0.300)
p = 0.032

β = 0.156
(95% CI 0.042 to 0.264)
p < 0.001a

β = 0.173
(95% CI −0.013 to
0.359)
p = 0.033

β = 0.186
(95% CI 0.020 to 0.352)
p = 0.017

β = −0.024
(95% CI −0.134 to
0.086)
p = 0.654

Cognitive
Impairmentb

β = 0.088
(95% CI 0.030 to 0.146)
p < 0.001a

β = 0.237
(95% CI 0.156 to 0.318)
p < 0.001a

Abbreviations: 95% CI = 95% confidence interval; APOE = apolipoprotein E; BMI = body mass index; GFAP = glial fibrillary acidic protein; MA = Mexican American; NHW = non-Hispanic White; SBP = systolic blood pressure.
Standardized beta values derived from regression models examining associations with serum GFAP in the whole sample and by the diagnostic group with stratification for ethnicity. Models for age and sex were adjusted for
site. All other models adjusted for site, age, and sex.
a p < 0.006 level of significance after Bonferroni correction for 8 independent variables.
b Adjustment for age and sex.
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Table 4 Area Under the Receiver Operating Characteristic Curve (AUROC) for Serum GFAP for Diagnostic Classifications

Cognitively unimpaired vs dementia Mild cognitive impairment vs dementia Cognitively unimpaired vs mild cognitive impairment

All participants MA participants NHW participants All participants MA participants NHW participants All participants MA participants NHW participants

Model 1 0.886 (0.866–0.905)
p < 0.001a

0.858 (0.821–0.895)
p < 0.001a

0.777 (0.733–0.820)
p < 0.001a

0.840 (0.814–0.866)
p < 0.001a

0.734 (0.684–0.784)
p < 0.001a

0.803 (0.775–0.850)
p < 0.001a

0.635 (0.603–0.668)
p < 0.001a

0.673 (0.637–0.709)
p < 0.001a

0.485 (0.415–0.556)
p = 0.683

Group contrasts Z = 2.780,
p = 0.005a

Z = 1.962,
p = 0.050

Z = −4.633,
p < 0.001a

Model 2 0.909 (0.892–0.926)
p < 0.001a

0.851 (0.813–0.889)
p < 0.001a

0.847 (0.808–0.887)
p < 0.001a

0.844 (0.819–0.870)
p < 0.001a

0.751 (0.702–0.800)
p < 0.001a

0.799 (0.752–0.847)
p < 0.001a

0.698 (0.668–0.728)
p < 0.001a

0.738 (0.705–0.771)
p < 0.001a

0.519 (0.448–0.590)
p = 0.600

Group contrasts Z = −0.155,
p = 0.877

Z = 1.392,
p = 0.164

Z = −5.473,
p < 0.001a

Model 3 0.921 (0.905–0.937)
p < 0.001a

0.859 (0.823–0.895)
p < 0.001a

0.887(0.854–0.921)
p < 0.001a

0.854 (0.829–0.879)
p < 0.001a

0.770 (0.723–0.817)
p < 0.001a

0.808 (0.761–0.856)
p < 0.001a

0.709 (0.679–0.739)
p < 0.001a

0.740 (0.707–0.773)
p < 0.001a

0.570 (0.500–0.639)
p = 0.051

Group contrasts Z = 1.117,
p = 0.264

Z = 1.121,
p = 0.262

Z = −4.315,
p < 0.001a

Abbreviations: GFAP = glial fibrillary acidic protein, MA = Mexican American, NHW = non-Hispanic White.
Area under the receiver operating characteristic curve (95% Confidence Intervals) of serum GFAP for diagnostic classification across the whole sample and with stratification for ethnicity.
Model 1 = adjusts for site; Model 2 = adjusts for site, age, and sex, Model 3 = adjusts for site, age, sex, body mass index, diabetes, tobacco use, and Apolipoprotein E e4 allele.
a p < 0.05 level of significant for assessing ethnic differences.
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Serum GFAP and Diagnostic Classifications
Across the Whole Sample and With
Stratification by Ethnicity
As presented in Table 4, the AUROC was highest for dis-
criminations between dementia and CU with better perfor-
mance among MA participants relative to NHW participants.
Across the whole sample and by ethnicity, the AUROC was
improved with additional adjustment for BMI, diabetes, to-
bacco use, and APOE e4 status. For predicting the odds of
dementia vs MCI, the highest AUROC was found in the fully
adjusted models, and no significant differences were observed
between ethnicities. For predicting odds of MCI vs CU, in-
clusion of additional covariates improved the AUROC with
stronger discriminability observed among MA participants
relative to NHW participants. In supplementary analyses
restricting the MCI sample to the amnestic subtype (aMCI)
(eTable 2, links.lww.com/WNL/D52), the discriminability of
dementia relative to aMCI was stronger among NHW partic-
ipants thanMA participants when adjusting only for site, which
was attenuated by inclusion of additional covariates. The dis-
criminability of aMCI relative to CU was higher in MA par-
ticipants than NHW participants with adjustment for age, sex,
and site. Although overall AUROCs were typically similar be-
tween ethnicities, cut-off values differed (Table 5). Across
pairwise comparisons and models, lower optimal cut-off values
were derived forMA participants relative toNHWparticipants.

