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Abstract

Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain 

modulation in clinical and preclinical studies. The amygdala has emerged as a key player in 

the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with 

medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic 

regions have been implicated in pain modulation as well. The cortico-limbic system is rich in 

opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different 

regions of this highly interactive system, potentially opposing functions of different opioid 

receptors, and knowledge gaps will be described here. There is little information about cell 

type- and circuit-specific functions of opioid receptor subtypes related to pain processing and 

pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex 

(ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions 

in the mesolimbic system appear to be similar but remain to be determined in mPFC regions 

other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions 

whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying 

picture of pain-related neuronal mechanisms of opioid signaling in different elements of the 

cortico-limbic circuitry has yet to emerge.
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1. Cortico-limbic plasticity in pain

The limbic system is comprised of cortical and subcortical structures, including medial 

prefrontal cortical regions (mPFC) with anterior cingulate cortex (ACC), and hippocampus 

and amygdala. Ventral components of the basal ganglia such as nucleus accumbens (NAc) 

and paralimbic regions such as the insular cortex (IC) interact closely with these cortico-

limbic circuits. The cortico-limbic system plays an important role in pain mechanisms 

and pain modulation, reward and substance abuse (Navratilova et al., 2015a; Taylor, 

2018; Thompson and Neugebauer, 2019). Neuroplasticity defined as a functional and/or 

structural change that outlasts or becomes independent of the initial event, has been 

shown in different regions of the mPFC (reviewed in Kummer et al., 2020) and amygdala 

(reviewed in Neugebauer, 2020) in pain models, and there is some evidence for pain-related 

neuroplasticity in IC (Qiu et al., 2014) and NAc (see Ren et al., 2021). Interactions of ACC 

and IC with amygdala are largely facilitatory (Jasmin et al., 2003; Zhuo, 2011) whereas 

those between infra- and pre-limbic mPFC and amygdala involve powerful feedforward 

inhibition (Cheriyan et al., 2016; Ji et al., 2010; Kiritoshi and Neugebauer, 2018; Thompson 

and Neugebauer, 2019). Here we focus on preclinical studies of neuroplasticity in the 

cortico-limbic system in pain as the basis for understanding opioid system functions in these 

regions (see Figure 1).

1.1 Medial prefrontal cortex (mPFC)

The mPFC serves executive functions, decision-making, memory retrieval, and control 

of emotions and behavior (Bechara and Damasio, 2005; Euston et al., 2012; Wood and 

Grafman, 2003). Different subregions are infralimbic, prelimbic and anterior cingulate 

cortices in rodents and Brodmann areas 25, 32 and 24b, respectively, in primates (van 

Heukelum et al., 2020). The infra- and pre-limbic cortices receive input primarily from 

limbic rather than somatosensory regions, including pain-related information from thalamus 

and amygdala; additionally, the ACC receives thalamo-cortical inputs from all sensory 

modalities (Gabbott et al., 2006; Hoover and Vertes, 2007). Direct inputs from the spinal 

cord have also been described (Cliffer et al., 1991). In addition to intra- and inter-cortical 

projections mainly from layer II/III, the different mPFC subregions project to subcortical 

targets, including mediodorsal thalamus (mostly layer VI), NAc (layer V of IL and PL more 

so than ACC), lateral hypothalamus (mainly layer V), different amygdala nuclei (layer II 

and V), nucleus accumbens (ACC and PL to core; IL to shell) periaqueductal gray (PAG, 

layer V), ventral tegmental area (VTA, layer V of IL and PL but not ACC), parabrachial 

nucleus (PB, layer V of IL more so than IL but not ACC), nucleus of the solitary tract (NTS, 

mostly layer V of IL), rostral ventromedial medulla (RVM, layer V of IL and PL and little 

ACC), and spinal cord (layer V mostly of PL and ACC) (Ding et al., 2001; Gabbott et al., 

2005; Gabbott et al., 2006; Vertes, 2004). These targets include regions involved in pain 

modulation.

1.1.1 Infralimbic and prelimbic mPFC—Il and PL pyramidal cells have large 

receptive fields and respond to peripheral noxious stimuli (Ji and Neugebauer, 2011, 2014; 

Ji et al., 2010). Pain-related neuroplasticity has been shown at the BLA-IL and BLA-PL 

synapses (Cheriyan and Sheets, 2018; Cheriyan and Sheets, 2020; Ji and Neugebauer, 2010; 
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Kiritoshi et al., 2016) and hippocampal-PL and thalamic-PL synapses (Kelly et al., 2016; 

Kelly and Martina, 2018). Input from the BLA generates monosynaptic excitation and 

polysynaptic inhibition in IL and PL, including in neurons projecting to PAG and amygdala 

(Cheriyan et al., 2016). Synaptic feedforward inhibition from BLA is increased in layer 

V pyramidal cells of IL (Kiritoshi et al., 2016) and PL (Ji et al., 2010) in male rats in a 

model of arthritic pain and in PL neurons in male mice in a model of neuropathic pain 

(Zhang et al., 2015b). Excitation-inhibition balance is decreased at the BLA-PL but not 

BLA-IL synapse (Cheriyan and Sheets, 2020) and excitatory glutamatergic transmission 

from hippocampus and dorsomedial thalamus to layer V PL neurons is decreased in male 

rats under neuropathic pain conditions (Kelly et al., 2016; Kelly and Martina, 2018). 

Excitatory cholinergic modulation of layer V PL is also lost (Radzicki et al., 2017) in 

male rats in neuropathic pain. As a consequence, decreased background and evoked activity 

(extracellular recordings in anesthetized rats) was found in IL (Ji and Neugebauer, 2014) and 

PL (Ji and Neugebauer, 2011; Ji et al., 2010) presumed pyramidal neurons in male rats in 

an arthritis pain model and reduction of excitability (whole-call patch-clamp in mouse brain 

slice) of PL but not IL neurons in male mice in a neuropathic pain model (Cheriyan and 

Sheets, 2018). Accordingly, restoring/increasing activity in IL and PL decreased sensory 

and affective arthritic (Kiritoshi et al., 2016), inflammatory (Wang et al., 2015), and 

neuropathic (Lee et al., 2015; Zhang et al., 2015b) pain behaviors in male rodents through 

downstream inhibition of amygdala output (Ji and Neugebauer, 2014) and activation of 

nucleus accumbens (Lee et al., 2015). It should be noted that there is evidence for increased 

intracortical excitatory transmission and hyperexcitability of layer II/III pyramidal cells in 

the PL in male rats in neuropathic pain (Cordeiro Matos et al., 2015; Metz et al., 2009) 

and increased local excitatory transmission onto PL layer II/III neurons in male rats in an 

inflammatory pain model (Wang et al., 2015), and these neurons can engage inhibitory 

connections with layer V neurons. However, decreased excitatory transmission between PL 

layer II/III and layer V neurons was reported in a neuropathic pain model (Cheriyan and 

Sheets, 2018) and decreased excitability of PL layer II/III in an inflammatory pain model 

(Wang et al., 2015) in male rodents. The IL and PL circuitry is complex, and pain-related 

changes may be region-, cell type- and projection-specific.

1.1.2 Anterior cingulate cortex (ACC)—Neuroplasticity has been shown in ACC in 

different pain models (reviewed in Bak et al., 2021; Taylor, 2018; Zhuo, 2011). Like IL and 

PL neurons (see 1.1.1), ACC neurons have large receptive fields and respond to noxious 

somatic and visceral stimuli and are activated during pain anticipation or pain avoidance 

behavior (Gao et al., 2006; Hutchison et al., 1999; Koyama et al., 2000; Koyama et al., 

2001; Kuo and Yen, 2005; Sikes and Vogt, 1992; Yamamura et al., 1996). In contrast 

to IL and PL deactivation in pain conditions (see 1.1.1), ACC pyramidal layer V cells 

and certain layer II/III neurons (intermediate type), but not interneurons, show increased 

activity in neuropathic pain models in both sexes as measured with electrophysiology or 

calcium imaging (Blom et al., 2014; Cao et al., 2009; Santello and Nevian, 2015; Zhao et 

al., 2018). Increased intracortical excitatory glutamatergic synaptic transmission was found 

in layer II/III pyramidal cells through a presynaptic mechanism in males in inflammatory 

pain (Bie et al., 2011; Toyoda et al., 2009; Zhao et al., 2006; Zheng, 2010) and pre- and 

postsynaptic changes in males in neuropathic pain (Toyoda et al., 2009; Xu et al., 2008) 
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models. In layer V, loss of connectivity between pyramidal cells and interneurons was 

interpreted to indicate ACC disinhibition in neuropathic male mice (Blom et al., 2014). 

Changes of several proteins related to synaptic plasticity were also reported in the ACC in 

male mice under neuropathic pain models, including increases in the expression levels of 

c-Fos, phosphorylated cyclic-AMP response element binding protein (pCREB), neural cell 

adhesion molecule 1 (NCAM1), and protein kinase Mzeta (PKMζ) (Bak et al., 2021; Li 

et al., 2010; Wei et al., 1999; Zhuo, 2011). There is evidence from peripheral nerve block 

experiments in male rats to suggest that ACC pain-related plasticity persists at least in part 

independently of primary afferent input (Wei and Zhuo, 2001).

Lesions or functional inactivation, including activation of inhibitory neurons, of the ACC 

decreases predominantly averse-affective and anxio-depressive aspects of inflammatory and 

neuropathic pain (Barthas et al., 2015; Chen et al., 2018; Fuchs et al., 2014; LaGraize 

et al., 2004; Lei et al., 2004; Li et al., 2009; Qu et al., 2011; Ren et al., 2008; Xiao 

et al., 2013; Xiao and Zhang, 2018), but may also affect the sensory aspects of pain. 

For example, inhibition of hypersensitivity has been reported with pharmacological or 

optogenetic inhibition of ACC (Chen et al., 2018; Santello and Nevian, 2015; Tan et al., 

2017) or midcingulate cortex (MCC) (Tan et al., 2017) activity in male rodents. Conversely, 

optogenetic activation of ACC pyramidal neurons in males produces hypersensitivity (Chen 

et al., 2018) and anxio-depressive behaviors (Barthas et al., 2015); optogenetic activation of 

MCC pyramidal cells in males induced hypersensitivity but not aversive behavior (Tan et 

al., 2017). These effects are likely mediated through top-down control systems that involve 

direct projections to PAG and spinal dorsal horn as well as interactions with IC, thalamus 

(ventral posterolateral and -medial), amygdala and nucleus accumbens (for recent review see 

Thompson and Neugebauer, 2019).

1.2 Amygdala

The amygdala is comprised of different nuclei. Lateral, basolateral and central nuclei (LA, 

BLA, CeA) are of particular importance for sensory and nociceptive processing and pain 

modulation. A majority of neurons in the lateral and capsular division of the CeA (CeLC) 

respond to peripheral noxious stimuli primarily with excitation but a population of inhibited 

neurons has also been found (Bernard et al., 1990, 1992; Goncalves and Dickenson, 

2012; Neugebauer and Li, 2002). Nociceptive information reaches the amygdala from 

the parabrachial nucleus (PB) and from thalamic nuclei (midline, posterior intralaminar/

paraventricular, and posterior regions) and cortical regions (mPFC, IC, sensory association 

cortices) (Neugebauer, 2020). The major if not exclusive source of calcitonin gene-related 

peptide (CGRP) in the CeA is from the lateral PB (Dobolyi et al., 2005; Harrigan et al., 

1994; Palmiter, 2018), which targets almost exclusively the CeLC and delineates what 

has been termed the “nociceptive amygdala” (Neugebauer et al., 2004). The identification 

of nociceptive input from the PB to the CeLC as part of a spino-parabrachial-amygdala 

pain pathway originally triggered the exploration of amygdala processing of nociceptive 

information and neuroplasticity in pain conditions. Some recent controversy surrounds the 

relay of spinal nociceptive information from the PB to the CeLC. While there is strong 

evidence for monosynaptic excitatory projections to the CeLC from neurons in the external 

lateral PB (Bernard et al., 1989; Bernard et al., 1993; Chiang et al., 2020), including neurons 
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containing calcitonin gene-related peptide (Palmiter, 2018), these PB projection neurons 

may not receive nociceptive input directly from spinal dorsal horn neurons (Chiang et al., 

2019) but rather through intra-PBN connectivity, involving spinal projections to tachykinin 

receptor 1 positive neurons in the superior lateral PB (Deng et al., 2020; Huang et al., 2019) 

and dynorphin-expressing neurons in the dorsal lateral PB that send axons to external lateral 

PB (Chiang et al., 2020). However, older studies have linked spinal input directly to the 

external lateral PB (Bernard et al., 1989). Thalamic and cortical inputs target primarily the 

LA-BLA network but also CeA neurons (Fu et al., 2020) and may contain nociceptive 

information. That information converges with PB input onto CeA neurons to drive a 

complex set of largely inhibitory GABAergic and peptidergic neurons and connections. This 

network includes feedforward inhibition of CeLC neurons driven by direct or indirect, via 

BLA, cortical (IL > PL) projections (Kiritoshi and Neugebauer, 2018).

Increased excitatory transmission at the LA-BLA, BLA-CeLC and PB-CeLC synapses has 

been shown in different pain models using brain slice electrophysiology, which indicates 

synaptic plasticity (for review see Neugebauer, 2020). Synaptic plasticity at the PB-CeLC 

synapse was found at the acute stages of pain models (5–6 hours to about 10 days) such 

as formalin, arthritis (knee), muscle, visceral (colon), and neuropathic pain. Enhanced 

excitatory transmission at the LA-BLA and BLA-CeLC synapses was found in an acute 

arthritis model and at the BLA-CeLC synapse also at the acute stage of a neuropathic 

pain model (see Neugebauer, 2020). A cluster of inhibitory intercalated cells (ITC) mediate 

feedforward inhibition of CeA neurons, which is decreased in male rats in acute pain 

conditions (arthritis model) (Ren et al., 2013; Ren and Neugebauer, 2010). Little is 

known about synaptic plasticity in the amygdala circuitry in chronic pain conditions, but 

enhanced excitatory transmission was detected at the BLA-CeA synapse in male rats at 

the chronic stage (4 weeks) of a neuropathic pain model (Ji et al., 2017). As a result, 

electrophysiological studies in anesthetized rats recorded increased ongoing and evoked 

activity of neurons in the CeA and BLA of male rats in acute arthritis (3–6 h) (Ji et al., 

2017; Neugebauer and Li, 2003) and acute (2–14 days) (Goncalves and Dickenson, 2012) 

and chronic (4 weeks) (Ji and Neugebauer, 2019; Ji et al., 2017) neuropathic pain. Increased 

calcium responses to peripheral stimuli, but not ongoing activity, was also detected in BLA 

neurons of awake male mice at the acute and chronic stages of neuropathic pain (Corder et 

al., 2019).

