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Abstract

The human brain is a complex system with many functional units interacting with each other. 

This interacting relationship, known as the functional connectivity network (FCN), is critical 

for brain functions. To learn the FCN, machine learning algorithms can be built based on brain 

signals captured by sensing technologies such as EEG and fMRI. In neurological diseases, past 

research has revealed that the FCN is altered. Also, focusing on a specific disease, some part 

of the FCN, i.e., a sub-network, can be more susceptible than other parts. However, the current 

knowledge about disease-specific sub-networks is limited. We propose a novel Discriminant 

Subgraph Learner (DSL) to identify a functional sub-network that best differentiates patients with 

a specific disease from healthy controls based on brain sensory data. We develop an integrated 

optimization framework for DSL to simultaneously learn the FCN of each class and identify the 

discriminant sub-network. Further, we develop tractable and converging algorithms to solve the 

optimization. We apply DSL to identify a functional sub-network that best differentiates patients 

with episodic migraine (EM) from healthy controls based on a fMRI dataset. DSL achieved the 

best accuracy compared to five state-of-the-art competing algorithms.
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1. Introduction

The human brain is a complex system with many functional units interacting with each 

other. This interacting relationship, known as the functional connectivity network (FCN), 

is critical for brain functions (Van Den Heuvel and Pol, 2010). To learn the FCN, brain 

sensory technologies such as EEG, and functional MRI (fMRI) provide relevant data. By 

applying statistical machine learning algorithms to the data, the FCN can be inferred (Van 

Den Heuvel and Pol, 2010); (Huang et al., 2012).

The brain is susceptible to various types of diseases and injuries such as migraine, 

Alzheimer’s disease, and concussion. Past research has revealed that the FCN is altered 

in patients with these diseases and injuries (Silva et al., 2019). Also, because each type of 

disease has its specific pathological underpinning and phenotypic presentation, the FCN is 

altered in different ways for different diseases. Focusing on a specific disease, some part 

of the FCN, i.e., a sub-network, may be more susceptible than other parts. These findings 

provide the physiological foundation for the importance of identifying disease-specific sub-

networks, which would allow for better detection or classification of the disease.

A motivating example:

In the study of migraine, past research has revealed that the sub-networks involved in pain 

processing are likely to be impacted by the disease (Russo et al., 2012). However, the current 

knowledge about disease-specific sub-networks is quite limited, qualitative, or incomplete 

(Bogdanov et al., 2017). Fortunately, due to the rapid advance of brain sensory technologies, 

quantitative data can be collected, which makes it possible to develop machine learning 

algorithms to identify the sub-networks. For example, fMRI is an imaging technology 

that allows for collection of dynamic functional activity data from different regions of the 

brain. Based on the fMRI data, it is possible to identify the disease-specific sub-networks 

using machine learning. However, the existing machine learning algorithms fall short for 

providing a suitable solution. While the area of graphical models seems to be conceptually 

similar to our problem of sub-network identification, graphical modelling algorithms are not 

designed to find the “discriminant” sub-network that differentiates the patients with migraine 

from healthy controls. Thus, these algorithms, by design, do not have discrimination or 

classification capacities. Another related research area is graph classification. However, a 

fundamental difference between graph classification and our objective is that the former 

assumes that the graphs are given (i.e., graphs are input to the algorithm), whereas our 

objective is to learn the discriminant sub-network/subgraph from data (i.e., the subgraph is 

the output from our algorithm). Due to the limitations of existing methods, we propose a 

novel Discriminant Subgraph Learner (DSL) to identify the disease-specific sub-network 

based on brain sensory data, which allows for classification of the disease with high 

accuracy (Fig. 1).

The basic idea of DSL is briefly introduced here. To capture the variability of the FCN 

at both the subject and the class levels, we propose a Bayesian hierarchical model, 

which assumes that the FCN of each subject, represented by the inverse covariance (IC) 

matrix of the subject’s brain sensory data, shares a common FCN/IC at the class level. 

Further, we propose an integrated optimization formulation that learns the IC of each 
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class and simultaneously identifies the discriminant subgraph within the IC. The proposed 

formulation also uses sparsity-inducing penalties to address the challenge of learning ICs 

from high-dimensional datasets. Further, to provide a tractable solution for the optimization, 

we develop an iterative algorithm that alternates through subsets of the parameters with 

convergence guarantee. Additionally, to address the challenge in learning the class-level 

ICs within the iterative algorithm, we introduce latent variables and develop an Expectation-

Maximization (EM) algorithm integrated with Block Coordinate Descent (BCD). The 

contributions of this paper are summarized as follows:

Contribution to statistical machine learning:

The proposed DSL model interacts with two research areas in machine learning: graphical 

models and graph classification. However, as explained previously, neither of the existing 

research areas provides the same capability as DSL. The novel design of DSL includes 

an integrated optimization formulation that simultaneously achieves two goals: (1) learning 

the FCN/IC of each class, and (2) identifying the discriminant subgraph within the IC. 

Additionally, we develop a tractable and converging algorithm to solve the optimization 

problem of DSL.

Contribution to the application domain:

DSL makes it possible to identify the functional sub-network that best differentiates patients 

with a certain disease from healthy controls based on functional brain sensory data. 

Specifically in this paper, we apply DSL to identify a functional sub-network that best 

differentiates patients with episodic migraine (EM) from controls based on fMRI data. 

Classification of EM versus controls based on neuroimaging data is a more challenging 

task than that of chronic migraine (Schwedt et al., 2015). We also compare DSL with four 

state-of-the-art machine learning algorithms. DSL outperforms all these existing algorithms.

The remainder of this paper is organized as follows: Sec. 2 reviews the related work. 

Sec. 3 presents the development of the proposed DSL model. Sec. 4 provides simulation 

experiments. Sec. 5 presents a real-data application. Sec. 6 is the conclusion.

2. Related work

2.1 Graphical models

A graphical model includes nodes to represent variables or features and edges to 

characterize relationships between the variables. The edges can be undirected or directed. 

One of the most popular types of undirected graphical models is called Gaussian Graphical 

Model (GGM), in which the nodes are assumed to follow a multivariate Gaussian 

distribution. Directed graphical models are also known as Bayesian networks (Jordan and 

Weiss, 2002). In this paper, our methodological development is based upon GGM. Thus, we 

focus on reviewing the existing research in GGM in this section.

In a GGM, the weight of the edge between two variables is related to partial covariance 

or inverse covariance (IC). Therefore, learning a GGM becomes learning the IC matrix 

from the data. This is a challenging task with high-dimensional features but limited 
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sample sizes. To tackle the challenge, researchers have proposed various formulations that 

include sparsity-inducing penalties in the IC estimation to control the model complexity. 

Friedman et al. (Friedman et al., 2007) developed a coordinate descent algorithm for sparse 

IC estimation under the lasso penalty, known as graphical lasso. Hirose et al. (Hirose, 

Fujisawa and Sese, 2017) proposed a γ-lasso to get a robust sparse IC estimation based on 

γ-divergence. Huang et al. (Huang et al., 2012) proposed to learn the ICs of multiple tasks 

using a Bayesian framework that allowed knowledge transfer when learning task-specific 

ICs.