In exploratory analyses assessing AUROCs with stratification
by sex and ethnicity (eTable 3, links.lww.com/WNL/D53),
there were generally no significant differences by the group.
However, the discrimination of MCI relative to CU was
stronger for female participants relative to male participants in
the whole sample and within MA participants.

Discussion
In our study of MA and NHW older adults across the con-
tinuum of CU to AD dementia, BMI, diabetes, and tobacco

use were significantly associated with lower serum GFAP
levels. These findings directly contrasted with the associations
of traditional AD risk factors, including older age and APOE
e4 carrier status, which positively associated with circulating
GFAP levels as previously reported.31,32 Associations between
demographic and clinical factors with serum GFAP levels
were generally consistent across ethnicities and diagnostic
groups. However, in models only adjusted for age and sex, the
standardized beta for the presence of cognitive impairment in
association with serum GFAP was roughly 3 times larger
among the NHW participants relative to MA participants.
Inclusion of additional covariates, including age, sex, BMI,
tobacco use, and APOE e4 carrier status, improved discrim-
inability of dementia relative to CU with no significant dif-
ferences observed across ethnic groups. Nonetheless, the
optimal cut points for diagnostic discrimination differed be-
tween ethnic groups, which persisted with adjustment for
covariates. Overall, the results highlight the importance of
understanding the role of broader demographic and clinical
factors on circulating GFAP levels within diverse cohorts in
effort to enhance precision for neurodegenerative disease.

Across ethnic groups, older age and APOE e4 carrier status
were related to higher GFAP levels, which is consistent with
previous reports31,32 and may reflect their well-established
associations with neurodegenerative disease risk.33 However,
similar findings have also been reported among CU middle-
aged adults,34 suggesting that they may also be partially at-
tributable to differences in protein generation and/or turn-
over.3 Cardiovascular risk factors, including higher BMI,
diabetes, and tobacco use, were in contrast associated with
lower serum GFAP levels. The inverse relationships with se-
rumGFAP are interesting considering these factors have been
associated with increased risk of ADRD,35 although the di-
rectionality is less consistent in late life.36,37 Previous research
has demonstrated negative associations between circulating
ADRD biomarkers and cardiovascular risk factors with some
variability across the samples and biomarkers examined.3,12

For example, higher BMI was associated with lower plasma

Table 5 Optimal Cut Points for Diagnostic Classification Derived by the Maximum Kolmogorov-Smirnov Metric

Cognitively unimpaired vs dementia Mild cognitive impairment vs dementia
Cognitively unimpaired vs mild cognitive
impairment

All
participants

MA
participants

NHW
participants

All
participants

MA
participants

NHW
participants

All
participants

MA
participants

NHW
participants

Model
1

0.409
(0.754–0.882)

0.243
(0.579–0.836)

0.624
(0.806–0.801)

0.541
(0.745–0.807)

0.346
(0.586–0.755)

0.776
(0.686–0.802)

0.360
(0.485–0.744)

0.329
(0.608–0.677)

0.353
(0.541–0.534)

Model
2

0.356
(0.829–0.857)

0.198
(0.771–0.818)

0.487
(0.921–0.646)

0.563
(0.727–0.819)

0.299
(0.686–0.707)

0.755
(0.730–0.757)

0.307
(0.718–0.598)

0.321
(0.662–0.709)

0.527
(0.306–0.795)

Model
3

0.438
(0.813–0.898)

0.141
(0.821–0.775)

0.546
(0.908–0.731)

0.555
(0.756–0.828)

0.283
(0.707–0.701)

0.617
(0.895–0.568)

0.295
(0.744–0.572)

0.306
(0.697–0.664)

0.517
(0.369–0.769)