Cell type- and projection-specific amygdala functions in pain that are only beginning to 

emerge and are the focus of current research efforts (Adke et al., 2021; Hein et al., 2021; 

Ji and Neugebauer, 2020; Li et al., 2022; Li and Sheets, 2018; Li and Sheets, 2020; 

Mazzitelli et al., 2022; Wilson et al., 2019; Yakhnitsa et al., 2022). PKCδ, somatostatin 

(SOM) and corticotropin-releasing factor (CRF) positive neurons form the main CeA cell 

clusters (Fadok et al., 2017; Kim et al., 2017; McCullough et al., 2018; Pomrenze et al., 

2015; Sanford et al., 2017). PKCδ and CRF, but not SOM, neurons express CGRP receptors 

and receive CGRP input from PB (Harrigan et al., 1994; Kim et al., 2017; Ye and Veinante, 

2019). It should be noted that while CRF and SOM neurons have long been recognized 

as CeA output neurons sending descending and ascending projections, respectively, to 

brainstem, hypothalamic nuclei and basal forebrain regions (Bartonjo and Lundy, 2022; 

Fadok et al., 2017; Li et al., 2013; Magableh and Lundy, 2014; Penzo et al., 2014; Pomrenze 
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et al., 2015; Sanford et al., 2017; Ye and Veinante, 2019), PKCδ neurons have recently 

been shown to project the basal forebrain and some brainstem regions (Singh et al., 2022). 

PKCδ but not SOM neurons showed increased activity in male mice in a neuropathic pain 

model (6–14 days) (Adke et al., 2021; Wilson et al., 2019). A subtype of CeM, but not 

CeL, neurons projecting to the PAG had increased excitability in male and female mice in an 

acute inflammatory pain model (Li and Sheets, 2018). Analysis of paired-pulse ratio at the 

PB-CeA synapse indicated decreased synaptic efficacy in SOM positive neurons (capsular 

and medial CeA) but increased transmission in SOM negative neurons (capsular CeA) in 

mice of both sexes in a neuropathic pain model (10 days); synaptic efficacy was decreased in 

CRF positive and CRF negative neurons in the CeL, but increased in CRF positive neurons 

in CeM (Li and Sheets, 2020).

Studies using various pharmacological or knock-down strategies found that CeA activation 

generated sensory and emotional affective pain-like behaviors under normal conditions, 

while CeA inhibition decreased behaviors in models of inflammatory and neuropathic 

pain (see Neugebauer, 2020). More recently, optogenetic activation of PB input to CeA 

was shown to generate avoidance behavior (Ito et al., 2021) and to serve as a noxious 

signal for fear (Sato et al., 2015) in male mice and for avoidance memory in mice of 

both sexes (Chiang et al., 2020). Aversive learning in male and female mice was also 

induced by optogenetic activation of calcitonin gene-related peptide (CGRP) containing 

PB input to CeA (Bowen et al., 2020). Optogenetic activation of CeA-CRF neurons 

or BLA-CeA produced mechanical hypersensitivity, emotional responses and anxiety-like 

behaviors and increased activity of nociceptive spinal dorsal horn neurons of male rats under 

normal conditions (Mazzitelli et al., 2021; Mazzitelli et al., 2022). Conversely, optogenetic 

inhibition of CeA-CRF neurons or BLA-CeA input decreased emotional responses and 

spinal dorsal horn activity, but not mechanical hypersensitivity, in male rats in an arthritis 

pain model (Mazzitelli et al., 2021) and emotional responses and anxiety-like behavior, but 

not hypersensitivity, in male rats in a neuropathic pain model (Mazzitelli et al., 2022). 

Chemogenetic activation of CeA-PKCδ neurons increased mechanical hypersensitivity 

in normal male mice whereas chemogenetic inhibition of CeA-PKCδ neurons inhibited 

hypersensitivity in a neuropathic pain model. In contrast, chemogenetic inhibition of CeA-

SOM neurons produced mechanical hypersensitivity under normal conditions but had no 

effect in neuropathic male mice (Wilson et al., 2019).

It will be important to determine the cell type- and projection-specific amygdala functions 

in pain-related neuroplasticity and descending and ascending pain modulation. For example, 

opposing functions of PKCδ and SOM neurons in the CeLC could reflect a differential 

pain modulator similar to the ON- and OFF-cells, respectively, in the rostral ventromedial 

medulla (Chen and Heinricher, 2019). It should be noted, however, that in the context of 

fear memory formation, PKCδ neurons are considered to act as OFF-cells and SOM as 

ON-cells, with PKCδ inhibition and SOM activation driving fear responses in mice of both 

sexes (Ciocchi et al., 2010; Haubensak et al., 2010; Penzo et al., 2014). This complex issue 

remains to be resolved.
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1.3 Mesolimbic dopamine system (nucleus accumbens)

The mesolimbic dopamine system centered on ventral tegmental area (VTA) and nucleus 

accumbens (NAc) plays a key role in reward mechanisms, and their dysregulation is a 

critical factor in drug addiction and alcohol use disorder (Koob and Volkow, 2016) and 

in pain conditions (Borsook et al., 2016; DosSantos et al., 2017; Harris and Peng, 2020; 

Navratilova and Porreca, 2014). There is strong evidence for decreased dopamine levels 

in the NAc in pain conditions but increase of dopamine with the alleviation of pain 

(Navratilova et al., 2015a), although there may be differences between shell and core regions 

in male mice (Ren et al., 2021). Located in the ventral striatum, the NAc is anatomically 

and functionally divided into an outer (shell) and central (core) subregion. Principal cells in 

each region are GABAergic medium spiny neurons that express either D1 or D2 dopamine 

receptors as part of the direct (D1) or indirect (D2) pathway (Salgado and Kaplitt, 2015). 

NAc receives dopaminergic projections from VTA (to shell) and substantia nigra (to core) 

and glutamatergic input from mPFC, IC, ventral hippocampus, midline thalamus, and BLA 

to shell and core. IL appears to target mainly shell and PL, ACC and IC the core, which 

also receives CRF input from the CeA (Borrego et al., 2022; Groenewegen et al., 1999; 

Li et al., 2018; Salgado and Kaplitt, 2015; Stuber et al., 2011; Wright and Groenewegen, 

1995). Nociceptive information can reach the NAc through these limbic pathways, but direct 

input from the spinal cord has also been described (Burstein and Giesler, 1989; Cliffer et al., 

1991).

While recordings of nociceptive neurons in NAc appear to be lacking, neuroimaging (fMRI) 

data in male rats showed decreased activity in NAc core at the onset of a noxious stimulus 

and signal increase at the offset (Becerra et al., 2013). Preliminary neurochemical and 

immunohistochemical evidence in transgenic mice points to nociceptive neurons in the NAc 

shell that show increased responsiveness to touch in a neuropathic pain model (Wojick et 

al., 2022). Synaptic plasticity in the NAc has been shown in pain models. NMDA receptor-

mediated excitatory transmission at the mPFC-NAc (shell) synapse was increased in D1 

and D2 neurons in brain slices from neuropathic male mice (7 or 14 days postinduction) 

(Jing et al., 2022; Wu et al., 2018). Prolonged NMDA receptor kinetics were found in male 

mice at the acute stage (12 h) of an inflammatory pain model whereas at the later stages 

(12 days) of inflammatory and neuropathic pain models AMPA receptor-mediated excitatory 

transmission decreased, resulting in lower AMPA/NMDA ratio in D2 but not D1 NAc 

(core) neurons (Schwartz et al., 2014). A shift towards calcium permeable AMPA receptors 

accompanied by decreased excitatory transmission at depolarized potentials was found in 

the synaptic responses of NAc (core) neurons of male rats in a neuropathic pain model (14 

days) (Goffer et al., 2013). Decreased excitatory transmission from IL (and slower NMDA 

receptor decay time), but increased excitability as a consequence of decreased dopaminergic 

signaling from VTA, was found in D2 but not D1 NAc (shell) neurons of male mice in 

a neuropathic pain model (5 days) (Ren et al., 2016). Decreased excitatory transmission 

from BLA to D2, but not D1, NAc (core) neurons was found in slices from neuropathic 

male mice (8 days), which was not mediated by dopamine signaling; in contrast, excitatory 

transmission from PL was increased in D2, but not D1, neurons in the same model (Ren et 

al., 2021).
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Importantly, restoring the observed changes in NMDA receptor function, decreased 

hypersensitivity and depression-like behaviors in neuropathic male mice (Jing et al., 2022; 

Wu et al., 2018). Mitigating synaptic changes (decreased excitatory transmission) in D2 

NAc neurons prevented the decrease in motivation to earn a natural reward in male mice 

with inflammatory and neuropathic pain without affecting mechanosensitivity (Schwartz 

et al., 2014). AMPA potentiators administered into the NAc decreased neuropathic pain-

induced depression-like behaviors but not hypersensitivity in male rats (Goffer et al., 2013). 

Chemogenetic inhibition of hyperexcitable D2 NAc neurons decreased hypersensitivity 

in neuropathic male mice (Ren et al., 2016). Similarly, optogenetic silencing of D2 or 

activation of D1 neurons in NAc (shell or core) inhibited thermal hypersensitivity in 

neuropathic mice (Sato et al., 2022). Inactivation of the NAc (shell) with lidocaine decreased 

mechanical and thermal hypersensitivity in neuropathic male rats (14 days) (Chang et al., 

2014). Interestingly though, optogenetic activation of PL-NAc (core) projections decreased 

mechanical and thermal hypersensitivity and aversive and depression-like behaviors in male 

rats in a neuropathic pain model (14 days) (Lee et al., 2015). Similarly, chemogenetic 

activation of D2 NAc (core) neurons decreased anxiety-like behavior and restored social 

interaction in neuropathic male mice (8 days; there was no effect, however, on mechanical 

hypersensitivity (Ren et al., 2021). Increased dopamine release in NAc correlated with 

pain relief in neuropathic (Kato et al., 2016) and postoperative (Navratilova et al., 2012) 

male rat pain models, and restoring dopamine levels (with L-DOPA) decreased mechanical 

hypersensitivity in neuropathic male mice (Ren et al., 2016). Blocking dopaminergic 

signaling in the NAc with D1 or D2 antagonists attenuated stress-induced analgesia in 

male rats (Noursadeghi et al., 2022) and the antinociceptive effects of morphine and other 

interventions in male rats (Altier and Stewart, 1998; Haghparast et al., 2012; Harris and 

Peng, 2020; Navratilova et al., 2012; see 2.3).

While the important role of the NAc and dopamine signaling in reward and pain relief 

is now well-established, the functional heterogeneity of this circuitry and cell type- and 

region-specific changes in pain conditions remain to be explored in terms of behavioral 

modulation and adaptive or maladaptive functions in pain.

2. Opioid system in cortico-limbic pain plasticity and pain modulation

The focus of this review is on opioid receptor function in pain-related neuroplasticity in 

corticolimbic circuits discussed in 1. Expression, cellular actions and behavioral effects of 

Mu, kappa, and delta opioid receptors (MOR, KOR, and DOR) will be described.

2.1 Medial prefrontal cortex (mPFC)

Opioid receptors have been shown to be densely distributed throughout the rodent neocortex, 

with striking differences in laminar distributions reported by early autoradiographic studies. 

In the rat, MORs were found to be predominately distributed in laminae I and IV of the 

cerebral cortex (subregions not specified) whereas DORs were primarily located in laminae 

II, III, and V, with a relatively equivalent distribution of MORs and DORs in lamina VI 

(Goodman et al., 1980). In the mouse, MORs are prominent in laminae I, IV, and VI of 

the frontal cortex (subregions not specified) while DORs are found in all layers (Moskowitz 
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and Goodman, 1984). Laminar distributions of KORs were not investigated in either study. 

MORs in the mPFC are extensively localized on GABAergic interneurons (Férézou et al., 

2007; Taki et al., 2000) to regulate mPFC output that is known to modulate the reward 

circuitry centered on signaling from the VTA to NAc, where MOR activation facilitates 

dopamine release through disinhibition (Fields and Margolis, 2015; Trigo et al., 2010). 

Cellular distributions of KORs within the mPFC have not been well characterized, though 

KOR are found on VTA dopaminergic neurons (Chefer et al., 2013) and BLA glutamatergic 

neurons (Tejeda et al., 2015) that project to the mPFC. Though little information is available 

regarding DOR cellular distributions, conditional knockout of the DOR gene in GABAergic 

neurons in the forebrain (ACC and unspecified frontal cortical region) of male mice revealed 

a preservation of some DOR activity, suggesting that DORs may also be located on mPFC 

excitatory neurons (Chung et al., 2015). Another study found both MORs and DORs to 

be localized to cell bodies and neurite-like processes in cultured cells (suggested to be 

both pyramidal and non-pyramidal neurons from morphological analysis) from male mouse 

frontal cortex brain slices containing the PL, IL, and ACC, with some cells showing co-

localization of both receptors predominately in the region of the cell soma (Olianas et al., 

2012). The differential cellular distributions may have important functional implications. 

Opioid receptor location in the mPFC as well as their involvement in adjacent neuronal 

circuitries support a role in the modulation of pain and pain-related emotional-affective 

behaviors.

2.1.1 Infralimbic and prelimbic mPFC—Actions in both prelimbic and infralimbic 

mPFC regions have been implicated in opioid-related processing (Reiner et al., 2019). 

While there is evidence for opioid receptor functioning in the mPFC, including infra- and 

prelimbic regions and their connections, in pain modulation, little is known about cell type- 

and circuit-specific actions of individual opioid receptor types and their role in pain-related 

neuroplasticity.

2.1.1.1 MOR: Both endogenous and exogenous MOR signaling can be linked to plasticity 

of interneurons in the mPFC. Chronic systemic administration of morphine (MOR agonist) 

increased the dendritic branching of SOM interneurons and the dendritic elongation of 

parvalbumin (PV) interneurons in the mPFC of male mice (Wang et al., 2019). Similarly, 

endogenous MOR knockdown in the mPFC with a small hairpin RNA (shRNA) viral 

vector decreased total dendrite length and impaired dendritic complexity of SOM but not 

PV interneurons, suggesting MOR signaling in SOM interneurons may contribute to their 

dendritic development (Wang et al., 2019). As PL and IL inhibitory signaling (Jones and 

Sheets, 2020; Kiritoshi et al., 2016), including SOM and PV interneurons (Jones and Sheets, 

2020; Shiers et al., 2018), is involved in cognitive deficits associated with chronic pain, and 

MORs are expressed in interneurons in this regions (see 2.1), MOR signaling in the mPFC 

circuitry may influence pain-related processing. One study found that concomitant activation 

of MOR (with [D-Ala2, N-MePhe4, Gly-ol]-enkephalin, DAMGO) and DOR (with ([D-

Pen2,D-Pen5]enkephalin, DPDPE) potentiated dopamine D1-like receptor signaling in male 

mouse mPFC brain slices that contained the PL, IL, and ACC (Olianas et al., 2012). This 

finding may suggest that MOR and DOR in these regions can strengthen dopamine D1 
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receptor modulation of glutamatergic transmission, a function that is critical in neuroplastic 

processes such as long-term potentiation (Gurden et al., 2000).

Systemic morphine-induced analgesia involved decreased purinergic signaling in the PL 

in the formalin pain model (Zeng et al., 2021). Intraplantar formalin triggered a slow 

but sustained increase in adenosine 5’-triphosphate (ATP) in the mouse PL, which was 

decreased by systemic injection of morphine (Zeng et al. 2021). Furthermore, infusion 

of ATP into PL weakened antinociceptive effects of morphine, whereas intra-PL delivery 

of a selective P2X7 receptor antagonist (Brilliant Blue G) partially mimicked morphine’s 

antinociceptive effects in the formalin test and, like presumed blockade of P2X4 receptors, 

enhanced morphine analgesia in morphine-tolerant male mice (Zeng et al., 2021). In 

contrast, systemic injection of a MOR agonist and serotonin-norepinephrine reuptake 

inhibitor (tramadol) had no acute effect on neuronal firing activity of PL pyramidal neurons 

in anesthetized male rats (Hasanpour Razmanjani and Reisi, 2022). Systemic application 

of morphine inhibited the spontaneous firing of the majority (63%) of PL neurons in 

anesthetized male rats, an effect that was reversed by systemic application of naloxone 

(Giacchino and Henriksen, 1996). However, electrophoretic application of a MOR agonist 

(DAMGO) inhibited spontaneous activity in only 38% of neurons, with most showing 

no change (Giacchino and Henriksen, 1996). Pyramidal cells and interneurons were not 

distinguished in that study. These findings may suggest the involvement of additional 

circuitry in mPFC-related MOR signaling.