2.2 Graph classification

Graph classification is a popular research area in recent years due to the emerging graph data 

in various domains. Graph classification assumes that the graph of each sample is known, 

instead of having to be learned from data, and aims to use the graphs as input to differentiate 

between classes.

The existing graph classification methods fall into two general categories: similarity-based 

and subgraph-feature-based approaches. Similarity-based approaches learn global similarity 

between each pair of graphs, which is further used by conventional classification algorithms 

such as SVM for classification of the graphs. Global similarity is measured by graph kernels 

or graph embedding. Schölkopf, Tsuda and Vert (2003) introduced a unified account of 

a family of kernels that are defined via label sequences for handling graph data. Other 

types of kernels have been proposed to measure graph similarity, such as kernels between 

vertex and/or edge label histograms (Gärtner, Flach and Wrobel, 2003), graphlet kernels 

(Shervashidze et al., 2009), random walk kernels (Sugiyama and Borgwardt, 2015), and 

Weisfeiler-Lehman graph kernel (Shervashidze et al., 2011). Graph embedding has also 

been used for similarity-based approaches. Riesen et al. proposed a graph classification 

system using Lipschitz embedded graphs (Riesen and Bunke, 2009). One limitation of 

similarity-based graph classification methods is that the similarity is computed based on the 

global structure of graphs. However, some sub-structures may not have discriminant power 

and therefore including them in the computation of graph similarity may negatively affect 

the classification accuracy. This limitation is better addressed by the other category of graph 

classification methods based on subgraph features.

The basic idea of subgraph-feature-based approaches is to identify discriminative sub-

structures of graphs (a.k.a. subgraphs), and put the subgraphs into a vector-format feature 

set to which conventional classifiers can be applied. Yan and Han (Yan and Han, 2002) 

proposed a method called gSpan, which mined frequent subgraphs via a lexicographic order. 

A LEAP algorithm was developed by Yan et al. (Yan et al., 2008) to exploit correlations 

between structure similarity and significance similarity by identifying dissimilar graph 

patterns. Saigo et al. (Saigo et al., 2009) proposed a gBoost method that progressively 

collects informative patterns and selects subgraphs from the whole subgraph space via a 

branch-and-bound pattern search algorithm. Vogelstein (Vogelstein et al., 2012) proposed 

a joint graph/class model to identify class-conditional signals encoded in a subset of 

edges. Pan et al. (Pan et al., 2015) proposed an MTG algorithm that adopts l1-norm and 

l21-norm regularization under a multitask learning formulation and incrementally selects 
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subgraph features. Thanikaivelan and Gandhi (S. Thanikaivelan and K. Rajiv Gandhi, 2017) 

considered selecting optimal subgraphs through Principal Component Analysis (PCA) with 

a combined pruning technique.

2.3 Gaps of the existing research

Neither graphical models nor graph classification algorithms provide a direct solution to 

our targeted problem. Graphical models learn variable relationships from data, but they 

do not provide discrimination or classification capacities. Graph classification algorithms 

aim for classification, but they are under the assumption that the graph of each subject 

must be given. To solve our problem, one may suggest a two-step approach: 1) applying 

graphical models to learn the graph (i.e., functional network) of each subject from his/her 

brain sensory data; 2) applying graph classification algorithms on the learned graphs from 

1) for classification. The limitation of the two-step approach is that the uncertainty in 

learning the graphs in step 1) will propagate to step 2) and affect the classification accuracy. 

In contrast, DLS integrates the two steps into a single optimization framework, and thus 

effectively tackling the uncertainty propagation. Our simulation and real-data experiments 

also demonstrate the advantage of DLS compared with the two-step approach.

3. Development of the proposed discriminant subgraph learner (DSL)

We will provide the model formulation for a two-class classification problem. The proposed 

model works generally for different types of functional brain sensory data such as EEG and 

fMRI. We use fMRI here to present the model formulation as this may be a less familiar data 

type to the readers.

3.1 Mathematical formulation of DSL

The fMRI of each subject is a 4-D object, composed by 3-D brain images taken at a series 

of n time points. Each brain image includes many voxels as the basic units. At each voxel, 

the fMRI scan produces a time series measuring the dynamics of functional activity at that 

location, known as the blood oxygen level dependent (BOLD) signal. When studying a 

particular disease, it is commonplace to focus on a set of Regions of Interest (ROIs) of the 

brain related to the disease. Then, the voxel-wise BOLD signals within each ROI can be 

averaged into a ROI-wise signal. Let p be the number of ROIs. For example, in our case 

study, p = 33 corresponding to 33 ROIs based on a meta study of the existing migraine 

literature (Chong et al., 2017). For each subject i included in the study, let xi denote the 

BOLD signals of all the ROIs, i.e., xi is a ni × p matrix with ni representing the signal length.

Consider two classes that consist of N1 and N2 subjects, respectively. For example, the two 

classes can correspond to EM patients and healthy controls, respectively. As the subjects 

are nested within each class, we propose to use a Bayesian hierarchical model (BHM) 

to characterize the data generating process (Fig. 2). Focus on class 1. Let xi
1  denote the 

data for subject i in class 1, i = 1, …, N1. Recall that xi
1  is an ni × p matrix, with each row 

consisting of BOLD measurements for p ROIs at a particular time point. Assume each row 

of xi
1  follows a multivariate Gaussian distribution of Np 0, Σi

1 . Let Θi
1   ≜ Σi

1 −1 be the IC 

matrix, which has been used in previous research to characterize the functional connectivity 
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among the ROIs (Huang et al., 2012). Further assume the IC matrices of all the subjects in 

class 1 are generated from a common Wishart distribution, i.e., Θi
1 Θ 1 ∼  Wishart Θ 1 ,  ℎ , 

i = 1, . . . , N1. Θ 1  is the IC matrix of class 1. Θ 1  and ℎ are the hyper-parameters of 

the Wishart distribution, known as the inverse scale matrix and the degree of freedom, 

respectively.