Abbreviations: MA = Mexican American, NHW = non-Hispanic White.
Note: Optimal cut points for diagnostic classification derived by the maximum Kolmogorov-Smirnov metric (sensitivity, specificity) across the whole sample
and with stratification for ethnicity.
Model 1 = adjusts for site; Model 2 = adjusts for site, age, and sex; Model 3 = adjust for site, age, sex, body mass index, diabetes, tobacco use, and
Apolipoprotein E e4 allele.
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p-tau 181, p-tau 217, and NFL levels but was unrelated to
plasma aβ42/aβ40 and total tau in the multiethnic WHICAP
study.38 In the BIOFINDER studies, higher creatinine and
lower BMI were associated with increased plasma GFAP and
NFL levels.21 However, there were no consistent associations
with hypertension, hyperlipidemia, diabetes, ischemic heart
disease, or prior stroke.21 The results highlight the complex
relationship between ADRD blood biomarkers and broader
medical comorbidities, which may vary based on disease
burden, the degree of comorbidity management, and distinct
constellations of risk factors present in the cohorts examined.

Encouragingly, AUROC analyses generally demonstrated
similar diagnostic accuracy of serum GFAP in MA and NHW
participants in our study. Not surprisingly, the AUROC was
the highest for the pairwise comparison of dementia vs CU
and poorest for MCI vs CU. In models only adjusted for site,
the discrimination of both dementia and MCI relative to CU
was higher inMA relative to NHWparticipants, which may be
related in part to the larger MA participant sample size.
Further expansion of the models to include additional ad-
justment for BMI, diabetes, tobacco use, and APOE e4
status optimized model fit across the sample and with
stratification by ethnic group. AUROCs were generally
consistent across ethnicities with the exception of stronger
discriminability of MCI vs CU among MA participants rel-
ative to NHW participants.

Although AUROC values for serum GFAP were generally
similar between the ethnic groups, the optimal cut-off values
derived from these models differed. Regardless of the pairwise
contrasts examined, the optimal cut points were lower among
MA participants relative to NHW participants, and the find-
ings persisted with adjustment for additional demographic
and clinical characteristics. While we fully concede that fur-
ther replication is necessary and that these values should not
be adopted in clinical or research settings, the findings illu-
minate the importance of further validation of ADRD blood
biomarkers in diverse cohorts. As the pattern of results
remained with adjustment for pertinent demographic and
clinical characteristics in our study, the results also highlight
the need to examine a broader array of variables that may
contribute to disparities. For example, O’Bryant et al. pre-
viously reported associations between physical functioning,
dyslipidemia, hypertension, diabetes, and chronic kidney
disease with plasma levels of aβ40, aβ42, NFL, and total
tau.15,39 In addition, factors such as access to medical care,
environmental pollutants, and exposure to chronic stress
secondary to discrimination require further examination.12

The findings of this studymust be considered in the context of
its limitations. First, our sample lacked neuroimaging and CSF
outcomes, and diagnostic classifications were determined by
consensus review. In light of the potential influence of culture,
education, and literacy on clinical decision-making,12 the
underlying neurodegenerative disease burden may have dif-
fered between the ethnic groups. In the IDEAS Cohort Study,

individuals of Hispanic ethnicity diagnosed with MCI or de-
mentia had lower likelihood of amyloid PET positivity relative
to NHW participants,40 suggesting the importance of further
evaluations in cohorts with additional ADRD biomarker data
available. In addition, we are unable to examine whether the
associations of serum GFAP with demographic and clinical
factors persist with adjustment for neuropathologic burden.
Finally, our study cohort, TARCC, was conducted across
several academic institutions over a number of years.24 Dif-
ferences in storage time and/or collection parameters may
contribute to variability; however, serum GFAP levels have
been shown to be fairly robust to freeze-thaw cycles.41

In summary, serumGFAP levels were associated with age, sex,
BMI, diabetes, tobacco use, and APOE e4 carrier status in our
cohort of MA and NHW older adults across the continuum
from CU to AD dementia. The diagnostic accuracy of serum
GFAP was generally consistent between ethnicities, and
model fit improved with adjustment for demographic and
clinical variables. Notably, the optimized cut-off values for log-
transformed standardized serum GFAP derived from these
models differed between ethnicities with lower cut points in
MA participants relative to NHW participants. Overall, the
findings highlight the importance of further validation of
ADRD blood biomarkers in diverse cohorts and command a
call for broader examinations of the multidimensional de-
terminants of health that may contribute to underlying
disparities.12
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