Descending projections from mPFC to the PAG, where MOR activation inhibits GABAergic 

transmission to disinhibit output to the RVM to suppress pain behaviors (Vaughan and 

Christie, 1997; Vaughan et al., 1997), may be involved in the reported potentiation of 

opioid analgesia by off-label agents. For example, systemic coadministration of morphine 

and disulfram, an inhibitor of acetaldehyde dehydrogenase that is typically used to promote 

abstinence in alcohol use disorder, caused an increase in mechanical and thermal withdrawal 

thresholds that was attributed to an increase in MOR activation efficacy by disulfram 

in brain systems that include mPFC (unidentified region), PAG and RVM in male rats 

(de Corde-Skurska et al., 2021). Conversely, blocking MOR signaling in the mPFC has 

pain facilitating effects. Intra-mPFC (PL) delivery of a MOR antagonist (naloxonazine) 

increased the intensity of both the first and second phases of formalin-induced orofacial 

pain behaviors in male rats; this blockade was strong enough to prevent the antinociception 

by a non-steroidal anti-inflammatory drug (diclofenac) (Tamaddonfard et al., 2020). MOR 

signaling in PL and descending pathways may also be involved in placebo analgesia. The PL 

is one of the brain regions activated during placebo analgesia induced by a gabapentin-based 

conditioning approach in male rats in the spinal nerve ligation (SNL) model of neuropathic 

pain (Zeng et al., 2018). Microinfusion of a MOR antagonist (naloxone) into PL blocked 

placebo analgesia in the SNL model and disrupted functional coupling between PL and 

PAG (Zeng et al., 2018). Chemogenetic and optogenetic inhibition of mPFC (possibly IL) 

CRF neurons that project to the NAc or a CRF receptor 1 antagonist in the NAc were able 

to block morphine conditioned place preference (CPP) in neuropathic (chronic constriction 

injury, CCI) but not sham male mice (Kai et al., 2018), implicating an mPFC to NAc 

pathway in neuropathic pain-related MOR signaling.
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On the input side, the firing rate of dopaminergic VTA neurons projecting to the mPFC 

(region not specified but possibly IL) decreased in brain slices from male mice with chronic 

mild stress (CMS)-induced depression (Liu et al., 2018). Intra-VTA morphine significantly 

increased the firing rate of VTA projection neurons recorded in anesthetized CMS, but 

not stress-naïve, mice and relieved depressive-like behaviors in the tail suspension, social 

interaction and sucrose preference tests but increased thermal nociception (decreased 

paw withdrawal latency) (Liu et al., 2018). Morphine-induced nociceptive responses 

were prevented by blocking brain-derived neurotrophic factor (BDNF) in VTA but not 

mPFC, suggesting that MOR in the mesolimbic reward circuitry can differentially regulate 

depression and nociceptive behaviors and related mPFC functions.

There is evidence to implicate hereditary factors, non-neuronal mechanisms, and sexual 

dimorphism in the role of mPFC in MOR signaling. Parental morphine exposure in male 

and female rats prior to mating resulted in reduced spontaneous activity of unidentified 

PL neurons and in decreased thermal (hot plate test) and visceral (acetic acid writhing 

test) nociception and decreased nocifensive behavior in the first and second phase of the 

formalin test in male offspring of morphine-abstinent rats compared to those from naïve 

parents (Ashabi et al., 2018). Significantly enhanced antinociceptive effects of systemic 

morphine and upregulation of MOR signaling in NAc but not mPFC were also found 

in the offspring of morphine-abstinent rats (Ashabi et al., 2018). The data implicate 

hereditary factors in altered mPFC function in pain-related MOR signaling. Proteomic 

analysis suggests that glial cells may also be linked to MOR signaling in the PL mPFC. 

In the PL of male rats with mechanical and thermal hyperalgesia induced by a MOR 

agonist (fentanyl), downregulation of five types of myelin-related proteins was found, and 

blockade of oligodendrocyte apoptosis with a caspase 3 inhibitor (z-DEVD-fmk) in the 

PL mPFC prevented fentanyl-induced hyperalgesia (Wang et al., 2022). Considering that 

oligodendrocytes (and other glia) express MOR (Stiene-Martin et al., 2001), it is reasonable 

to conclude that PL glial cells may contribute to MOR-related signaling. Finally, it is 

important to note that MOR signaling mechanisms in the mPFC may differ with regard to 

sex, leading to potential sexual dimorphisms in pain processing in this region. Intravenous 

self-administration with a potent MOR agonist (remifentanil) led to sex-specific differences 

in the excitability and synaptic modulation of PL layer 5/6 pyramidal neurons recorded 

in brain slices. Whereas remifentanil treatment caused a long-lasting hypoexcitable state 

in males and females, decreased excitability occurred on a faster timeline in females 

while hypoexcitability was preceded by hyperexcitability in males (Anderson et al., 2021). 

Different synaptic mechanisms were involved in hypoexcitability of PL pyramidal cells in 

males and females. Decreased excitatory synaptic transmission mediated by AMPA-type 

glutamate receptors was recorded in females, whereas the hyper- and hypoactive states 

in males were driven by decreased and increased GABAB receptor signaling, respectively 

(Anderson et al., 2021). No significant effects on neuronal excitability were observed in 

IL pyramidal cells, suggesting region-specific differences in MOR signaling (Anderson et 

al., 2021). Chemogenetic activation of PL pyramidal cells mitigated remifentanil-induced 

cognitive deficits in an extradimensional shift test and restored neuronal excitability and 

synaptic regulation in PL pyramidal neurons (Anderson et al., 2021). Together, the data may 

suggest sex-specific MOR-related pain modulatory mechanisms involving mPFC, explain 

Neugebauer et al. Page 11

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previously reported sex differences in response to opioid-related pain management (Huhn 

et al., 2018, 2019), and provide support for tailoring opioid-related therapeutic strategies to 

biological sex in chronic pain patients.

2.1.1.2 KOR: KOR signaling in the mPFC involves presynaptic inhibition of 

glutamatergic transmission including onto NMDA receptor-expressing neurons. In the PL 

mPFC (laminae V and VI of the cingulate cortex, area 3) of male rats, KORs were found 

to be primarily localized on axons and axon terminals, with a small proportion associated 

with dendritic shafts and glial processes, and KOR-labeled axons contacted NMDA NR1 

subunit-immunoreactive postsynaptic targets (Svingos and Colago, 2002). KOR activation 

with a selective agonist (U69,593) decreased frequency, but not amplitude, of glutamatergic 

miniature excitatory postsynaptic potentials (mEPSP) in layer V pyramidal neurons (likely 

PL and ACC) recorded in brain slices from male rats (Tejeda et al., 2013). However, 

this modulation may be input-specific as systemic U69,593 decreased monosynaptic field 

excitatory postsynaptic potentials (fEPSPs) in mPFC neurons recorded in anesthetized 

male rats when evoked by BLA but not hippocampal (fornix) stimulation (Tejeda et al., 

2015). Intra-mPFC application of U69,593 reduced both electrical and optogenetic BLA-

evoked glutamatergic fEPSPs in mPFC neurons, an effect that was blocked by systemic 

administration of a KOR antagonist (nor-binaltorphimine, nor-BNI) (Tejeda et al., 2015). 

Intra-mPFC (PL/ACC) administration of U69,593 also decreased extracellular dopamine 

levels in male rats, whereas administration of nor-BNI increased extracellular dopamine 

levels; these effects were not observed in mice line lacking KOR in dopaminergic neurons, 

suggesting an action of KOR on mesocortical dopaminergic terminals (Tejeda et al., 2013). 

Therefore, KOR signaling in the mPFC may regulate glutamatergic and dopaminergic inputs 

including through a tonically active system, though constitutive mPFC KOR activity may 

decline with age (Sirohi and Walker, 2015).

In pain conditions, alterations in mPFC KOR signaling may influence neuroplasticity 

related to opioid reward. mRNA levels of dynorphin, an endogenous ligand for KOR, were 

increased in the mPFC (subregion not specified) of male mice with morphine conditioning 

and a hindpaw incision pain model compared to that of sham mice, while no differences 

were present after recovery from incisional injury (Nwaneshiudu et al., 2020). In this 

study, blockade of KOR with systemic nor-BNI also led to an enhancement of morphine 

conditioning behavior in injured animals; together, this may suggest a potential protective 

role for mPFC KOR activation in acute pain when primed for morphine reward. U69,593-

stimulated [35S]GTPγS binding increased in the mPFC (subregions not differentiated) in 

brain slices from male rats 7 days after CCI induction; however, no significant differences 

in binding were found between 30 day-CCI and sham animals (Llorca-Torralba et al., 2020), 

suggesting that KOR-related neuroplasticity in the mPFC may play a more critical role 

at the acute stage of neuropathic pain. Anxiolytic effects of mPFC KOR blockade have 

also been reported, as intra-mPFC (likely PL) infusion of nor-BNI in naïve male mice 

increased time spent in the center of the open field test (OFT), whereas systemic nor-BNI 

administration did not have a significant effect on anxiety-like behavior (Tejeda et al., 2015). 

Intra-mPFC nor-BNI microinjection in male rats also blocked conditioned place aversion 

(CPA) produced by systemic U69,593 (Tejeda et al., 2013). Since pain has an averse-
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affective component and is often comorbid with anxiety, shared neurobiological mechanisms 

in the mPFC may contribute to pain modulation and emotional network neuroplasticity 

(Vachon-Presseau et al., 2016), which could be regulated by blockade of mPFC KOR 

signaling. However, the role of KOR signaling in mPFC subregions in pain-related behaviors 

and neuroplasticity remains to be determined, and data suggest rather complex KOR actions 

in the mPFC related to pain, anxiety, and brain reward processing.

As with MOR, potential sexual dimorphism has been reported for KOR-related nociceptive 

mechanisms in the mPFC. In a mouse model of Fabry disease, a condition commonly 

associated with painful neuropathy (Burand and Stucky, 2021), downregulation of 

prodynorphin and KOR mRNA levels in the mPFC (region not specified) of males but 

upregulation in females was measured, and males, but not females, displayed mechanical 

and thermal hypersensitivity in the plantar aesthesiometer and Hargreaves tests, respectively, 

compared to wild type (Rullo et al., 2021). Interestingly, the same trend was not seen at 

the protein level – females displayed an increase but males showed no difference in mPFC 

KOR protein levels in the disease model compared to wild type (Rullo et al., 2021). The data 

suggest that early dysregulation of the dynorphinergic KOR system may contribute to the 

nociceptive symptoms of Fabry disease, possibly in a sex-dependent way. Overall, it is not 

clear if KOR signaling in mPFC is protective or harmful with regard to pain and pain-related 

neuroplasticity.

2.1.1.3 DOR: The DOR system has been implicated in sensory and affective pain 

regulation (Cahill et al., 2022; Gavériaux-Ruff and Kieffer, 2011; Nadal et al., 2006) but 

pain-related neuronal and behavioral effects of DOR signaling in the mPFC remain to be 

determined.

Like MOR signaling, DOR-related mechanisms in the mPFC may affect interneuron 

plasticity. Following DOR downregulation with shRNA, SOM but not PV mPFC (likely 

PL) interneurons demonstrated decreased total dendrite length and dendritic complexity; 

however, DOR but not MOR knockdown impaired dendritic morphology in SOM 

interneurons following a single morphine injection in male mice (Wang et al., 2019). These 

results suggest that while both MOR and DOR are critically involved in mPFC dendrite 

development, the endogenous signaling mechanisms may have differential roles regarding 

dendritic remodeling in response to exogenous activation. DORs in the mPFC may also have 

associations with MORs with regard to dopaminergic transmission, as one study reported 

that concomitant activation of DOR (with [D-Pen2,D-Pen5]enkephalin, DPDPE) and MOR 

(DAMGO), but not KOR (U50,488), in the male mouse mPFC enhanced dopamine D1-like 

receptor signaling in brain slices that included IL, PL and ACC, and a large percentage 

of dopamine D1 receptor positive cells expressed DOR and/or MOR immunoreactivity 

in neuronal cell bodies and processes of mPFC primary cell cultures with substantial co-

localization of DORs and MORs (Olianas et al., 2012). As these two receptors have been 

shown to form heterodimers with novel functional properties (George et al., 2000), potential 

DOR-MOR interactions may influence opioid-related neurotransmission in the mPFC.

Little has been investigated with regard to DOR signal transduction in the mPFC under 

pain conditions. A DOR agonist (DPDPE) decreased [35S]GTPγS binding significantly 
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in the mPFC (subregions not differentiated) in brain slices from male rats 30 days after 

CCI induction relative to 7 days after induction after a non-significant increase at 7 days 

compared to sham controls (Llorca-Torralba et al., 2020); this may suggest that DOR-related 

activity changes in the mPFC are associated with early rather than chronic stages of the 

neuropathic condition. Neuronal effects of DOR signaling in the mPFC have been studied 

under normal conditions but not in pain models. In brain slices from male mice, a DOR 

agonist (KNT-127) significantly decreased the frequency, but not amplitude, rise time, 

or decay time, of spontaneous and miniature excitatory postsynaptic currents (EPSCs) 

in PL pyramidal cells, and this effect was blocked by a DOR antagonist (naltrindole, 

NTI) (Yamada et al., 2021). KNT-127 also significantly increased the paired-pulse ratio, 

suggesting that DOR activation decreases glutamate transmission through a presynaptic 

site of action. KNT-127 decreased excitability of PL pyramidal neurons in the PL mPFC 

measured as the reduction in the number of action potentials and firing threshold (Yamada 

et al., 2021). Administration of KNT-127 into the PL mPFC of male mice decreased anxiety-

like behavior (OFT) and glutamate, but not GABA, release induced by a sodium channel 

activator (veratrine) (Saitoh et al., 2018). KNT-127 administration into PL mPFC also 

decreased veratrine-induced c-Fos expression in the amygdala (LA, BLA and CeA) (Saitoh 

et al., 2018). KNT-127 alone had no effect. Inhibitory effects of DOR activation in the PL 

mPFC may therefore contribute to pain modulation but this remains to be determined.

2.1.2 Anterior cingulate cortex (ACC)—Endogenous opioid neurotransmission in the 

ACC plays an important role in pain modulation. The ACC has one of the highest levels of 

opiate ligand binding in the CNS, and MOR and DOR, but less so KOR, are localized in the 

ACC (Mansour et al., 1987; Tempel and Zukin, 1987; Vogt et al., 2001; Zubieta et al., 2001). 