Based on the proposed BHM in Fig. 2, we can derive the likelihood function of Θ 1 , 

L Θ 1 ; xi
1

i = 1, …, N1  as follows:

L Θ 1 ; xi
1

i = 1, …, N1 = p Si
1

i = 1, …, N1 Θ 1

= ∫ p Si
1

i = 1, …, N1 Θ 1 ,   Θi
1

i = 1, …, N1 p Θi
1

i = 1, …, N1 Θ 1 dΘ1
1 …dΘN1

1 ,
(1)

where Si
1  is the sample covariance matrix computed from xi

1 ; the first equation is because 

the likelihood is only relevant to the sample covariance matrices; the second equation is due 

to the hierarchical structure of the BHM. We can further derive the two probabilities in the 

integral as follows:

p Si
1

i = 1, …, N1 Θ 1 ,   Θi
1

i = 1, …, N1 = ∏i = 1

N1 p Si
1 Θi

1
(2)

according to the BHM. A commonly used distribution for a sample covariance matrix is the 

Wishart distribution, i.e., niSi
1 Θi

1 ∼ Wishart  Θi
1 −1, ni , which has a probability function of

p Si
1 Θi

1 ∝ Θi
1

ni
2 e− 

nitr Θi
1 Si

1

2 . (3)

Furthermore, we can derive the second probability in the integral of (1) as

p Θi
1

i = 1, …, N1 Θ 1 = ∏i = 1

N1 p Θi
1 Θ 1 , (4)

according to the BHM structure. Using a Wishart distribution of Θi
1 Θ 1 ∼  Wishart Θ 1 ,  ℎ

as previously described, we can write the probability function:

p Θi
1 Θ 1 ∝ Θ 1 − ℎ

2 Θi
1

ℎ − p − 1
2

exp −
tr Θ 1 −1Θi

1

2 . (5)

Next, inserting (3) and (5) into (1), the likelihood function becomes:
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L Θ 1 ; xi
1

i = 1, …, N1 ∝ ∫ ∏i = 1

N1 Θi
1

ni
2 e−

nitr Θi
1 Si

1

2 ∏i = 1

N1 Θ 1 − ℎ
2  Θi

1  
ℎ − p − 1

2 e− 
tr Θ 1 −1Θi

1

2

dΘ1
1 …dΘN1

1

∝ Θ 1 − N1ℎ
2 ∏i = 1

N1 niSi
1 + Θ 1 −1 − ni + ℎ

2 . (6)

In a similar way, we can get the likelihood function of Θ 2 , L Θ 2 ; xi
2

i = 1, …, N2 .

Furthermore, recall that in this paper we focus on the situation when two classes differ 

in a sub-matrix (a.k.a. subgraph) in their IC matrices, which only involves a subset of the 

ROIs. Let C be an indicator matrix, i.e., a p ×  p diagonal matrix with 1 or 0 in its diagonal 

to indicate if an ROI is included in the subgraph or not. C is unknown so it needs to be 

learned from data. To learn C, one approach is to learn the IC matrix of each class, i.e., 

Θ 1  and Θ 2 , using their respective data, and then compare the learned ICs to identify C. 

The limitation of this sequential approach is that learning of the IC matrix of each class in 

the first step will affect the identification of C in the second step. When the sample size 

is limited, it is difficult to learn an accurate IC for each class. Consequently, it will be 

difficult to identify C accurately. To overcome this limitation, we propose the DSL model 

to learn C, Θ 1 , Θ 2  altogether. DSL aims to solve the optimization problem in (7) that 

simultaneously balances learning of the IC for each class and identifying the subgraph C that 

best distinguishes the two classes.

max
Θ 1 , Θ 2 ,  C

CT Θ 1 − Θ 2 C
1

subgrapℎ difference between classeses

+ μ1L Θ 1 ; xi
1

i = 1, …, N1

likeliℎood of Θ 1

+μ2L Θ 2 ; xj
2

j = 1, …, N2 

likeliℎood of Θ 2

− λ1 Θ 1
1

sparsity of Θ 1

− λ2 Θ 2
sparsity of Θ 2

1

(7)

s.t. sum diag C ≤ K; Θ 1 ≻ 0; Θ 2 ≻ 0 .

Specifically, the first term in the objective function of (7) aims to maximize the 

difference between the submatrices of the IC matrices of the two classes.   1 denotes 

the l1-norm of the difference. To see the meaning of this term more clearly, consider 

a simple example of three ROIs and C =
1

0
1

, i.e., only the first and third ROIs are 
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included in the subgraph. Then the first term in the objective function of (7) becomes 

CT Θ 1 − Θ 2 C
1

= θ11
1 θ13

1

θ31
1 θ33

1 − θ11
2 θ13

2

θ31
2 θ33

2

1

= θ11
1 −  θ11

2 + θ13
1 −  θ13

2 + θ31
1 −  θ31

2 + θ33
1 −  θ33

2 . 

Furthermore, the second and third terms in the objective function of (7) are the likelihood 

functions of the class-level ICs, Θ 1  and Θ 2 , given the data in the respective classes. The 

fourth and fifth terms use two l1 penalties to impose sparsity on the class-level ICs, in order 

to control the model complexity under limited sample sizes. Essentially, maximizing the five 

terms simultaneously in the objective function of (7) balances learning of the IC for each 

class and identifying the subgraph C that best distinguishes the two classes. μ1, μ2 λ1, and λ2

are tuning parameters to control the trade-off between the different terms. Additionally, there 

are several constraints in the optimization problem in (7): sum diag C ≤ K bounds the size 

of the subgraph by K; Θ 1 ≻ 0 and Θ 2 ≻ 0 are to guarantee that the learned IC matrices are 

valid, i.e., they must be positive definite matrices.

3.2 Optimization algorithm for parameter estimation of DSL

There is no analytical solution for the optimization problem in (7). We propose an 

Alternating Optimization (AO) algorithm that solves one parameter with the other two 

parameters fixed and iteratives over the sub-optimizations of the three parameters until 

convergence. In what follows, we present the sub-optimizations and the methods of solving 

each one. Furthermore, we summarize the iterative steps over the three sub-optimizations 

to solve (7) using AO. After presenting the AO algorithm, we discuss its convergence and 

optimality.

The three sub-optimizations for the three parameters are:

Given Θ 1  and Θ 2 , the sub-optimization with respect to C is:

maxC CT Θ 1 − Θ 2 C
1

  s.t. sum diag C ≤ K; (8)

Given C and Θ 2 , the sub-optimization with respect Θ 1  is:

max
Θ 1

CT Θ 1 − Θ 2 C
1
+ μ1L Θ 1 ; xi

1
i = 1, …, N1 − λ1 Θ 1

1
; (9)

Given C and Θ 1 , the sub-optimization with respect Θ 2  is:

max
Θ 2

CT Θ 1 − Θ 2 C
1
+ μ2L Θ 2 ; xj

2
j = 1, …, N2 − λ2 Θ 2

1
. (10)

Next, we will discuss how to solve these sub-optimizations:
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Solving the optimization in (8)—Let D ≜ abs Θ 1 − Θ 2 , the absolute difference 

matrix. Also let c be a vector containing the diagonal elements of C, c = c1, …, cp
T . Then, 

(8) is equivalent to a quadratic programming problem below:

maxccTDc s.t.∑l = 1

p cl ≤ K; cl ∈ 0, 1 ,   l = 1, …, p . (11)

This optimization can be solved using a standard quadratic programming solver such as 

CPLEX.

Solving the optimizations in (9) and (10)—(9) and (10) have the same structure and 

can be solved in a similar way. It is not hard to see that both optimizations can be converted 

to the following unified format:

max
Θ

  L Θ; xi i = 1, …, N − λ Θ 1 + μ CT Θ − Z C
1
. (12)

Solving (12) is equivalent to solving (9) if we make Z = Θ 2 , Θ = Θ 1 , N = N1, xi = xi
1 . 