Neuroimaging (PET) studies in humans found evidence for increased release of endogenous 

opioids in the ACC during acute experimental pain in healthy subjects (muscle pain induced 

by hypertonic saline (Scott et al., 2007) and heat pain (Sprenger et al., 2006)) and in patients 

with peripheral or central neuropathic pain (Maarrawi et al., 2007), fibromyalgia (Harris 

et al., 2007) and migraine during a spontaneous migraine attack (DaSilva et al., 2014), 

supporting a role of endogenous opioid function in the modulation of pain. Preclinical 

studies also found that release of endogenous opioids in the rodent ACC is necessary for the 

relief of the aversiveness of ongoing pain (Navratilova et al., 2015a).

2.1.2.1 MOR: MOR is expressed at high levels in superficial and deep layers of the ACC 

though differences are noted between studies (Mansour et al., 1987; Tempel and Zukin, 

1987; Vogt et al., 2001; Wang et al., 2018; Zubieta et al., 2001). A greater number of 

functional DAMGO receptor sites was reported on axons than on somata and proximal 

dendrites (Vogt et al., 2001). Converging evidence from clinical PET studies measuring 

binding of MOR radiotracers suggests increased opioid release and MOR activation in 

the ACC of healthy subjects undergoing sustained experimental muscle pain (Scott et al., 

2007; Zubieta et al., 2001) and in patients diagnosed with a variety of pain conditions 

such as fibromyalgia (Harris et al., 2007; Schrepf et al., 2016), migraine (DaSilva et al., 

2014), and post-stroke pain (Willoch et al., 2004). Activation of the MOR system on the 

ACC was associated with reductions in affective ratings of the pain experience (McGill 

Pain Questionnaire affective scores) (Zubieta et al., 2001). Neuroimaging PET studies also 
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found that increased ACC activity (regional blood flow) correlated with MOR-mediated 

antinociceptive effects of exogenous opioids (remifentanil) and placebo analgesia during 

noxious heat stimulation in normal subjects (Petrovic et al., 2002; Wager et al., 2007).

Evidence from preclinical studies also implicates endogenous opioids and MOR signaling 

in the ACC in affective rather than sensory pain relief (Navratilova et al., 2015a). In male 

rats with postsurgical pain (incision model) or neuropathic pain (SNL model), blockade of 

ACC opioid signaling with naloxone or ablation of ACC MOR expressing neurons with 

the cytotoxic ribosome inhibitor dermorphin-saporin inhibited conditioned place preference 

(CPP) and NAc dopamine release resulting from non-opioid pain-relieving treatments 

such as peripheral nerve block or intrathecal administration of an α2-adrenergic agonist 

(clonidine), but had no effect on mechanical and thermal hypersensitivity (Navratilova et 

al., 2015b). Thus, ACC opioid and MOR signaling is required for pain relief by non-opioid 

treatments through the activation of reward circuits. MOR blockade with β-funaltrexamine 

(β-FNA) in the ACC also prevented CPP and NAc dopamine release induced by morphine 

administration into the amygdala (CeA) in neuropathic male rats (SNL model). Therefore, 

endogenous MOR signaling in the ACC is involved in affective pain relief by MOR 

activation in the CeA through a functional connection from CeA to ACC (Navratilova et 

al., 2020).

Injection of morphine into the ACC decreased aversive but not sensory pain behaviors in 

models of neuropathic (SNL model) and postsurgical pain (Gomtsian et al., 2018; LaGraize 

et al., 2006; Navratilova et al., 2015a; Navratilova et al., 2015b). Morphine in the ACC 

decreased the aversiveness of noxious cutaneous stimulation in male SNL rats measured 

as escape/avoidance behavior in the light-dark test (LaGraize et al., 2006) and produced 

CPP and dopamine release in the NAc in male rats with postinjury and SNL pain but 

not in uninjured rats (Navratilova et al., 2015b). ACC morphine-induced CPP in SNL rats 

was blocked by pretreatment of NAc with a dopamine receptor blocker (α-flupenthixol). 

Morphine in the ACC did not affect mechanical (von Frey or Randall-Selitto) or thermal 

(Hargreaves or hot plate) hypersensitivity (Gomtsian et al., 2018; LaGraize et al., 2006; 

Navratilova et al., 2015a; Navratilova et al., 2015b). However, mechanical (Randall-Selitto) 

and thermal (hot plate) antinociceptive effects of ACC morphine have also been reported; 

they were blocked by β-FNA and were decreased in a neuropathic pain model (CCI) 

compared to normal male rats, possibly due to the downregulation of MOR expression 

measured at the mRNA level (Wang et al., 2020). Still, evidence suggests that MOR 

signaling in the ACC relieves predominantly the aversiveness of pain and activates reward/

motivation circuits.

At the cellular level, systemic administration of morphine inhibited laser-heat stimulus 

evoked activity of ACC neurons in awake male and female rats measured with single-unit 

multi-array recordings (Kuo and Yen, 2005; Wang et al., 2009). In brain slices from male 

rats with complete Freund’s adjuvant (CFA)-induced inflammatory pain, a MOR agonist 

(DAMGO) decreased evoked glutamatergic transmission in layer II/III neurons, and this 

effect was blocked by a MOR antagonist (CTAP). The effect was due to a presynaptic action 

because DAMGO increased paired-pulse ratio and decreased frequency, but not amplitude, 

of mEPSCs (Zheng, 2010).
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2.1.2.2 KOR/DOR: KOR expression in ACC is more uniformly distributed across 

different layers but at a lower level than MOR whereas DOR expression in ACC is 

strong in superficial and deep layers (Mansour et al., 1987; Tempel and Zukin, 1987) 

though segregation of DOR and MOR neurons in different ACC layers of the ACC 

has been reported with DOR expression prominent in layer II/III and MOR in layer V 

(Wang et al., 2018). PET studies in humans showed that KOR binding is greater in 

men than women in multiple brain regions, including ACC (Vijay et al., 2016). There 

is also evidence for lateralization of the endogenous opioid system in the human ACC. 

In radioimmunoassays, levels of opioid peptides Leu-enkephalin-Arg (LER, DOR/MOR 

agonist) and Met-enkephalin-Arg-Phe (MEAP, KOR/MOR agonist) were lateralized to 

the left and right ACC, respectively (Watanabe et al., 2015), which may be linked to 

the lateralization of higher functions and their modulation, such as positive and negative 

emotions and pain (Brügger et al., 2011; Kim et al., 2012; Knoll and Carlezon, 2010; 

Shippenberg, 2009; Symonds et al., 2006).

Pain-related functions and cellular actions of KOR signaling in the ACC are largely 

unknown. Administration of a KOR agonist (U69,593) into the ACC of naïve male mice 

and rats by microdialysis decreased dopamine, glutamate and GABA levels and induce 

conditioned place aversion whereas a KOR antagonist (nor-BNI) enhanced dopamine release 

and blocked U69,593-mediated conditioned place aversion (Tejeda et al., 2013). Consistent 

with presynaptic KOR actions, U69,593 decreased the mEPSP frequency, but not amplitude, 

in ACC layer V pyramidal cells in brain slices (Tejeda et al., 2013).

Some evidence suggests that DOR signaling in the ACC has inhibitory effects on neuronal 

activity and behaviors in pain models. In neuropathic male mice with sciatic nerve ligation, 

DOR dysfunction measured by agonist-induced G protein activation and astrogliosis due 

to impaired DOR-mediated astrocyte differentiation was found in the ACC, and these 

changes were linked to anxiety-like behaviors (EPM and light-dark test) (Narita et al., 

2006b). Administration of a DOR agonist ([D-Ala2, D-Leu5]-enkephalin, DADLE) into 

ACC reversed CFA-induced conditioned place avoidance, but not thermal hypersensitivity, 

in male rats and decreased phosphorylation of NMDA receptor subunits GluN1, GluN2A, 

GluN2B, NMDA, but not AMPA, receptor-mediated currents and discharge frequency of 

ACC pyramidal cells in rat brain slices, suggesting that DOR activation alleviates affective 

pain by decreasing activity of ACC pyramidal cells (Ma et al., 2022). In brain slices from 

normal male and female mice, DPDPE inhibited local inhibitory transmission from PV 

interneurons to ACC layer V pyramidal cells through an action on DOR on PV interneurons 

without affecting excitatory inputs from medial thalamus, and this disinhibition resulted in 

increased excitability (action potential firing) of ACC pyramidal cells. MOR activation with 

DAMGO decreased excitatory thalamic inputs and ACC pyramidal excitability (Birdsong et 

al., 2019). Neuronal mechanisms of DOR signaling in the ACC and potential changes and 

behavioral consequences in pain conditions and pain-related neuroplasticity remain to be 

determined.
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2.2 Amygdala

The amygdala plays an important role in opioid analgesia manning (Bagley and 

Ingram, 2020; Helmstetter et al., 1998; Manning, 1998; Manning and Mayer, 1995a, b; 

McGaraughty et al., 2004; McGaraughty and Heinricher, 2002). MOR, DOR and KOR that 

are all expressed at various levels in the amygdala but may have different functions. MOR 

signaling in the amygdala is linked to analgesia, reward and the regulation of fear, anxiety 

and related behaviors (Bagley and Ingram, 2020; Bodnar, 2022; Tershner and Helmstetter, 

2000; Wilson and Junor, 2008; Zhang et al., 2013). Amygdala DOR is also involved in 

anxiolysis (Klenowski et al., 2015). In contrast, amygdala KOR signaling has anxiogenic 

and aversive behavioral effects (Cahill et al., 2014; Limoges et al., 2022).

2.2.1 MOR—MORs are expressed in all nuclei of the amygdala and at high levels in the 

BLA (Mansour et al., 1987) and on ITC cells (Wang et al., 2018; Winters et al., 2017). MOR 

immunoreactivity in the BLA is found on dendritic spines and axon terminals and also in 

Golgi apparatus (Zhang et al., 2015a). MOR can act presynaptically at excitatory synapses 

in CeM neurons (Zhu and Pan, 2005) and CeLC neurons (Kissiwaa et al., 2020) but also 

on terminals of inhibitory synapses in CeL and on postsynaptic sites where there was some 

co-expression with CRF receptors in male mice (Jaferi and Pickel, 2009). Given the opposite 

intracellular signal mechanisms of MOR and CRF-receptors through Gi and Gs proteins, 

respectively, MOR signaling including through endogenous opioids may counterbalance the 

excitatory effects of CRF as has been shown for stress responses in male rats in the locus 

coeruleus (Curtis et al., 2001; Valentino and Van Bockstaele, 2001). In the BLA, MOR 

expression is lower and has been found on pyramidal cells and interneurons as well as on 

excitatory synaptic terminals in male rats, and as a result there could be inhibitory and 

dis-inhibitory effects of MOR on BLA output neurons (Zhang et al., 2015a).

Neuronal effects of MOR signaling in the amygdala have been studied under normal 

conditions but not in pain models. Brain slice electrophysiology showed hyperpolarization 

and decreased input resistance mostly in interneurons in the rat LA with methionine-

enkephalin (ME) or DAMGO (Sugita et al., 1993), and these effects were blocked with 

naloxone and CTOP (Sugita and North, 1993). DAMGO increased spike adaptation in 

rat LA pyramidal neurons by potentiating Kv1.2-mediated voltage-dependent potassium 

currents through the activation of the phospholipase A2-arachidonic acid-lipoxygenases 

signaling pathway (Faber and Sah, 2004). ME or endogenous opioids also produced an 

outward current in male rat ITC cells by activating a potassium conductance, which 

was blocked by a MOR antagonist (CTAP) (Winters et al., 2017). Likewise, DAMGO 

hyperpolarized ITC cells from male mice (Blaesse et al., 2015). DAMGO also inhibited CeL 

and CeM neurons, including those projecting to PB, by inducing postsynaptic potassium 

currents in male rat brain slices (Chieng et al., 2006).

MOR can also regulate excitatory and inhibitory transmission in the amygdala. DAMGO 

decreased excitatory inputs from dorsal midline thalamus to BLA pyramidal cells and CeL 

neurons as well as feedforward excitation of CeM neurons in mice brain slices (Goedecke 

et al., 2019). DAMGO inhibited BLA-evoked excitatory transmission in ITC cells (Winters 

et al., 2017), CeLC neurons (Kissiwaa et al., 2020) and in CeM neurons (Zhu and Pan, 
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2005), and also PB-evoked excitatory transmission in CeLC neurons (Kissiwaa et al., 2020) 

through a presynaptic action in male rat brain slices. DAMGO induced long-term depression 

in dorsomedial striatum neurons by activating MOR on excitatory inputs from BLA in 

male mice brain slices (Muñoz et al., 2020). In male rat brain slices, DAMGO decreased 

inhibitory GABAergic, but not excitatory glutamatergic, transmission (mIPSCs and evoked 

IPSCs) in BLA neurons projecting to the CeA through a presynaptic action that involved 

Kv1.1 and Kv1.2 potassium channels, and this effect was blocked by a MOR antagonist 

(CTAP) (Finnegan et al., 2006). DAMGO also decreased GABAergic transmission between 

ITC and CeM neurons by hyperpolarizing ITC cells in male mouse brain slices without 

affecting excitatory transmission from BLA to ITC or CeM (Blaesse et al. 2015), 

although another study in male rat brain slices reported presynaptic inhibition of excitatory 

transmission from BLA to ITC with DAMGO that was blocked by CTAP (Winters et 

al., 2017). DAMGO or morphine decreased evoked GABAergic transmission (IPSPs) in 

CeA neurons in male rat brain slices through a presynaptic mechanism without affecting 

membrane properties (Bajo et al., 2011). A MOR antagonist (CTOP) increased inhibitory 

transmission suggesting tonic activation of MOR. The different pre- and postsynaptic MOR 

actions on excitatory and inhibitory elements of the complex amygdala circuitry do not yield 

a clear picture yet and remain to be explored in pain conditions.

This is important because of evidence for decreased MOR signaling measured as 

DAMGO-stimulated [35S]GTPγS binding to amygdala cell membranes in mouse models 

of inflammatory (CFA) and neuropathic (sciatic nerve ligation) pain in males (Narita 

et al., 2006a). MOR expression in the amygdala was downregulated in males in a rat 

surgical (incision) pain model combined with perioperative stress through microRNA 

(miRNA-339-5p)-mediated posttranscriptional regulation (Zhu et al., 2022). In addition to 

pain-related changes in MOR signaling there is also evidence for MOR-induced amygdala 

neuroplasticity. Prenatal (days 11–18 post-conception) systemic morphine application 

decreased and increased MOR density expression in the BLA and CeA, respectively, in male 

but not female rats (Vathy et al., 2003). Systemic morphine treatment of newborn rats on 

postnatal days 1–4, but not after day 22, decreased MOR binding in the BLA (Tempel, 

1991). Intermittent systemic morphine treatment induced FosB/DeltaFosB transcription 

factor expression in limbic brain regions of male mice, including BLA and CeA (Kaplan 

et al., 2011). Chronic escalating, but not single, morphine application in male mice 

significantly altered expression of genes involved in neuroplasticity, including neurogenesis, 

cell growth, and signaling proteins such as G protein-coupled receptors, scaffolding and 

signaling proteins, and neuropeptides (Befort et al., 2008).