Solving (12) is equivalent to solving (10) if we make Z = Θ 1 , Θ = Θ 2 , N = N2, xi = xi
2 . 

(12) can be considered as a penalized maximum likelihood estimation. The discussion 

hereafter will focus on how to solve the optimization in (12).

Using the likelihood function in (6), the optimization becomes

max
 Θ 

  Θ − Nℎ
2 ∏i = 1

N niSi + Θ−1 − ni + ℎ
2 − λ  Θ  1 + μ CT(Θ − Z)C 1 . (13)

(13) is difficult to solve as it involves determinants of the unknown parameter Θ. We propose 

to introduce latent variables and develop an EM algorithm to solve this optimization. EM is 

a well-known iterative approach to find maximum likelihood estimates of model parameters 

when it is difficult to obtain maximum likelihood estimates directly (Wu, 1983). The E 

step finds the expectation of the complete log-likelihood function with respect to the latent 

variables given observed data and parameter estimates in the current iteration. The M 

step maximizes the expectation in the E step to update the parameter estimation. The two 

steps iterate until convergence. Next, we present the EM algorithm developed to solve the 

optimization in (12). In the proposed EM algorithm, Θi i = 1, …, N, Si i = 1, …, N, and Θ are treated 

as latent variables, observed data, and the parameter to be estimated, respectively. The 

complete log-likelihood function is:
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log L Θ; Θi i = 1, …, N, Si i = 1, …, N ∝ log p Θi i = 1, …, N, Si i = 1, …, N; Θ
= log p Si i = 1, …, N Θi i = 1, …, N, Θ p Θi i = 1, …, N Θ
= log ∏i = 1

N p Si Θi ∏i = 1

N p Θi Θ

= − Nℎ
2 log Θ + ∑i = 1

N ni + ℎ − p − 1
2 log Θi

− 1
2 ∑i = 1

N tr Θi niSi + Θ−1 .

(14)

E step—At the t-th iteration of the EM algorithm, denote the parameter estimate by   t Θ. 

Then, the E step is to find the expectation of (14) with respect to the latent variables 

Θi i = 1, …, N, given the observed data, Si i = 1, …, N, and   t Θ. Denote this expectation by

Q Θ   t Θ = E log L Θ; Θi i = 1, …, N, Si i = 1, …, N   t Θ, Si i = 1, …, N

= ∫
Θi i = 1, …, N

log p Θi i = 1, …, N, Si i = 1, …, N; Θ p Θi i = 1, …, N   t Θ, Si i = 1, …, N

d Θi i = 1, …, N .

(15)

The first step of finding the explicit form of Q Θ   t Θ  is to find the parametric form of 

the distribution of Θi i = 1, …, N   t Θ, Si i = 1, …, N, which is summarized in Proposition 1 below. 

Please see the proof in Appendix A.

Proposition 1.: The probability distribution of Θi i = 1, …, N   t Θ, Si i = 1, …, N is a product of N

Wishart distributions, i.e., W isℎart niSi +   t Θ−1 −1
,  ni + ℎ ,  i = 1, …, N.

Using the result in Proposition 1, we can further derive the explicit form of Q Θ   t Θ , 

which is given in Proposition 2. Please see the proof in Appendix B.

Proposition 2.: Q Θ   t Θ  is proportional to

−log Θ − 1
Nℎ ∑i = 1

N ni + ℎ tr Θ−1 niSi +   t Θ−1 −1
. (16)

M step—In the M step, we solve an optimization that maximizes the expectation in (17) 

with two penalties on Θ adopted from (12), i.e.,

  t + 1 Θ = arg max
Θ ≻ 0

Q Θ   t Θ − λ  Θ  1 + μ CT  Θ  − Z C
1 (17)

Proposition 3 shows an equivalent form of (17) that can be solved more easily. The proof for 

this proposition is relatively easier and thus skipped due to space limit.

Proposition 3.: The optimization problem in Equation (17) is equivalent to:
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  t + 1 Θ = arg min
Θ ≻ 0

log Θ + tr Θ−1H   t Θ + λ  Θ  1 − μ CT Θ − Z C
1

 ,
(18)

where

H   t Θ = 1
Nℎ ∑i = 1

N ni + ℎ niSi +   t Θ−1 −1
. (19)

(18) is not convex but the sum of a convex and a concave function. In particular, 

tr Θ−1H   t Θ +  λ Θ 1 is convex, while log Θ − μ CT Θ − Z C
1
 is concave. We propose 

to use a BCD algorithm to solve the optimization in (18). Details of the algorithm are given 

in Appendix C. Note that we did not explicitly consider the constraint Θ ≻ 0 in the BCD 

algorithm. Proposition 4 shows that the positive definiteness is automatically guaranteed. 

Please see the proof in Appendix D.

Proposition 4.: The optimal solution obtained from the BCD algorithm, Θ*, is positive 

definite if the initial value,   0 Θ, is positive definite.

The initial value of the BCD algorithm can be set to be   0 Θ = 1
Nℎ ∑i = 1

N Si
−1, which is 

positive definite. Then according to Proposition 4, the optimal solution will be positive 

definite and therefore it is a valid IC matrix. Another reason for choosing the initial values 

to be   0 Θ = 1
Nℎ ∑i = 1

N Si
−1 is that it is an unbiased estimator for Θ. Because of the Wishart 

distributions of Θi Θ and nSi Θi, we can get Θ = 1
Nℎ ∑i = 1

N Θi = 1
Nℎ ∑i = 1

N Si
−1, which is an 

unbiased estimator for Θ.

Finally, the entire procedure for solving the DSL optimization in (7) is summarized as 

follows:

Algorithm

for solving the DSL optimization in (7)

Input: xi
1

i = 1, …, N1 and xj
2

j = 1, …, N2; stopping criteria, ϵAO, ϵEM; tuning parameters.

Output: solutions for Θ 1 , Θ 2 ,  C.

1.  Compute covariance matrices Si
1

i = 1, …, N1 and Sj
2

j = 1, …, N2

2.
 Initialize:  0 Θ 1 ;  0 Θ 2 ; m 0 ;

3.  Repeat

4.   Compute  m C by solving the quadratic programming in (11);

5.
  Compute  m + 1 Θ 1

 using the proposed EM algorithm:
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 5.1
Input Si

1
i = 1, …, N1,  m C,    m Θ 1

 and  m Θ 2

 5.2
Initialize  0 Θ =  m Θ 1 ; t 0;

 5.3 Repeat

 5.4  E step: derive Q Θ   t Θ  using Proposition 2;

 5.5  M step: compute   t + 1 Θ using BCD;

 5.6  t t + 1
 5.7 Until   t Θ −   t + 1 Θ ≤ ϵEM

 5.8  m + 1 Θ 1   t + 1 Θ;

6.
 Compute   m + 1 Θ 2

 by following similar steps under 5;

7.  m  m + 1;

8.
 until∑v = 1

2  m + 1 Θ v −  m Θ v ≤ ϵAO

Algorithm convergency—This is an AO algorithm that iteratively solves C and the 

class-level ICs, Θ 1  and Θ 2 . The sub-optimization of solving C in (8) is a binary quadratic 

programming problem. According to Lemma 1 in a previous paper (Yuan and Ghanem, 

2016), this problem can be transferred to a continuous optimization. The sub-optimizations 

of Θ 1  and Θ 2  are solved using EM which is guaranteed to converge to a stationary 

point based on a previous paper (Wu, 1983). In the M-step, the optimization is solved 

by BCD whose convergence is presented in Appendix C. Finally, the iterations over the 

sub-optimizations in the algorithm converge to a first-order stationary point under mild 

conditions according to a previous paper (Li, Zhu and Tang, 2019). In our experiments, 

we observed steady increase of the objective function over the iterations and the algorithm 

converged quickly.

Time complexity—The algorithm iterates over solving C and solving the IC of each 

class. Solving C is a standard quadratic programming problem, for which the worst-case 

complexity is O p3 . p is the number of variables. Solving the IC uses EM and the M-step 

is an optimization solved by BCD, for which the worst-case complexity is O Np3 . N is 

the sample size. It typically takes 10–15 iterations for the E- and M-step to converge, and 

takes 3–6 iterations for the AO to converge, which have been consistently observed in our 

simulation and real-data experiments.

Tuning parameter selection—The tuning parameters of DSL include λ1, λ2, μ1, μ2, ℎ, 

and K. In practice, we can reasonably set λ1 = λ2 and μ1 = μ2 to impose similar amounts 

of regularization on the two classes. This reduces the tuning parameters to four. ℎ is hyper-

parameter of the Wishart distribution which is not sensitive and only needs to be roughly 

tuned. To tune the remaining parameters, a grid search can be performed and model training 

under each combination of parameter settings can be done in parallel. The optimal tuning 

parameters are those that maximize the cross-validation classification accuracy.
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3.3 Classification on new samples

Upon solving the DSL optimization in (7) based on a training dataset, we can use the 

optimal solutions, i.e., C, Θ 1
, and Θ 2

, to classy new subjects based on their fMRI 

data. Specifically, given the fMRI data of a new subject, x*, we first compute the sample 

covariance matrix S*. Next, we can extract a q × q sub-matrix of S*, Ssub
* , which is the sample 

covariance matrix of the variables in the subgraph indicated by C. In the same way, we 

can extract the sub-matrices Θsub
1

 and Θsub
2

 from Θ 1
, and Θ 2

. Then, we can use a simple 

likelihood-based classifier to classify the new subject, i.e., the new subject belongs to class 1 

if

p Ssub
* Θsub

1
≥ p Ssub

* Θsub
2

, (20)

The probability function, p Ssub
* Θsub

1
, can be computed as:

p Ssub
* Θsub

1
= ∫ f Ssub

* Θsub
* f Θsub

* Θsub
1

dΘsub
* , (21)

The key to deriving (21) is to know the distributions of Ssub
* Θsub

*  and Θsub
* Θsub

1
. To 

achieve this, we use a nice property of Wishart distributions that the parameterization 

of Wishart is invariant under marginalization (Dawid, 1981). Specifically, recall that 

we know nS* Θ* ∼ W isℎart Θ*−1, n  and Θ* Θ 1 ∼ W isℎart Θ 1 , ℎ . Then, according to 

the aforementioned property of Wishart distributions, nSsub
*    Θsub

* ∼ W isℎart Θsub
*  −1, n  and 

Θsub
*   Θsub

1 ∼ W isℎart Θsub
1 , ℎ . Plugging the probability density functions of these Wishart 

distributions in (21) and through some algebra calculations, we can get:

p Ssub
* Θsub

1
=

AΓq
n + ℎ

2
Γq

n
2 Γq

ℎ
2

Θsub
1 − ℎ

2 nSsub
* + Θsub

1 −1 − n + ℎ
2 , (22)

where A = n
qn
2 Ssub

*
n − q − 1

2 , and Γq x = π
q q − 1

4 ∏i = 1
q Γ x + 1 − i

2  is the multivariate 

generalization of the gamma function.

4 SIMULATION STUDY

4.1 Simulation setup

In this section, we assess the performance of DSL using simulation data, in comparison with 

several competing methods. The data generation process includes five steps:

1. Construct the IC matrix for class 1, Θ 1 . We generate the entry at the i-th row 

and j-th column of Θ 1 , i.e., θij
1 , from a Uniform −1,1  distribution. If θij

1 < 0.5, 

set θij
1 = 0. This is to make the IC matrix sparse.
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2. Construct the IC for class 2, Θ 2 , through the following sub-steps:

(2.1) Let Θ 2 = Θ 1 .

(2.2) Select a subset of ω variables that are involved in the discriminate 

subgraph. Denote the sub-matrix of Θ 2  that corresponds to the 

ω variables by Θsub
2 . Construct C as a diagonal matrix with ones 

corresponding to the ω variables and zeros otherwise.

(2.3) Randomly pick 50% of the non-zero entries in Θsub
2  and change them 

to be zero. Randomly pick the same number of zero entries in Θsub
2

and change them to be non-zero. Sample each non-zero entry from 

Uniform −1, − 0.5 U 0.5,1 .

(2.4) For the remaining entries of Θ 2  that are not included in Θsub
2 , i.e., 

entries in Θ 2 \Θsub
2 , resample each positive entry from Uniform 0.5,1

and each negative entry from Uniform −1, − 0.5 . The purpose of this 

sub-step is that although Θ 2 \Θsub
2  is not what primarily differentiates 

class 2 from class 1, we resample its non-zero entries to create a more 

general case that Θ 2 \Θsub
2  is not exactly the same as Θ 1   even beyond 

the discriminate subgraph.

3. Rescale the Θ 1  and Θ 2   generated in 1) and 2) to ensure that they are positive 

definite matrices. The rescaling includes first summing the absolute values of 

off-diagonal entries for each row, then dividing each off-diagonal entry by 1.5 

times of the sum, and finally averaging the resulting matrix with its transpose to 

produce a symmetric matrix.

4. Construct the IC for each subject within class 1, Θi
1 , i = 1, …, N1. Sample Θi

1

from W isℎart Θ 1 , ℎ , where Θ 1  is the rescaled IC obtained in step 3). Note that 

the Θi
1  sampled in this way is not sparse. We further sparsify Θi

1  by following 

a simple and efficient method proposed in (Kuismin and Sillanpää, 2016) that 

iteratively thresholds the smallest entries in the original non-sparse Θi
1 . This 

entire process is repeated to construct the IC for each subject within class 2.

5. Generate the data for each subject in class 1, i.e., xi
1 , i = 1, …, N1, from a 

multivariate Gaussian distribution with zero mean and IC matrix Θi
1  from step 

4). Generate the data for each subject in class 2 in a similar way.