MOR signaling in the amygdala is antinociceptive and inhibits averse-affective behaviors 

through a mechanism that involves at least in part descending modulation of the PAG-RVM 

circuitry. Morphine injections into BLA decreased thermal nociception (increased tail-flick 

latency) (Helmstetter et al., 1995; McGaraughty and Heinricher, 2002) and increased activity 

of RVM OFF-cells while decreasing RVM-ON cell activity in naïve male rats (McGaraughty 

and Heinricher, 2002). The antinociceptive effects (tail-flick test) of DAMGO injected 

into BLA of male rats were decreased by lidocaine injection into PAG or RVM and 

blocked by lesion of PAG or RVM (Helmstetter and Tershner, 1994; Helmstetter et al., 

1998). Morphine or β-endorphin injected into BLA or CeA increased tail-flick latencies 
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and shock-evoked jump thresholds in male rats and this effect was blocked by blocking 

opioid receptors in the PAG (Pavlovic et al., 1996). MOR activation was more effective on 

the jump test than tail-flick test, suggesting modulation of the affective pain component, 

which is also supported by a study showing that DAMGO injection into CeA inhibited 

conditioned place aversion induced in male rats by an inflammatory pain condition (CFA) 

but did not affect heat hyperalgesia (paw withdrawal latency) in this pain model (Zhang et 

al., 2013). Interestingly, administration of morphine into right but not left CeA produced 

conditioned place preference (CPP) in neuropathic male rats (SNL model) without affecting 

mechanical hypersensitivity (Navratilova et al., 2020), suggesting lateralized modulation 

consistent with pain-related neuroplasticity in the right but not left CeA (Allen et al., 2020; 

Neugebauer, 2020). Bilateral lesion of the CeA, but not BLA, abolished systemic morphine-

induced antinociception in the tail-flick and formalin tests in male rats (Manning and 

Mayer, 1995a, b), suggesting that the CeA is required for morphine-induced antinociception 

including the suppression of spinally mediated nociceptive reflexes. Conversely, systemic 

naltrexone increased Fos expression in the CeA (especially CeLC) in naïve mice and the 

effect was greater in a model of latent sensitization, and CTAP injection into the CeA 

precipitated mechanical hypersensitivity in male and female mice (Cooper et al., 2022). 

Chemogenetic silencing of MOR expressing PB neurons that project to CeA decreased 

nociceptive behaviors in male and female mice in the formalin test, jumps in the hotplate 

test, and anxiety-like behaviors in the EPM, suggesting that MOR on excitatory nociceptive 

inputs could modulate affective pain behaviors through effects on CeA (Liu et al., 2022).

In healthy humans, a PET study using a MOR radiotracer ([11C] carfentanil) found 

that sustained masseter muscle pain induced the release of endogenous opioids in the 

amygdala to activate MOR, which was associated with decreased sensory and affective 

pain ratings (Zubieta et al., 2001). Using a similar approach, placebo analgesia was 

shown to increase heat pain-induced MOR activation in limbic regions including the right 

amygdala whereas placebo-induced anticipatory opioid decrease was detected in the left 

amygdala (Wager et al., 2007). Placebo analgesia involving MOR activation may be linked 

to neuroimmune mechanisms. Using [11C] carfentanil, a PET study in healthy humans 

subjected to experimental masseter muscle pain found that placebo analgesia-induced MOR 

activation in the left amygdala and NAc correlated with decreased plasma levels of a 

pro-inflammatory cytokine (IL-18) (Prossin et al., 2022).

2.2.2 KOR—KOR expressing cells are located in CeA while little expression is observed 

in BLA or ITC (Fallon and Leslie, 1986; Gomes et al., 2020; Hurd, 1996; Le Merrer et 

al., 2009; Mansour et al., 1996; Marchant et al., 2007; Peckys and Landwehrmeyer, 1999). 

KORs expression in CeA can be pre- and post-synaptic (Chieng et al., 2006; Gilpin et 

al., 2014). KOR activation with U69,593 increased or decreased GABAergic transmission 

(spontaneous IPSCs) in different sets of BLA neurons in brain slices from adolescent 

(30–40 days) but not adult (>60 days) male rats through a presynaptic action but had 

no effect on excitatory transmission (Przybysz et al., 2017; Varlinskaya et al., 2020). 

This effect was blocked in the presence of TTX suggesting a network action of KOR 

signaling. Another KOR agonist (U50,488H) decreased excitatory synaptic transmission and 

blocked long-term potentiation (field potentials) evoked in BLA neurons by stimulation 
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of LA afferents in male mouse brain slices (Huge et al., 2009). In CeM neurons from 

male rats, U69,593 decreased inhibitory transmission presynaptically (Gilpin et al., 2014; 

Przybysz et al., 2017), and this effect was not age-dependent (Przybysz et al., 2017). 

Similarly, U69,593 increased excitability of CRF neurons in the CeL in male rat brain slices 

through synaptic disinhibition, i.e., inhibition of feedforward inhibition driven by optical 

activation of PB input (Hein et al., 2021). U69,593 had no effect on PB-evoked excitatory 

synaptic transmission on CeA-CRF neurons (Hein et al., 2021) and on unidentified CeLC 

neurons (Kissiwaa et al., 2020). Single-unit recordings in anesthetized transgenic male 

rats showed that stereotaxic administration of U69,593 increased the responsiveness of 

CeA neurons to noxious mechanical stimuli and this effect was reversed by optogenetic 

silencing of CRF neurons in the CeA (Ji and Neugebauer, 2020). As a consequence of CeA 

neuronal activation by U69,593, activity of spinal dorsal horn neurons to innocuous and 

noxious mechanical stimuli increased (Ji and Neugebauer, 2020), suggesting that descending 

facilitation from CeA-CRF neurons is under the control of KOR signaling.

In models of neuropathic (SNL) (Navratilova et al., 2019) or functional (morphine priming 

followed by a stressor) (Yakhnitsa et al., 2022) pain, a KOR antagonist (nor-BNI) decreased 

synaptically evoked spiking of CeL neurons and excitability of CeL-CRF neurons in rat 

brain slices from SNL but not control male rats. This effect was mediated through a 

presynaptic action to increase feedforward inhibition driven by optogenetic and electrical 

stimulation of PB input. There was no effect on excitatory synaptic transmission. The 

data suggest tonic KOR-mediated disinhibition of CeA (including CRF) neurons in pain 

conditions. In anesthetized male rats, nor-BNI administered into CeA decreased ongoing 

activity and responses of CeA neurons to peripheral mechanical stimulation (Yakhnitsa et 

al., 2022).

Administration of U69,593 into the right CeA in naïve male rats increased vocalizations 

to noxious stimuli, and induced anxiety-like behaviors in the open field test and avoidance 

in the conditioned place “preference” test, but had no effect on mechanical thresholds 

in the paw pressure test (Hein et al., 2021). CRF neurons were involved in the KOR 

mediated behavioral effects because they were blocked by optogenetic silencing of CeA-

CRF neurons. In neuropathic male rats (SNL model), administration of nor-BNI into the 

right CeA eliminated aversiveness and therefore blocked conditioned place preference 

to intravenous gabapentin but had no effect on mechanosensitivity in the von Frey test 

(Navratilova et al., 2019). Nor-BNI administered into right CeA also decreased vocalizations 

evoked by noxious stimuli and anxiety-like behavior in the elevated plus maze in males 

in a rat functional pain model (morphine priming plus stressor) but had mixed effects on 

mechanical hypersensitivity, showing inhibitory effects in the von Frey test but not paw 

pressure test (Yakhnitsa et al., 2022). Nor-BNI administration into the right but not left CeA 

prevented mechanical hypersensitivity (von Frey test) in males in an injury-free rat model of 

medication overuse (sumatriptan priming with stressor) (Xie et al., 2017) and also decreased 

mechanical hypersensitivity (von Frey test) in males in a rat model of trigeminal neuropathic 

pain (infraorbital CCI) but had no significant effect on anxiety-like behavior (elevated plus 

maze) (Turnes et al., 2022). The role and mechanisms of KOR signaling in the amygdala in 

sensory aspects of pain remain to be determined.
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Nor-BNI administration into the right but not left CeA of male rats restored impaired diffuse 

noxious inhibitory controls (DNIC) induced by capsaicin injected into the forepaw as a 

conditioning stimulus in models of neuropathic (SNL) (Phelps et al., 2019) and functional 

(morphine priming with subsequent stressor) pain where dynorphin A levels were increased 

(Nation et al., 2018). Outcome measures for DNIC modulation included mechanosensitivity 

(paw pressure test) and spinal nociceptive processing (responses of dorsal horn neurons to 

mechanical stimuli).

There is evidence for pain-related changes in KOR signaling in the amygdala. In males 

in the rat model of medication overuse (sumatriptan priming with stressor), stress-evoked 

increases of dynorphin levels and phosphorylation of KOR were detected in both the left and 

right CeA (Xie et al., 2017). Phosphorylation could involve MAP kinase activation because 

of the inhibitory effects of a MAP kinase inhibitor (U0126) injected into the CeA (Xie et al., 

2017), and increased dynorphin release is likely downstream of CRF activation (Bruchas et 

al., 2009). In a transgenic mouse model of Fabry disease, male but not female mice showed 

mechanical (plantar aesthesiometer) and thermal (Hargreaves test) hypersensitivity and there 

was a decrease of prodynorphin mRNA levels in the amygdala of males but an increase in 

females, suggesting sex-specific adaptation to pain (Rullo et al., 2021). In a mouse model 

of inflammatory pain (CFA), a significant increase of [35S]GTPγS binding to amygdala 

cell membranes stimulated by a KOR agonist (ICI199,441) was found in males (Narita et 

al., 2006a). Increased KOR signaling and activation found in different pain models and 

inhibitory effects of KOR blockade in the amygdala point to the amygdala KOR system as 

an important pain mechanism and potentially useful target.

2.2.3 DOR—DOR expression is high in many brain areas including the amygdala 

(Mansour et al., 1987; Peckys and Landwehrmeyer, 1999). DOR neurons are mainly 

found in the BLA (Wang et al., 2018) whereas DOR expression in the CeA is mostly 

on axon terminals (Wilson et al., 2002) but has also been identified on dendrites, mainly 

on CRF neurons (Reyes et al., 2017). Neuronal DOR expression is also supported by 

immunohistochemistry and in situ hybridization of enkephalin mRNA in BLA and CeA 

(Zhang and McDonald, 2016). A DOR agonist (ICI174864) or endogenously released 

opioids acting on DOR inhibited glutamatergic transmission from BLA to ITC through 

a presynaptic action in male rats (Winters et al., 2017). A DOR1 agonist (DPDPE), but 

not DOR2 agonist (deltorphin II), inhibited excitatory transmission from BLA and PB to 

CeL neurons through a presynaptic action in male mouse brain slices (Zhou et al., 2021). 

Deltorphin II inhibited excitatory transmission evoked from BLA, but not PB, in a subset 

of CeLC neurons from male rats (Kissiwaa et al., 2020). In males in a mouse model of 

inflammatory pain (CFA), DPDPE decreased the increased excitatory transmission onto CeL 

neurons at 4 days whereas deltorphin II had inhibitory effects on PB-CeL transmission at 

7 days, suggesting a functional switch from D1 to D2 (Zhou et al., 2021). Neither agonist 

had an effect at 21 days. Consistent with deceased DOR function in pain, [35S]GTPγS 

binding to amygdala cell membranes stimulated by a DOR agonist (SNC80) was suppressed 

in mouse models of inflammatory (CFA) and neuropathic (sciatic nerve ligation) pain at 

the 4 week time point, and this was linked to anxiety-like behaviors (light-dark test and 

elevated plus maze) in males in these pain models because injection of a DOR antagonist 
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(naltrindole) had anxiogenic effects (Narita et al., 2006a). On the other hand, administration 

of DPDPE into the CeA had pronociceptive effects (decreasing mechanical thresholds) in 

normal male mice but not in the pain model and had no effect on anxiety-like behaviors 

(open field and elevated plus maze tests) in either condition (Zhou et al., 2021). Deltorphin 

II administration into CeA had no effect on mechanical nociception in either condition but 

had anxiolytic effects in the CFA model (7 days but not 4 days) whereas a DOR2 antagonist 

(naltriben), but not a DOR1 antagonist (BNTX), had anxiogenic effects at that stage (Zhou 

et al., 2021). The data suggest a link of DOR signaling in the amygdala to anxiety-like 

behaviors in pain, but the modulation of pain-related amygdala processing, plasticity and 

behaviors remains to be determined.

2.3 Mesolimbic dopamine system (nucleus accumbens)

Pain relief depends heavily on the reward system (Fields and Margolis, 2015; Leknes and 

Tracey, 2008; Porreca and Navratilova, 2017). Analgesic effects of opioids are strongly 

related to dopamine signaling in the mesolimbic NAc system. Dopaminergic signaling 

and the NAc play an important role in drug addiction and modulation of opioid-induced 

analgesia (Apkarian et al., 2013; Harris and Peng, 2020; Navratilova et al., 2015a). Blockade 

of dopamine D2 receptors in the NAc shell reduced the analgesic efficacy of morphine and 

substance P analogues administered in the ventral tegmental area in experimental male rats 

(Altier and Stewart, 1998). Conversely, dopamine signaling in NAc can be modulated by 

opioids. All opioid receptor subtypes (MOR, DOR and KOR) are expressed in NAc and 

MOR and DOR can colocalize on dendrites of NAc neurons (Gerfen et al., 1990; Meng et 

al., 1993; Meshul and McGinty, 2000; Svingos et al., 1998; Svingos et al., 1999; Svingos 

et al., 1997). There is evidence for differential functions of different NAc opioid receptor 

subtypes in pain processing as described below (2.3.1 and 2.3.2).

2.3.1 MOR and DOR—Opioid signaling in NAc is crucial for dopamine turnover. 

Stimulation of MOR and DOR with agonists in NAc provokes rapid extracellular dopamine 

release in the NAc measured by in vivo microdialysis (Di Chiara and Imperato, 1988; Fusa 

et al., 2005; Hipolito et al., 2008; Saigusa et al., 2017; Spanagel et al., 1992; Yokoo et 

al., 1994). Dopamine increase following activation of MOR and DOR is subregion-specific 

as it was observed in the core but not shell subregion in male rats (Hipolito et al., 2008). 

Administration of agonists for MOR (DAMGO), DOR1 (DPDPE) and DOR2 (DSLET) into 

NAc significantly increased the extracellular levels of dopamine in a dose-related manner 

that was partially naloxone-sensitive. An interaction between two DORs subtypes, DOR1 

and DOR2, and MOR was also suggested. MOR activation engaged DOR1 to activate 

DOR2 and DOR1, but not DOR2, activated MOR causing the rapid increase in extracellular 

dopamine in male rats (Hirose et al., 2005).

Accumulating evidence points to the importance of NAc in opioid-mediated antinociception. 

Intra-NAc activation of MOR with microinjection of morphine induced sensory 

antinociception (Dill and Costa, 1977; Yu and Han, 1990), and the analgesic effects of 

morphine given systemically or into the habenula were reversed by intra-NAc administration 

of an opioid receptor antagonist (naloxone) in male animals (Dill and Costa, 1977; Ma et 

al., 1992), suggesting that habenula and NAc do not act independently in the antinociceptive 
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circuitry. Co-activation, but not individual activation, of MOR and DOR in NAc with 

DAMGO and DPDPE, respectively, produced antinociception measured as attenuation of 

the jaw-opening reflex in male rats (Schmidt et al., 2002). In males in a rat model of 

neuropathic pain (sciatic nerve ligation), intra-NAc administration of morphine markedly 

reduced hypersensitivity to mechanical and thermal stimuli as reflected in the increased 

latency of paw withdrawal reflexes (Bian and Yu, 2015). Interestingly, in males in a mouse 

model of neuropathic pain (CCI), mRNA levels of DOR, but not MOR, markedly increased 

in the ipsilateral NAc, and levels of proenkephalin, a ligand for MOR and DOR, were also 

elevated, suggesting pain-related plasticity in opioid NAc signaling (Wawrzczak-Bargiela et 

al., 2020). Conversely, blocking MOR and DOR in NAc produced pronociceptive effects. 