In the first experiment, we generate simulation data of 50 variables and 50 samples in 

each class. This is a challenging case because the sample size is the same as the number 

of variables. In addition, we set ω = 10, 15, 20, 25, 30, 40, 50 as different sizes of the 

discriminant subgraph. This simulation setup is comparable to the real-data case study 

presented in the next section. The real data includes 50 and 49 samples in the two classes, 

respectively; and a total of 33 ROIs, which is smaller than the 50 variables in the simulation 

and thus being a relatively easier case. Even though we do not know the size of the subgraph 

in the real data, the simulation setup includes a wide range of possible sizes ranging from 

Wang et al. Page 14

IISE Trans. Author manuscript; available in PMC 2023 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20% to 100% of the total number of variables. It is reasonable to believe that this range 

should cover the subgraph size in the real data. In the second experiment, we increase the 

training sample size to 100, and keep all other settings the same as the first experiment. 

We use 10-fold cross validation to choose the optimal tuning parameters. Then, the trained 

model is applied to a separate test set of 50 samples per class to compute the Area Under the 

Curve (AUC). We repeat this whole process for 30 times and report the average AUC over 

the 30 simulation runs.

4.2 Competing methods

We compare DSL with a collection of state-of-the-art competing methods. The first 

competing method is DSL without subgraph selection, referred to as DSL\subgraph. The 

second to fifth are existing algorithms in graph classification. These algorithms are not 

directly comparable to our method because they assume that the graphs are known. To make 

them applicable, we use graphical lasso (Friedman et al., 2007) to learn the IC of each 

subject. Then, the ICs are used as input to the graph classification algorithms. The following 

list summarizes the competing methods:

• “DSL\subgraph”: DSL without subgraph selection

• “Vectorized SVM”: Elements of the IC graph for each subject are put into a 

feature vector. A SVM classifier is built on the feature vector (Friedman, Hastie 

and Tibshirani, 2001).

• “Similarity-based”: This is one of the two categories of graph classification 

algorithms reviewed in Section 2. Different kernels have been proposed to 

measure graph similarity. We choose to report the best accuracy based on four 

well-studied kernels in the literature: kernels between vertex and/or edge label 

histograms (Gärtner, Flach and Wrobel, 2003), graphlet kernels (Shervashidze 

et al., 2009), random walk kernels (Sugiyama and Borgwardt, 2015), and the 

Weisfeiler-Lehman graph kernel (Shervashidze et al., 2011).

• “gBoost”: Another category of graph classification algorithms is subgraph-

feature-based. gBoost is a representative algorithm in this category that has been 

used as a benchmarking method by other papers (Saigo et al., 2009).

• “MTG”: Another more recent subgraph-feature-based algorithm (Pan et al., 

2015).

4.3 Classification accuracies of different methods

Fig. 3 shows the average AUC performance of DSL and competing methods on test data 

with respect to different subgraph sizes, under two different training sample sizes: 50 and 

100. There are several observations: 1) In general, DSL and DSL\subgraph outperform other 

competing methods. 2) DSL outperforms DSL\subgraph with a smaller number of variables 

in the subgraph. This confirms the importance of finding the discriminate subgraph by DSL. 

3) With a smaller training sample size, the advantage of DSL over DSL\subgraph is more 

significant.
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4.4 Accuracy of DSL in IC estimation and subgraph identification

As the DSL optimization simultaneously estimates the IC of each class and identifies the 

discriminant subgraph, we use two metrics to evaluate the accuracy of DSL: 1) Structural 

accuracy of the IC estimation, defined as the accuracy of identifying the truly zero (non-

zero) entries in the IC matrix averaged over the two classes; 2) Subgraph identification 

accuracy, defined as the number of vertices in the true subgraph that are also identified 

by DSL. These results are summarized in Table 1. There are several observations: (i) In 

general, the ICs are estimated well, with a higher accuracy at a larger training size, as 

expected. (ii) The subgraph identification accuracy is better with larger subgraph sizes and 

with a larger training size. Under a fixed training size, a smaller subgraph size (i.e., a 

smaller ω) means less difference between the two classes, making it harder to differentiate 

them. This inherently difficulty hurts the performance of subgraph identification by DSL. 

As ω increases, there is more difference between the two classes and naturally the subgraph 

identification accuracy improves. Looking at Table 1 and Fig. 3 together, the results are 

consistent in the sense that a larger subgraph size has a higher accuracy for identifying 

the subgraph by DSL and subsequently a higher AUC in using the identified subgraph for 

classification.

4.5 Computational time

For the most time-consuming case across all the simulation and real-data experiments, i.e., 

the setting with 50 variables and 100 samples per class, the clock time of training in each 

parallel thread was around 290 seconds. This task was performed within the R version 4.0.2 

environment on a PC with Intel Core i7–10610U 2.30 HGz CPU with 4 cores, 8 logical 

processors and 16 GB of RAM memory.

5 Real data application

In this section, we present an application of using resting-state fMRI to classify EM and 

healthy controls. The data of 50 EM patients and 49 age-matched controls were provided 

by our collaborators at Mayo Clinic Arizona. The dataset is not available to public due 

to privacy perservation. All migraine patients were diagnosed according to the diagnostic 

criteria set forth by the International Classification of Headache Disorders (ICHD-II). 

Patients were excluded if they have neurological diseases other than migraine. Healthy 

controls were included if they never developed headaches or if they had occasional tension-

type headaches with a frequency of less than three tension-type headaches per month.

Imaging was conducted on 3-Tesla Siemens scanners using FDA-approached sequences. 

Prior to the imaging session, each subject was instructed to stay awake with eyes-closed, 

known as the resting state. Ten minutes of resting-state fMRI data were collected for each 

subject. Each fMRI dataset is 4-D, denoted by x, y, z, t , where x, y, z  are coordinates for 

each basic unit (called a voxel) of the 3-D brain image and t is time. In our study, there 

were a total of 61 × 73 × 61 voxels in the 3-D brain image and the time series of each voxel 

contains over 200 time points with some slight difference between subjects. Standard steps 

of fMRI pre-processing were followed (Chong et al., 2017). We selected 33 ROIs based on 

findings in the pain and migraine literature. These regions are those consistently shown to 
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participate in pain processing. The 33 ROIs include 16 on each hemisphere and one midline 

region. Table 2 lists names of the ROIs. The x, y, z  coordinates for the center of each ROI 

were also reported. Each ROI was an 8mm sphere drawn around the center coordinates. The 

average time series over the voxels included in each ROI was computed. The 33 ROI-level 

time series were used as input data to DSL and competing algorithms.

Using the fMRI data of the 33 ROIs, we can compute the sample correlation matrix for 

each subject, which is used as input to our DSL model. Tuning parameters are selected to 

maximize the leave-one-out-cross-validated (LOOCV) AUC. The subgraph found by DSL 

includes 18 ROIs that are highlighted in bold in Table 2. From Table 3, DSL achieves 0.81 

AUC, 0.82 sensitivity, and 0.79 specificity, which significantly outperform the competing 

methods. DSL\subgraph has the second-best AUC (0.72), and its specificity is low (0.59). 

Other competing methods have even worse AUC. Fig. 4 shows the output from DSL, 

including the estimated IC matrix of each class converted to partial correlation matrices and 

the difference between the two classes in terms of the partial correlations of the identified 

subgraph. Partial correlation matrices have better interpretation than the original IC matrices 

because their elements are bounded between −1 and 1.

Interpretations:

From Fig. 4, we can see that the partial correlation matrix of each class shows strong 

positive correlations between the left and right hemisphere for the same ROI. This 

phenomenon has been previously reported for both healthy and diseased brains (Chong 

et al., 2019). Some of these correlations have no significant difference between the EM 

and control classes, while some others do. Significant difference is also observed between 

other ROIs. Furthermore, it is interesting that several ROIs in the subgraph found by DSL 

are part of well-known functional networks or anatomical regions. For example, the left 

and right anterior cingulate cortex (3, 4), the left and right posterior cingulate cortex (9, 

10) and the bilateral ventromedial are all regions that comprise the default mode network 

(DMN). This functional network shows synchronous activity when a person is at rest and not 

actively partaking in an activity. The DMN is involved in self-reflection and mind-wandering 

(Raichle et al., 2001) and results of several imaging studies have shown abnormal functional 

connectivity amongst regions of the DMN in patients with migraine (Tessitore et al., 2013) 

(Faragó et al., 2017) (Yu et al., 2012). Other ROIs that are important in our model include 

regions of the limbic system such as the left and right amygdala (27, 28), the left and right 

thalamus (11, 12). In accordance with our results, Hadjikhani et al. found stronger functional 

connectivity between the thalamus and the amygdala in migraineurs relative to patients with 

other chronic pain disorders, indicating that aberrant functional connectivity between these 

regions might be unique to migraine patients (Hadjikhani et al., 2013).

6. Conclusion

We proposed a novel DSL model to learn a sub-network within the FCN that best 

differentiates patients with a specific disease from healthy controls based on brain sensory 

data. DSL was demonstrated in an application of identifying a functional sub-network that 

best differentiates patients with EM from controls based on resting state fMRI data. DSL 
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significantly outperformed competing methods in classification accuracy. There are several 

limitations of the proposed method. The training time of DSL is relatively slow and efficient 

optimization solvers can be developed in future research. The current formulation of DSL 

focuses on binary classification while an extension to more than two classes will address a 

broader range of problems. Future research may also explore applications of DSL to other 

neurological diseases and other types of functional brain sensory data.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Proof of Proposition 1

p Θi i = 1, …, N   t Θ, Si i = 1, …, N ∝ p Si i = 1, …, N Θi i = 1, …, N;   t Θ p
Θi i = 1, …, N   t Θ

= p Si i = 1, …, N Θi i = 1, …, N p Θi i = 1, …, N   t Θ
= ∏i = 1

N p Si Θi ∏i = 1

N p Θi   t Θ

(23)

We have known that niSi Θi W isℎart Θi
−1, ni  and Θi   t Θ W isℎart   t Θ, ni . Inserting the 

probability density functions of the two Wishart distributions into Equation (23), we get:

p Θi i = 1, …, N   t Θ, Si i = 1, …, N

∝ ∏i = 1

N
niSi

ni − p − 1
2

2nip Θi
− ni

2 Γp
ni
2

exp − 1
2tr niSiΘi ∏i = 1

N
Θi

ℎ − p − 1
2

2ℎp   t Θ
ℎ
2 Γp

ℎ
2

exp

− 1
2tr Θi   t Θ−1

∝ ∏i = 1

N Θi
ni + ℎ − p − 1

2 exp − 1
2tr Θi niSi +   t Θ−1

(24)

Each term in the product in Eq. (24) is a Wishart distribution with scale matrix 

niSi +   t Θ−1 −1
 and degree of freedom ni + ℎ. ■
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Appendix B: Proof of Proposition 2

Q Θ   t Θ ∝ ∫ − Nℎ
2 log Θ + ∑i = 1

N ni + ℎ − p − 1
2 log

Θi

− 1
2 ∑i = 1

N tr Θi niSi + Θ−1  ∏i = 1

N

Θi
ni + ℎ − p − 1

2 e−
tr Θi niSi +   t Θ−1

2 dΘ1…ΘN

= − Nℎ
2 log Θ ∏i = 1

N Δi + ∑i = 1

N Hi∏j ≠ i Δj − ∑i = 1

N Gi∏j ≠ i Δj − ∑i = 1

N F i Θ ∏j ≠ i Δj

= ∏i = 1

N Δi − Nℎ
2 log Θ + ∑i = 1

N Hi

Δi
  − ∑i = 1

N Gi

Δi
− ∑i = 1

N F i Θ
Δi

,

(25)

where

Δi = ∫  Θi 
ni + ℎ − p − 1

2 exp −
tr Θi niSi +   t Θ−1

2 dΘi,

Hi = ∫ ni + ℎ − p − 1
2 log  Θi Θi

ni + ℎ − p − 1
2 exp −

tr Θi niSi +   t Θ−1

2 dΘi,

Gi = ∫ 1
2tr ΘiniSi  Θi

ni + ℎ − p − 1
2 exp −

tr Θi niSi +   t Θ−1

2 dΘi,

F i Θ = ∫ 1
2tr ΘiΘ−1  Θi

ni + ℎ − p − 1
2 exp −

tr Θi niSi +   t Θ−1

2 dΘi,

Since tr .  is a linear operator, F i Θ  can become F i Θ = 1
2 tr Θ−1Di , where 

Di = ∫ Θi  Θi

ni + ℎ − p − 1
2 exp −

tr Θi niSi +   t Θ−1

2 dΘi, which is proportional to the 

mean of a Wishart distribution for Θi with the degrees of freedom ni + ℎ
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and scale matrix niSi +   t Θ−1 −1
. That is, Di = Δi ni + ℎ niSi +   t Θ−1 −1

, where 

Δi = 2
ni + ℎ p

2 π
p p − 1

4 niSi +   t Θ−1 − ni + ℎ
2 ∏i = 1

p Γ 1
2 ni + ℎ − i + 1  as defined above.

Thus, F i Θ
Δi

= 1
2 ni + ℎ tr Θ−1 niSi +   t Θ−1 −1

.

Remove the constants in (25), we can know that

Q Θ   t Θ ∝ − log Θ − 1
Nℎ ∑i = 1

N ni + ℎ tr Θ−1 niSi +   t Θ−1 −1
.