Either a specific MOR antagonist (CTOP) or a DOR antagonist (naltrindole) injected 

bilaterally into NAc blocked antinociception measured as attenuation of the jaw-opening 

reflex that was induced by intrathecally delivered DAMGO into the lumbar region of male 

rats (Gear and Levine, 2011) or by subdermal capsaicin injection into the plantar surface 

of the male rat paw (Schmidt et al., 2002). Antinociceptive effects of MORs and DORs 

can be attributed to dopamine receptor activation in NAc. Subdermal capsaicin evoked 

heterosegmental pain-induced antinociception in male rats that was reduced by bilateral 

intra-NAc pretreatment with either naloxone or a dopamine receptor antagonist (flupentixol) 

(Gear et al., 1999).

Pain, particularly chronic pain, is associated with negative affective states such as anxiety 

and depression. Activation of MOR and DOR in NAc with a high affinity agonist (UFP-512) 

administered into NAc of naïve male rats produced antidepressant-like behavior in the 

forced swim test and anxiolytic like behavior in the elevated plus maze and novelty-

induced hypophagia tests (Kabli et al., 2014). Bilateral intra-NAc pretreatment with a 

MOR antagonist (CTOP) and a DOR antagonist (naltrindole) abolished antidepressant- and 

anxiolytic-like effects of UFP-512 (Kabli et al., 2014).

2.3.2 KOR—The mesolimbic KOR system has been implicated in reward, stress and 

nociception. Activation of KOR in NAc by pharmacological agents or by the endogenous 

ligand dynorphin, reduces motivational value of rewards and provokes aversion and 

depression-like behaviors that can be attributed to inhibition of dopamine release. Intra 

NAc microdialysis application of a KOR agonist (U69,593) decreased dopamine efflux in 

the dialysate by 50% whereas administration of a KOR antagonist (nor-BNI) increased 

dopamine levels in male rats dose-dependently (Spanagel et al., 1992). KORs on 

dopaminergic neurons are necessary for the development of aversive behaviors. Transgenic 

male mice with deletion of KOR on dopaminergic neurons did not develop conditioned 

place aversion (CPA) to systemically applied U69,593, and dopamine levels collected 

by microdialysis in the NAc were reduced (Chefer et al., 2013). In male rats in the 

formalin pain model, systemic morphine-induced dopamine release in the microdialysis 

probe in NAc was significantly decreased and this decrease was KOR dependent since 

intra-NAc microinjection of an antibody against dynorphin A restored the morphine effect 

on dopamine levels (Narita et al., 2005).

KOR activation in NAc produces negative affective anxiety- and depression like behaviors. 

A KOR agonist (U50,488) microinjected into NAc had anxiogenic effects in male mice 

Neugebauer et al. Page 23

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in elevated place maze and light-dark tests. Anxiogenic effects were prevented by intra-

NAc pretreatment with a KOR antagonist (nor-BNI) (Wang et al., 2016). Local intra-NAc 

microinjections of U50,488 or dynorphin derivative E-2078 produced strong conditioned 

place aversion in male rats (Bals-Kubik et al., 1993; Wee and Koob, 2010). Dynorphin 

can also be released by optical stimulation of dynorphin-containing neurons in the NAc 

shell region of transgenic male mice (Al-Hasani et al., 2015). Region-specific behavioral 

effects were found and could be observed in the same animal. Photoactivation of dynorphin 

neurons in the ventral NAc shell provoked real-time place aversion whereas photoactivation 

of dorsal NAc shell neurons evoked real-time place preference behavior, while neither 

intervention induced anxiety-like behavior in the open field test (Al-Hasani et al., 2015). 

Optical activation of dynorphin-containing neurons in the ventral NAc of transgenic male 

and female mice also decreased motivation to self-administer sucrose while driving real-time 

place aversion (Massaly et al., 2019). Chemogenetic silencing of dynorphin containing 

neurons in male rats restored motivation for sucrose reward, and intra-NAc administration 

of a low dose of nor-BNI prevented aversive behavior induced by stimulation of dynorphin 

neurons, implicating KOR signaling (Massaly et al., 2019).

In an inflammatory pain condition (intradermal CFA injection) in mice of both sexes, optical 

stimulation of dynorphin neurons in the NAc shell region produced similar real-time place 

aversion as under normal conditions but required a higher dose of nor-BNI to block the 

effect, which suggests enhanced KOR signaling in the NAc in pain conditions by activation 

of dynorphin neurons to increase dynorphin levels and drive negative affective pain 

behaviors (Massaly et al., 2019). Activation of KOR signaling in NAc has pronociceptive 

effects. Antinociception (jaw-opening reflex) induced by subdermal capsaicin injection in 

the rat hind paw was blocked with intra-NAc administration of U69,593 but not nor-BNI. 

U69,593 also blocked the antinociceptive effects of DAMGO and DPDPE in male rats, 

suggesting opposing interactions between KOR and MOR/DOR signaling (Schmidt et al., 

2002). In male mice in neuropathic pain (CCI model), mRNA expression of KOR and DOR 

as well as their endogenous ligands, prodynorphin and proenkephalin, was significantly 

upregulated, suggesting plasticity of the NAc opioidergic system in pain (Wawrzczak-

Bargiela et al., 2020).

KOR signaling in the mesolimbic dopamine circuit has also been implicated in stress 

and depression. A single immobilization stress or forced swim test resulted in increased 

immunoreactivity of dynorphin (A and B) in NAc of male rats (Shirayama et al., 2004). 

Microinjections of nor-BNI into NAc prevented the depressive phenotype in the learned 

helplessness model, and these effects were stronger after infusion into NAc shell rather than 

core (Nestler and Carlezon, 2006; Shirayama et al., 2004).

Little is known about cell type and specific circuitry of opioid receptor subtypes in NAc 

related to pain processing but in slices containing NAc from naïve male and female mice, 

differential regulation by KOR of dopamine D1 and D2 medium spiny neurons (MSNs) has 

been demonstrated. U69,593 inhibited D1 MSNs more strongly than D2 MSNs. Excitatory 

drive from amygdala, but not hippocampus, to NAc was reduced in D1 MSN by KOR 

activation whereas presynaptic KOR inhibited inhibitory inputs (disinhibition) from both 
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amygdala and hippocampus to D2 MSN (Tejeda et al., 2017). The relevance of these actions 

for pain processing in the mesolimbic system remain to be determined.

3. Conclusions

While the cortico-limbic system is an important target for opioid actions in pain modulation, 

reward mechanisms and related functions, the cellular and circuit actions of different 

opioids receptors and behavioral consequences of opioid receptor signaling in different 

elements of the cortico-limbic system are not fully understood. Data discussed in this review 

are summarized in Table 1. The ACC has consistently been implicated in the affective 

component of pain, and endogenous opioid signaling in the ACC plays a critical role in pain 

modulation. High levels of MOR and DOR rather than KOR are found in the ACC. MOR 

activation mitigates averse-affective pain behaviors and similar if not synergistic effects have 

been reported for DOR whereas the role of KOR in this area is largely unknown. The picture 

is less clear for the PL and IL regions of the mPFC in part because of the complexity of 

their functions in pain. The amygdala plays an important role in averse-affective behaviors 

and pain modulation and is rich in opioid receptors and endogenous ligands. MOR and KOR 

serve opposing functions whereas DOR signaling is less clear and appears to undergo a 

change from normal to pain conditions. Data are not quite clear about the role of amygdala 

MOR and KOR signaling in sensory compared to averse-affective pain behaviors. In the 

NAc, a key element of the central reward system, opioid signaling interacts with the 

dopaminergic system in addiction control and analgesia. All opioid receptor subtypes are 

expressed in NAc and MOR and DOR can colocalize on dendrites of NAc neurons. MOR 

and DOR have opposing functions to KOR on dopamine signaling and behaviors in pain 

models.

In conclusion, modulation of pain-related neuroplasticity by opioid signaling in cortico-

limbic circuits and underlying synaptic and cellular mechanisms are largely understudied 

areas, though MOR and DOR signaling in the ACC and KOR signaling in the amygdala 

have been linked to inhibitory and disinhibitory neuronal effects, respectively. Since 

evidence suggests that changes in cortico-limbic circuits contribute to emotional affective 

and cognitive aspects of pain and possibly sensory pain modulation, it is important to 

determine opioid receptor subtype functions and pain-related changes in these brain regions 

to provide the knowledge basis for the development of novel and improved therapeutic 

strategies.
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Figure 1. 
Key effects of MOR, KOR and DOR modulation in different elements of the cortico-

limbic system. ACC, anterior cingulate cortex, IL, infralimbic, mPFC, medial prefrontal 

cortex, NAc, nucleus accumbens, PAG, Periaqueductal gray, PB, Parabrachial nucleus, PL, 

prelimbic, RVM, Rostral ventromedial medulla. Diagram shows main connections between 

cortico-limbic areas and brainstem connections.

Neugebauer et al. Page 43

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Neugebauer et al. Page 44

Ta
b

le
 1

.

B
eh

av
io

ra
l e

ff
ec

ts
 o

f 
M

O
R

, K
O

R
, a

nd
 D

O
R

 d
ru

gs
 in

 p
re

cl
in

ic
al

 s
tu

di
es

R
ec

ep
to

r
D

ru
g 

T
yp

e
C

om
po

un
d

R
ou

te
 o

f 
A

dm
in

is
tr

at
io

n
Su

br
eg

io
n

Sp
ec

ie
s

Se
x

P
ai

n 
M

od
el

B
eh

av
io

ra
l E

ff
ec

t
B

eh
av

io
ra

l T
es

t
R

ef
er

en
ce

s

Sy
st

em
ic

M
O

R
A

go
ni

st

M
or

ph
in

e

i.p
.

-

M
ou

se
M

al
e

Fo
rm

al
in

A
nt

in
oc

ic
ep

tiv
e

L
ic

ki
ng

 a
nd

 b
iti

ng
 

tim
e

Z
en

g 
20

21

i.p
.

M
ou

se
M

al
e

C
C

I
In

cr
ea

se
d 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

K
ai

 2
01

8

O
ra

l
R

at
B

ot
h

N
aï

ve
A

nt
in

oc
ic

ep
tiv

e 
(i

n 
m

al
e 

of
fs

pr
in

g)

H
ot

 p
la

te
 te

st
, 

ac
et

ic
 a

ci
d 

w
ri

th
in

g 
te

st
A

sh
ab

i 2
01

8

Fo
rm

al
in

L
ic

ki
ng

 ti
m

e

s.
c.

M
ou

se
M

al
e

H
in

dp
aw

 
in

ci
si

on
In

cr
ea

se
d 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

N
w

an
es

hi
ud

u 
20

20

i.v
.

R
at

M
al

e
SN

L

A
nt

in
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

N
av

ra
til

ov
a 

20
15

b
In

cr
ea

se
d 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

i.p
.

R
at

M
al

e
SN

L

A
nt

in
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

L
aG

ra
iz

e 
20

06
D

ec
re

as
ed

 
av

oi
da

nc
e 

be
ha

vi
or

L
D

B

i.p
.

R
at

M
al

e

N
M

D
A

-i
nd

uc
ed

 
C

eA
 le

si
on

N
o 

ef
fe

ct

Fo
rm

al
in

 te
st

M
an

ni
ng

 1
99

5a
N

M
D

A
-i

nd
uc

ed
 

B
L

A
 le

si
on

A
nt

in
oc

ic
ep

tiv
e

i.p
.

R
at

M
al

e
N

M
D

A
-i

nd
uc

ed
 

C
eA

 le
si

on
N

o 
ef

fe
ct

Ta
il 

fl
ic

k 
te

st
M

an
ni

ng
 1

99
5b

Fe
nt

an
yl

 (
lo

ng
-

te
rm

)
s.

c.
R

at
M

al
e

N
aï

ve
Pr

on
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

, 
H

ar
gr

ea
ve

s 
te

st
W

an
g 

20
22

R
em

if
en

ta
ni

l 
(l

on
g-

te
rm

)
i.v

.
M

ou
se

Fe
m

al
e

N
aï

ve

In
cr

ea
se

d 
co

gn
iti

ve
 

de
fi

ci
ts

E
D

 s
hi

ft
 ta

sk

A
nd

er
so

n 
20

21

M
al

e
N

o 
ef

fe
ct

Fe
m

al
e

N
aï

ve

In
cr

ea
se

d 
de

pr
es

si
ve

-l
ik

e 
be

ha
vi

or
FS

T

M
al

e
N

o 
ef

fe
ct

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Neugebauer et al. Page 45

R
ec

ep
to

r
D

ru
g 

T
yp

e
C

om
po

un
d

R
ou

te
 o

f 
A

dm
in

is
tr

at
io

n
Su

br
eg

io
n

Sp
ec

ie
s

Se
x

P
ai

n 
M

od
el

B
eh

av
io

ra
l E

ff
ec

t
B

eh
av

io
ra

l T
es

t
R

ef
er

en
ce

s

A
go

ni
st

 +
 

an
ta

go
ni

st
M

or
ph

in
e 

+
 

na
lo

xo
ne

s.
c.

 +
 in

tr
a-

N
A

c 
m

ic
ro

in
je

ct
io

n

R
at

M
al

e
N

aï
ve

Pr
on

oc
ic

ep
tiv

e

H
ot

 p
la

te
 te

st
D

ill
 1

97
7

s.
c.

 +
 in

tr
a-

C
N

 
m

ic
ro

in
je

ct
io

n
N

o 
ef

fe
ct

s.
c.

 +
 in

tr
a-

G
P 

m
ic

ro
in

je
ct

io
n

N
o 

ef
fe

ct

A
go

ni
st

 +
 

ac
et

al
de

hy
de

 
de

hy
dr

og
en

as
e 

in
hi

bi
to

r

M
or

ph
in

e 
+

 
di

su
lf

ra
m

O
ra

l
R

at
M

al
e

N
aï

ve
A

nt
in

oc
ic

ep
tiv

e
R

an
da

ll-
Se

lit
to

 
te

st
, t

ai
l f

lic
k 

te
st

de
 C

or
de

-S
ku

rs
ka

 
20

21

A
nt

ag
on

is
t +

 
ag

on
is

t
N

al
ox

on
e 

+
 

m
or

ph
in

e
i.p

. +
 in

tr
a-

A
C

C
 

m
ic

ro
in

je
ct

io
n

R
at

M
al

e
SN

L
N

o 
ef

fe
ct

vo
n 

Fr
ey

 te
st

L
aG

ra
iz

e 
20

06
N

o 
ef

fe
ct

L
D

B

K
O

R
A

go
ni

st

U
69

,5
93

 (
lo

ng
-

te
rm

)
s.

c.
R

at
M

al
e

N
aï

ve
In

cr
ea

se
d 

av
er

si
on

 
be

ha
vi

or
C

PA
Te

je
da

 2
01

3

U
69

,5
93

s.
c.

M
ou

se
M

al
e

K
O

R
 K

O
 o

n 
do

pa
m

in
er

gi
c 

ne
ur

on
s

D
ec

re
as

ed
 a

ve
rs

iv
e 

be
ha

vi
or

C
PA

C
he

fe
r 

20
13

A
nt

ag
on

is
t

no
r-

B
N

I
s.

c.
R

at
M

al
e

N
aï

ve
N

o 
ef

fe
ct

O
FT

Te
je

da
 2

01
5

D
O

R
A

nt
ag

on
is

t
N

T
I

s.
c.

M
ou

se
M

al
e

N
aï

ve
In

cr
ea

se
d 

an
xi

et
y-

lik
e 

be
ha

vi
or

L
D

B
, E

PM
N

ar
ita

 2
00

6b

m
P

F
C

M
O

R
A

go
ni

st
M

or
ph

in
e

M
ic

ro
in

je
ct

io
n

A
C

C
R

at
M

al
e

In
ci

si
on

 m
od

el

In
cr

ea
se

d 
pr

ef
er

en
ce

 b
eh

av
io

r
C

PP

N
av

ra
til

ov
a 

20
15

b

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st

SN
L

In
cr

ea
se

d 
pr

ef
er

en
ce

 b
eh

av
io

r
C

PP

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st

M
ic

ro
in

je
ct

io
n

A
C

C
R

at
M

al
e

SN
L

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st

L
aG

ra
iz

e 
20

06
D

ec
re

as
ed

 
av

oi
da

nc
e 

be
ha

vi
or

L
D

B

M
ic

ro
in

je
ct

io
n

ro
st

ra
l A

C
C

, 
ca

ud
al

 A
C

C
R

at
M

al
e

SN
L

N
o 

ef
fe

ct

Ta
il 

fl
ic

k 
as

sa
y,

 
vo

n 
Fr

ey
 te

st
, 

R
an

da
ll-

Se
lit

to
 

te
st

, H
ar

gr
ea

ve
s 

te
st

G
om

ts
ia

n 
20

18

ro
st

ra
l A

C
C

In
cr

ea
se

d 
pr

ef
er

en
ce

 b
eh

av
io

r
C

PP

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Neugebauer et al. Page 46

R
ec

ep
to

r
D

ru
g 

T
yp

e
C

om
po

un
d

R
ou

te
 o

f 
A

dm
in

is
tr

at
io

n
Su

br
eg

io
n

Sp
ec

ie
s

Se
x

P
ai

n 
M

od
el

B
eh

av
io

ra
l E

ff
ec

t
B

eh
av

io
ra

l T
es

t
R

ef
er

en
ce

s

ca
ud

al
 A

C
C

N
o 

ef
fe

ct

M
ic

ro
in

je
ct

io
n

A
C

C
R

at
M

al
e

C
C

I

A
nt

in
oc

ic
ep

tiv
e

R
an

da
ll-

Se
lit

to
 

te
st

, h
ot

 p
la

te
 te

st
W

an
g 

20
20

A
go

ni
st

 +
 

an
ta

go
ni

st

M
or

ph
in

e 
+

 
na

lo
xo

ne
N

o 
ef

fe
ct

M
or

ph
in

e 
+

 β
-

FN
A

N
o 

ef
fe

ct

A
nt

ag
on

is
t

N
al

ox
on

az
in

e
M

ic
ro

in
je

ct
io

n
PL

R
at

M
al

e
O

ro
fa

ci
al

 
fo

rm
al

in
Pr

on
oc

ic
ep

tiv
e

Fa
ce

 r
ub

bi
ng

Ta
m

ad
do

nf
ar

d 
20

20

N
al

ox
on

e

M
ic

ro
in

fu
si

on
PL

R
at

M
al

e
SN

L
Pr

on
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

Z
en

g 
20

18

M
ic

ro
in

je
ct

io
n

A
C

C
R

at
M

al
e

In
ci

si
on

 m
od

el

D
ec

re
as

ed
 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

N
av

ra
til

ov
a 

20
15

b

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st

SN
L

D
ec

re
as

ed
 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st

A
nt

ag
on

is
t +

 
ag

on
is

t
β-

FN
A

 +
 

m
or

ph
in

e
M

ic
ro

in
je

ct
io

n 
+

 
i.v

.

A
nt

in
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

D
ec

re
as

ed
 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

Se
le

ct
iv

e 
ab

la
tio

n 
of

 M
O

R
-

ex
pr

es
si

ng
 

ne
ur

on
s

D
er

m
-S

A
P

M
ic

ro
in

je
ct

io
n

D
ec

re
as

ed
 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

N
o 

ef
fe

ct
H

ar
gr

ea
ve

s 
te

st

A
nt

ag
on

is
t +

 
ag

on
is

t
β-

FN
A

 +
 

m
or

ph
in

e
M

ic
ro

in
je

ct
io

n
ri

gh
t A

C
C

 +
 

ri
gh

t C
eA

R
at

M
al

e
SN

L
D

ec
re

as
ed

 
pr

ef
er

en
ce

 b
eh

av
io

r
C

PP
N

av
ra

til
ov

a 
20

20

K
O

R
A

nt
ag

on
is

t
no

r-
B

N
I

M
ic

ro
in

fu
si

on
PL

R
at

M
al

e
U

69
,5

93
-

co
nd

iti
on

ed
D

ec
re

as
ed

 a
ve

rs
io

n 
be

ha
vi

or
C

PA
Te

je
da

 2
01

3

M
ic

ro
in

fu
si

on
PL

R
at

M
al

e
N

aï
ve

D
ec

re
as

ed
 a

nx
ie

ty
-

lik
e 

be
ha

vi
or

O
FT

Te
je

da
 2

01
5

D
O

R

A
go

ni
st

D
A

D
L

E
M

ic
ro

in
je

ct
io

n
ro

st
ra

l A
C

C
R

at
M

al
e

C
FA

D
ec

re
as

ed
 a

ve
rs

io
n 

be
ha

vi
or

C
PA

M
a 

20
22

N
o 

ef
fe

ct
H

ot
 p

la
te

 te
st

K
N

T-
12

7

M
ic

ro
in

fu
si

on
PL

M
ou

se
M

al
e

N
aï

ve

N
o 

ef
fe

ct

O
FT

Sa
ito

h 
20

18
A

go
ni

st
 +

 s
od

iu
m

 
ch

an
ne

l a
ct

iv
at

or
K

N
T-

12
7 

+
 

ve
ra

tr
in

e
D

ec
re

as
ed

 a
nx

ie
ty

-
lik

e 
be

ha
vi

or

A
nt

ag
on

is
t

N
al

tr
in

do
le

M
ic

ro
in

je
ct

io
n

A
C

C
M

ou
se

M
al

e
N

aï
ve

In
cr

ea
se

d 
an

xi
et

y-
lik

e 
be

ha
vi

or
L

D
B

, E
PM

N
ar

ita
 2

00
6b

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Neugebauer et al. Page 47

R
ec

ep
to

r
D

ru
g 

T
yp

e
C

om
po

un
d

R
ou

te
 o

f 
A

dm
in

is
tr

at
io

n
Su

br
eg

io
n

Sp
ec

ie
s

Se
x

P
ai

n 
M

od
el

B
eh

av
io

ra
l E

ff
ec

t
B

eh
av

io
ra

l T
es

t
R

ef
er

en
ce

s

A
m

yg
da

la

M
O

R

A
go

ni
st

M
or

ph
in

e

M
ic

ro
in

je
ct

io
n

ri
gh

t C
eA

R
at

M
al

e
SN

L

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st
, 

R
an

da
ll-

Se
lit

to
 

te
st

N
av

ra
til

ov
a 

20
20

In
cr

ea
se

d 
pr

ef
er

en
ce

 b
eh

av
io

r
C

PP

le
ft

 C
eA

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st
, 

R
an

da
ll-

Se
lit

to
 

te
st

, C
PP

M
ic

ro
in

je
ct

io
n

B
L

A
R

at
M

al
e

N
aï

ve
A

nt
in

oc
ic

ep
tiv

e
Ta

il 
fl

ic
k 

te
st

H
el

m
st

et
te

r 
19

95

M
ic

ro
in

je
ct

io
n

B
L

A
R

at
M

al
e

N
aï

ve
A

nt
in

oc
ic

ep
tiv

e
Ta

il 
fl

ic
k 

te
st

, 
ju

m
p 

te
st

Pa
vl

ov
ic

 1
99

6
C

eA

M
ic

ro
in

fu
si

on
B

L
A

R
at

M
al

e
N

aï
ve

A
nt

in
oc

ic
ep

tiv
e

Ta
il 

fl
ic

k 
te

st
M

cG
ar

au
gh

ty
 

20
02

D
A

M
G

O

M
ic

ro
in

je
ct

io
n

B
L

A
R

at
M

al
e

N
aï

ve
A

nt
in

oc
ic

ep
tiv

e
Ta

il 
fl

ic
k 

te
st

H
el

m
st

et
te

r 
19

98

M
ic

ro
in

je
ct

io
n

C
eA

R
at

M
al

e
C

FA

D
ec

re
as

ed
 a

ve
rs

io
n 

be
ha

vi
or

C
PA

Z
ha

ng
 2

01
3

N
o 

ef
fe

ct
H

ar
gr

ea
ve

s 
te

st

β-
en

do
rp

hi
n

M
ic

ro
in

je
ct

io
n

B
L

A

R
at

M
al

e
N

aï
ve

A
nt

in
oc

ic
ep

tiv
e

Ta
il 

fl
ic

k 
te

st
, 

ju
m

p 
te

st
Pa

vl
ov

ic
 1

99
6

C
eA

A
go

ni
st

 +
 

an
ta

go
ni

st

M
or

ph
in

e 
+

 
na

ltr
ex

on
e

M
ic

ro
in

je
ct

io
n

B
L

A
 +

 P
A

G
N

o 
ef

fe
ct

β-
en

do
rp

hi
n 

+
 

na
ltr

ex
on

e

A
nt

ag
on

is
t

C
TA

P
M

ic
ro

in
je

ct
io

n
C

eA
M

ou
se

B
ot

h
Pl

an
ta

r 
in

ci
si

on
 

m
od

el
Pr

on
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

C
oo

pe
r 

20
22

C
he

m
og

en
et

ic
 

in
hi

bi
tio

n 
of

 
M

O
R

-e
xp

re
ss

in
g 

PB
 in

pu
t n

eu
ro

ns

A
A

V
D

J-
E

F1
a-

D
IO

-h
M

4D
(G

i)
-

m
C

he
rr

y
M

ic
ro

in
je

ct
io

n
C

eA
M

ou
se

B
ot

h
Fo

rm
al

in

A
nt

in
oc

ic
ep

tiv
e

H
ot

 p
la

te
 te

st

L
iu

 2
02

2
D

ec
re

as
ed

 a
nx

ie
ty

-
lik

e 
be

ha
vi

or
E

PM

K
O

R
A

go
ni

st
U

69
,5

93
M

ic
ro

in
fu

si
on

ri
gh

t C
eA

R
at

M
al

e
N

aï
ve

In
cr

ea
se

d 
em

ot
io

na
l-

af
fe

ct
iv

e 
re

sp
on

se
s

V
oc

al
iz

at
io

ns
 to

 
no

xi
ou

s 
st

im
ul

us

H
ei

n 
20

21
In

cr
ea

se
d 

an
xi

et
y-

lik
e 

be
ha

vi
or

O
FT

D
ec

re
as

ed
 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Neugebauer et al. Page 48

R
ec

ep
to

r
D

ru
g 

T
yp

e
C

om
po

un
d

R
ou

te
 o

f 
A

dm
in

is
tr

at
io

n
Su

br
eg

io
n

Sp
ec

ie
s

Se
x

P
ai

n 
M

od
el

B
eh

av
io

ra
l E

ff
ec

t
B

eh
av

io
ra

l T
es

t
R

ef
er

en
ce

s

N
o 

ef
fe

ct
Pa

w
 p

re
ss

ur
e 

te
st

A
nt

ag
on

is
t

no
r-

B
N

I

M
ic

ro
in

fu
si

on
ri

gh
t C

eA
R

at
M

al
e

SN
L

D
ec

re
as

ed
 

ga
ba

pe
nt

in
-i

nd
uc

ed
 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

N
av

ra
til

ov
a 

20
19

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st

M
ic

ro
in

fu
si

on
ri

gh
t C

eA
R

at
M

al
e

Fu
nc

tio
na

l p
ai

n 
m

od
el

D
ec

re
as

ed
 

em
ot

io
na

l-
af

fe
ct

iv
e 

re
sp

on
se

s

V
oc

al
iz

at
io

ns
 to

 
no

xi
ou

s 
st

im
ul

us

Y
ak

hn
its

a 
20

22
D

ec
re

as
ed

 a
nx

ie
ty

-
lik

e 
be

ha
vi

or
E

PM

A
nt

in
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

N
o 

ef
fe

ct
s

Pa
w

 p
re

ss
ur

e 
te

st

M
ic

ro
in

fu
si

on
ri

gh
t C

eA
R

at
M

al
e

M
ed

ic
at

io
n 

ov
er

us
e 

m
od

el

A
nt

in
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

X
ie

 2
01

7
le

ft
 C

eA
N

o 
ef

fe
ct

M
ic

ro
in

fu
si

on

ri
gh

t C
eA

R
at

M
al

e
In

fr
ao

rb
ita

l C
C

I

A
nt

in
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

T
ur

ne
s 

20
22

N
o 

ef
fe

ct
E

PM

le
ft

 C
eA

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st
, 

E
PM

M
ic

ro
in

je
ct

io
n

ri
gh

t C
eA

R
at

M
al

e
SN

L
 +

 
ca

ps
ai

ci
n

A
nt

in
oc

ic
ep

tiv
e

R
an

da
ll-

Se
lit

to
 

te
st

Ph
el

ps
 2

01
9

le
ft

 C
eA

N
o 

ef
fe

ct

M
ic

ro
in

je
ct

io
n

ri
gh

t C
eA

R
at

M
al

e
Fu

nc
tio

na
l p

ai
n 

m
od

el

A
nt

in
oc

ic
ep

tiv
e

R
an

da
ll-

Se
lit

to
 

te
st

N
at

io
n 

20
18

le
ft

 C
eA

N
o 

ef
fe

ct

D
O

R
A

go
ni

st

D
PD

PE

M
ic

ro
in

fu
si

on
C

eA
M

ou
se

M
al

e

N
aï

ve
Pr

on
oc

ic
ep

tiv
e

vo
n 

Fr
ey

 te
st

Z
ho

u 
20

21

N
o 

ef
fe

ct
O

FT
, E

PM

C
FA

N
o 

ef
fe

ct
vo

n 
Fr

ey
 te

st
, 

O
FT

, E
PM

D
el

to
rp

hi
n 

II

N
aï

ve
N

o 
ef

fe
ct

vo
n 

Fr
ey

 te
st

, 
O

FT
, E

PM

C
FA

N
o 

ef
fe

ct
V

on
 F

re
y 

te
st

D
ec

re
as

ed
 a

nx
ie

ty
-

lik
e 

be
ha

vi
or

O
FT

, E
PM

D
O

R
1 

an
ta

go
ni

st
B

N
T

X
N

o 
ef

fe
ct

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Neugebauer et al. Page 49

R
ec

ep
to

r
D

ru
g 

T
yp

e
C

om
po

un
d

R
ou

te
 o

f 
A

dm
in

is
tr

at
io

n
Su

br
eg

io
n

Sp
ec

ie
s

Se
x

P
ai

n 
M

od
el

B
eh

av
io

ra
l E

ff
ec

t
B

eh
av

io
ra

l T
es

t
R

ef
er

en
ce

s

D
O

R
2 

an
ta

go
ni

st
N

al
tr

ib
en

In
cr

ea
se

d 
an

xi
et

y-
lik

e 
be

ha
vi

or

A
nt

ag
on

is
t

N
al

tr
in

do
le

M
ic

ro
in

je
ct

io
n

B
L

A
M

ou
se

M
al

e
C

FA
In

cr
ea

se
d 

an
xi

et
y-

lik
e 

be
ha

vi
or

L
D

B
, E

PM
N

ar
ita

 2
00

6a
C

C
I

N
A

c

M
O

R

A
go

ni
st

M
or

ph
in

e

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e
N

aï
ve

A
nt

in
oc

ic
ep

tiv
e

H
ot

 p
la

te
 te

st
D

ill
 1

97
7

M
ic

ro
in

fu
si

on
n.

s.
R

at
M

al
e

SN
L

A
nt

in
oc

ic
ep

tiv
e

H
ot

 p
la

te
 te

st
, 

R
an

da
ll-

Se
lit

to
 

te
st

B
ia

n 
20

15

D
A

M
G

O
M

ic
ro

in
je

ct
io

n
n.

s.
R

at
M

al
e

N
aï

ve
N

o 
ef

fe
ct

Ja
w

-o
pe

ni
ng

 
re

fl
ex

Sc
hm

id
t 2

00
2

A
nt

ag
on

is
t

C
T

O
P

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e
D

A
M

G
O

-
in

du
ce

d 
an

tin
oc

ic
ep

tio
n

Pr
on

oc
ic

ep
tiv

e
Ja

w
-o

pe
ni

ng
 

re
fl

ex
G

ea
r 

20
11

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e
C

ap
sa

ic
in

-
in

du
ce

d 
an

tin
oc

ic
ep

tio
n

Pr
on

oc
ic

ep
tiv

e
Ja

w
-o

pe
ni

ng
 

re
fl

ex
Sc

hm
id

t 2
02

2

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e

U
FP

-5
12

-
in

du
ce

d 
an

xi
ol

yt
ic

 a
nd

 
an

tid
ep

re
ss

an
t 

ef
fe

ct
s

In
cr

ea
se

d 
an

xi
et

y-
 

an
d 

de
pr

es
si

ve
-l

ik
e 

be
ha

vi
or

E
PM

, n
ov

el
ty

-
in

du
ce

d 
hy

po
ph

ag
ia

 te
st

K
ab

li 
20

14

N
al

ox
on

e
M

ic
ro

in
je

ct
io

n
n.

s.
R

at
M

al
e

C
ap

sa
ic

in
-

in
du

ce
d 

an
tin

oc
ic

ep
tio

n
Pr

on
oc

ic
ep

tiv
e

Ja
w

-o
pe

ni
ng

 
re

fl
ex

G
ea

r 
19

99

D
op

am
in

e 
re

ce
pt

or
 

an
ta

go
ni

st
 +

 
ag

on
is

t

α
-f

lu
pe

nt
hi

xo
l +

 
m

or
ph

in
e

M
ic

ro
in

je
ct

io
n

N
A

c 
+

 
ro

st
ra

l A
C

C
R

at
M

al
e

SN
L

D
ec

re
as

ed
 

pr
ef

er
en

ce
 b

eh
av

io
r

C
PP

N
av

ra
til

ov
a 

20
15

b

M
O

R
 +

 
D

O
R

A
go

ni
st

 +
 a

go
ni

st

D
A

M
G

O
 +

 
D

PD
PE

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e
N

aï
ve

A
nt

in
oc

ic
ep

tiv
e

Ja
w

-o
pe

ni
ng

 
re

fl
ex

Sc
hm

id
t 2

00
2

U
FP

-5
12

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e
N

aï
ve

D
ec

re
as

ed
 a

nx
ie

ty
- 

an
d 

de
pr

es
si

ve
-l

ik
e 

be
ha

vi
or

E
PM

, n
ov

el
ty

-
in

du
ce

d 
hy

po
ph

ag
ia

 te
st

K
ab

li 
20

14

K
O

R
Ph

ot
oa

ct
iv

at
io

n 
of

 d
yn

or
ph

in
 

ne
ur

on
s

-
O

pt
ic

al
 a

ct
iv

at
io

n
ve

nt
ra

l N
A

c 
sh

el
l

M
ou

se
B

ot
h

N
aï

ve

D
ec

re
as

ed
 

m
ot

iv
at

io
n

Su
cr

os
e 

se
lf

-
ad

m
in

is
tr

at
io

n
M

as
sa

ly
 2

01
9

In
cr

ea
se

d 
av

er
si

on
 

be
ha

vi
or

R
ea

l-
tim

e 
pl

ac
e 

av
er

si
on

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Neugebauer et al. Page 50

R
ec

ep
to

r
D

ru
g 

T
yp

e
C

om
po

un
d

R
ou

te
 o

f 
A

dm
in

is
tr

at
io

n
Su

br
eg

io
n

Sp
ec

ie
s

Se
x

P
ai

n 
M

od
el

B
eh

av
io

ra
l E

ff
ec

t
B

eh
av

io
ra

l T
es

t
R

ef
er

en
ce

s

N
A

c 
sh

el
l 

co
ld

 s
po

t
R

at
M

al
e

C
FA

In
cr

ea
se

d 
av

er
si

on
 

be
ha

vi
or

Ph
ot

os
tim

ul
at

io
n

ve
nt

ra
l N

A
c 

sh
el

l

M
ou

se
M

al
e

N
aï

ve

In
cr

ea
se

d 
av

er
si

on
 

be
ha

vi
or

R
ea

l-
tim

e 
pl

ac
e 

av
er

si
on

A
l-

H
as

an
i 2

01
5

N
o 

ef
fe

ct
O

FT

do
rs

al
 N

A
c 

sh
el

l

In
cr

ea
se

d 
pr

ef
er

en
ce

 b
eh

av
io

r
R

ea
l-

tim
e 

pl
ac

e 
pr

ef
er

en
ce

N
o 

ef
fe

ct
O

FT

Ph
ot

oa
ct

iv
at

io
n 

of
 d

yn
or

ph
in

 
ne

ur
on

s 
+

 
an

ta
go

ni
st

no
r-

B
N

I
M

ic
ro

in
je

ct
io

n
N

A
c 

sh
el

l 
co

ld
 s

po
t

R
at

M
al

e
C

FA
D

ec
re

as
ed

 a
ve

rs
io

n 
be

ha
vi

or
R

ea
l-

tim
e 

pl
ac

e 
av

er
si

on
M

as
sa

ly
 2

01
9

A
go

ni
st

U
69

,5
93

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e

C
ap

sa
ic

in
-

in
du

ce
d 

an
tin

oc
ic

ep
tio

n

Pr
on

oc
ic

ep
tiv

e
Ja

w
-o

pe
ni

ng
 

re
fl

ex
Sc

hm
id

t 2
02

2
D

A
M

G
O

-
in

du
ce

d 
an

tin
oc

ic
ep

tio
n

D
PD

PE
-

in
du

ce
d 

an
tin

oc
ic

ep
tio

n

E
-2

07
8

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e
N

aï
ve

In
cr

ea
se

d 
av

er
si

on
 

be
ha

vi
or

C
PA

B
al

s-
K

ub
ik

 1
99

3

U
50

,4
88

M
ic

ro
in

je
ct

io
n

n.
s.

M
ou

se
M

al
e

N
aï

ve
In

cr
ea

se
d 

an
xi

et
y-

lik
e 

be
ha

vi
or

E
PM

, L
D

B

W
an

g 
20

16

A
nt

ag
on

is
t

no
r-

B
N

I

U
50

,4
88

-
in

du
ce

d 
an

xi
et

y-
lik

e 
be

ha
vi

or

D
ec

re
as

ed
 a

nx
ie

ty
-

lik
e 

be
ha

vi
or

E
PM

M
ic

ro
in

fu
si

on
N

A
c 

sh
el

l
R

at
M

al
e

L
ea

rn
ed

 
he

lp
le

ss
ne

ss
 

m
od

el

D
ec

re
as

ed
 

de
pr

es
si

ve
-l

ik
e 

be
ha

vi
or

C
on

di
tio

ne
d 

av
oi

da
nc

e 
te

st
Sh

ir
ay

am
a 

20
04

M
ic

ro
in

je
ct

io
n

ve
nt

ra
l N

A
c 

sh
el

l
M

ou
se

B
ot

h
D

yn
or

ph
in

 
ne

ur
on

 
st

im
ul

at
io

n

D
ec

re
as

ed
 a

ve
rs

iv
e 

be
ha

vi
or

R
ea

l-
tim

e 
pl

ac
e 

av
er

si
on

M
as

sa
ly

 2
01

9
C

he
m

og
en

et
ic

 
si

le
nc

in
g 

of
 

dy
no

rp
hi

n 
ne

ur
on

s

D
yn

2.
0-

hM
4D

i-
IR

E
S-

m
C

he
rr

y
M

ic
ro

in
je

ct
io

n
N

A
c 

sh
el

l 
co

ld
 s

po
t

R
at

M
al

e
N

aï
ve

In
cr

ea
se

d 
m

ot
iv

at
io

n
Su

cr
os

e 
se

lf
-

ad
m

in
is

tr
at

io
n

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Neugebauer et al. Page 51

R
ec

ep
to

r
D

ru
g 

T
yp

e
C

om
po

un
d

R
ou

te
 o

f 
A

dm
in

is
tr

at
io

n
Su

br
eg

io
n

Sp
ec

ie
s

Se
x

P
ai

n 
M

od
el

B
eh

av
io

ra
l E

ff
ec

t
B

eh
av

io
ra

l T
es

t
R

ef
er

en
ce

s

D
O

R

A
go

ni
st

D
PD

PE
M

ic
ro

in
je

ct
io

n
n.

s.
R

at
M

al
e

N
aï

ve
N

o 
ef

fe
ct

Ja
w

-o
pe

ni
ng

 
re

fl
ex

Sc
hm

id
t 2

00
2

A
nt

ag
on

is
t

N
al

tr
in

do
le

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e
D

A
M

G
O

-
in

du
ce

d 
an

tin
oc

ic
ep

tio
n

Pr
on

oc
ic

ep
tiv

e
Ja

w
-o

pe
ni

ng
 

re
fl

ex
G

ea
r 

20
11

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e
C

ap
sa

ic
in

-
in

du
ce

d 
an

tin
oc

ic
ep

tio
n

Pr
on

oc
ic

ep
tiv

e
Ja

w
-o

pe
ni

ng
 

re
fl

ex
Sc

hm
id

t 2
00

2

M
ic

ro
in

je
ct

io
n

n.
s.

R
at

M
al

e

U
FP

-5
12

-
in

du
ce

d 
an

xi
ol

yt
ic

 a
nd

 
an

tid
ep

re
ss

an
t 

ef
fe

ct
s

In
cr

ea
se

d 
an

xi
et

y-
 

an
d 

de
pr

es
si

ve
-l

ik
e 

be
ha

vi
or

E
PM

, n
ov

el
ty

-
in

du
ce

d 
hy

po
ph

ag
ia

 te
st

K
ab

li 
20

14

β-
FN

A
, β

-f
un

al
tr

ex
am

in
e;

 B
N

T
X

, 7
-b

en
zy

lid
en

en
al

tr
ex

on
e;

 C
C

I,
 c

hr
on

ic
 c

on
st

ri
ct

io
n 

in
ju

ry
; C

eA
, c

en
tr

al
 n

uc
le

us
 o

f 
th

e 
am

yg
da

la
; C

FA
, c

om
pl

et
e 

Fr
eu

nd
’s

 a
dj

uv
an

t; 
C

M
S,

 c
hr

on
ic

 m
ild

 s
tr

es
s;

 C
N

, 

ca
ud

at
e 

nu
cl

eu
s;

 C
PA

, c
on

di
tio

ne
d 

pl
ac

e 
av

er
si

on
; C

PP
, c

on
di

tio
ne

d 
pl

ac
e 

pr
ef

er
en

ce
; C

T
O

P,
 [

C
ys

2-
Ty

r3
-O

rn
5-

Pe
n7

]-
am

id
e;

 D
A

D
L

E
, [

D
-A

la
2,

 D
-L

eu
5]

-e
nk

ep
ha

lin
; D

A
M

G
O

, D
-A

la
2,

N
-M

e-
Ph

e4
,G

ly
5 -

ol
]-

en
ke

ph
al

in
; D

er
m

-S
A

P,
 d

er
m

or
ph

in
-s

ap
or

in
; D

PD
PE

, D
-P

en
2,

5  
en

ke
ph

al
in

 D
-P

en
2,

5 -
en

ke
ph

al
in

; E
D

, e
xt

ra
di

m
en

si
on

al
 s

hi
ft

 ta
sk

; E
PM

, e
le

va
te

d 
pl

us
 m

az
e;

 F
ST

, f
or

ce
d 

sw
im

 te
st

; G
P,

 g
lo

bu
s 

pa
lli

du
s;

 i.
p.

, i
nt

ra
pe

ri
to

ne
al

; i
.v

., 
in

tr
av

en
ou

s;
 K

O
, k

no
ck

 o
ut

; L
D

B
, l

ig
ht

/d
ar

k 
bo

x;
 m

PF
C

, m
ed

ia
l p

re
fr

on
ta

l c
or

te
x;

 N
M

D
A

, N
-m

et
hy

l-
D

-a
sp

ar
ta

te
; n

or
-B

N
I,

 n
or

-b
in

al
to

rp
hi

m
in

e;
 n

.s
., 

no
t s

pe
ci

fi
ed

; 
N

T
I,

 n
al

tr
in

do
le

; O
FT

, o
pe

n 
fi

el
d 

te
st

; P
B

, p
ar

ab
ra

ch
ia

l n
uc

le
us

; P
L

, p
re

lim
bi

c;
 R

V
M

, r
os

tr
al

 v
en

tr
om

ed
ia

l m
ed

ul
la

; s
.c

., 
su

bc
ut

an
eo

us
; S

N
L

, s
pi

na
l n

er
ve

 li
ga

tio
n;

 T
ST

, t
ai

l s
us

pe
ns

io
n 

te
st

; U
FP

-5
12

, 
(H

-D
m

t-
T

ic
-N

H
-C

H
(C

H
2-

C
O

O
H

)-
B

id
);

 v
lP

A
G

, v
en

tr
ol

at
er

al
 p

er
ia

qu
ed

uc
ta

l g
ra

y

Neuropharmacology. Author manuscript; available in PMC 2024 June 15.


	Abstract
	Cortico-limbic plasticity in pain
	Medial prefrontal cortex mPFC
	Infralimbic and prelimbic mPFC
	Anterior cingulate cortex ACC

	Amygdala
	Mesolimbic dopamine system (nucleus accumbens)

	Opioid system in cortico-limbic pain plasticity and pain modulation
	Medial prefrontal cortex mPFC
	Infralimbic and prelimbic mPFC
	MOR
	KOR
	DOR

	Anterior cingulate cortex ACC
	MOR
	KOR/DOR


	Amygdala
	MOR
	KOR
	DOR

	Mesolimbic dopamine system (nucleus accumbens)
	MOR and DOR
	KOR


	Conclusions
	References
	Figure 1.
	Table 1.