■

Appendix C: Derivation of the BCD algorithm

For notation simplicity, we re-write (18) into (26), i.e.,

Θ* = arg min
Θ ≻ 0

log Θ + tr Θ−1H + λ Θ 1 − μ CT Θ − Z C
1
. (26)

The proposed BCD works by iteratively updating one column and one row of Θ at a time 

while fixing other entries of Θ. Here, we will only discuss the update on one column/row, 

i.e., the j-th column/row, because all other updates are similar. Specifically, partition Θ into:

Θ =
Θ ∖ j ∖ j Θj

Θj
T θjj

. (27)

Similarly, H, C and Z are partitioned in the same way, i.e.,

H =
H ∖ j ∖ j Hj

Hj
T ℎjj

, C =
C ∖ j ∖ j Cj

Cj
T cjj

,  and Z =
Z ∖ j ∖ j Zj

Zj
T zjj

. (28)

Putting the partitioned Θ and H back into (26), the four terms in (26) becomes:

log Θ = log α + log Θ ∖ j ∖ j ,

tr Θ−1H = Θ ∖ j ∖ j
−1 H ∖ j ∖ j + α−1Θj

TΘ ∖ j ∖ j
−1 H ∖ j ∖ jΘ ∖ j ∖ j

−1 Θj − 2α−1Hj
TΘ ∖ j ∖ j

−1 Θj + ℎjjα−1,

Θ 1 = 2 Θj 1 + Θj
TΘ ∖ j ∖ j

−1 Θj + α + Θ ∖ j ∖ j 1,
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CT Θ − Z C
1

= 2 cjj C ∖ j ∖ j Θj − Zj 1 +  cjj α + Θj
TΘ ∖ j ∖ j

−1 Θj −  zjj + C ∖ j ∖ j Θ ∖ j ∖ j − Z ∖ j ∖ j C ∖ j ∖ j 1,

where α = θjj − Θj
TΘ ∖ j ∖ j

−1 Θj. We can know α > 0 and Θj
TΘ ∖ j ∖ j

−1 Θj > 0 under the constraint Θ ≻ 0. 

Therefore, the optimization in (26) becomes:

min
Θj, α ≻ 0

log α + α−1Θj
TΘ ∖ j ∖ j

−1 H ∖ j ∖ jΘ ∖ j ∖ j
−1 Θj − 2α−1Hj

TΘ ∖ j ∖ j
−1 Θj + ℎjjα−1

+ 2λ Θj 1 +

λΘj
TΘ ∖ j ∖ j

−1 Θj + λα − 2μcjj C ∖ j ∖ j Θj − Zj 1 − μcjj α + Θj
TΘ ∖ j ∖ j

−1 Θj −  zjj .

(29)

Θj and α can be solved in alternation. With Θj fixed, (29) becomes a univariate optimization 

problem:

min
  α ≻ 0

log α + ϕα−1 + λα − μcjj α + Θj
TΘ ∖ j ∖ j

−1 Θj −  zjj , (30)

where

ϕ = Θj
TΘ ∖ j ∖ j

−1 H ∖ j ∖ jΘ ∖ j ∖ j
−1 Θj − 2Hj

TΘ ∖ j ∖ j
−1 Θj + ℎjj (31)

Furthermore, with α fixed, (29) becomes:

min
Θj

Θj
TAΘj − 2dTΘj + 2λ Θj 1 − 2μ cjj C ∖ j ∖ j Θj − Zj 1 − μcjj

Θj
TΘ ∖ j ∖ j

−1 Θj + α −  zjj ,
(32)

where A = α−1Θ ∖ j ∖ j
−1 H ∖ j ∖ jΘ ∖ j ∖ j

−1 + λΘ ∖ j ∖ j
−1  and d = α−1Hj

TΘ ∖ j ∖ j
−1 . (32) is a unconstrainted non-

convex optimization which can be solved efficiently by a coordinate descent algorithm 

according to (Tseng, 2001) with the coordinate-descent update for each element in vector Θj. 

With estimation for Θj and α, we can update θjj by

θjj = α + Θj
TΘ ∖ j ∖ j

−1 Θj . (33)

This completes the updating on the j-th column/row. Finally, we summarize the proposed 

BCD algorithm in Algorithm 1.

Wang et al. Page 21

IISE Trans. Author manuscript; available in PMC 2023 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1

BCD Algorithm for solving the optimization in (26) in the M-step of the proposed EM 

framework

Input:Si for each subject, i = 1, …, N;   t Θ from the t-th EM iteration; C and Z; tuning parameters λ, μ, ℎ; 
stopping criterion, ϵBCD .

Output: updated   t + 1 Θ.

 1. Initialize: Θ0   t Θ; k 0 ;
 2. Compute H = H   t Θ  using Equation (19);

 3. Repeat

 4.  Let Θk + 1 = Θk
;

 5.  forj = 1 to pdo

 6.   Partition Θk + 1
, H, C and Z for j-th column/row according to according to (27) - (28), 

respectively;

 7.   Solve the optimization in (29) to get α and Θj;

 8.   Compute θjj
k + 1

 using (33) and Θj
k + 1 = Θj;

 9.   Update the j-th column/row of Θk + 1
 by Θj

k + 1  and θjj
k + 1

;

 10.  End for

 11.  k k + 1;

 12. until Θk + 1 − Θk ≤ ϵBCD 

 13.   t + 1 Θ Θk + 1
.

Algorithm 1 convergence:

This is a BCD algorithm for solving the optimization in (26), whose 3rd and 4th terms 

are nondifferentiable but separable. Discussion on the convergence of this algorithm can 

follow from a previous paper (Tseng, 2001). Specifically, although (32) is a unconstrainted 

non-convex optimization, under the condition of λ ≥ μ the coordinate-descent update for 

each element in vector Θj has a global minimum. Then, putting (32) and (30) together, we 

can know that (26) has a unique minimum at each coordinate block, satisfying the conditions 

of Part C in Theorem 4.1 in the previous paper (Tseng, 2001). This indicates that Algorithm 

1 converges to a coordinate-wise minimum point. Furthermore, due to the existence of 

Gateaux-differentials of (32), we can know that (32) is regular according to Lemma 3.1 in 

the previous paper (Tseng, 2001). This implies that each coordinate-wise minimum point 

is a stationary point. In all, when λ ≥ μ i.e., λ1 ≥ 1 and λ2 ≥ 1 in (7), the convergence of 

Algorithm 1 is guaranteed.

Appendix D: Proof of Proposition 4

Because Algorithm 1 is an iterative algorithm, we only need to prove   1 Θ is positive 

definite (p.d.) given that   0 Θ is p.d.. If this holds, it will guarantee that the Θ* at 
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convergence will be p.d.. To prove the p.d. of   1 Θ, we need to prove Θ keeps p.d. after the 

update of each column/row with the initial   0 Θ since BCD algorithm works by iterations.

Let Θ 1  be the Θ obtained after the update on the 1-th column/row by BCD algorithm 

with the initial Θ 0 =   0 Θ. We only need to prove Θ 1 ≻ 0. To prove Θ 1 ≻ 0, we will 

use the property that the determinate of a p.d. matrix must be greater than zero. Using the 

decomposition in (27) we can write Θ 1  as:

Θ 1 = Θ\j\j
0 θ\j\j

1 − Θ 1 TΘ\j\j
0 −1Θ 1

(34)

Then, as long as we can prove Θ 1 > 0 we complete the proof of this Theorem. It is 

obvious that Θ\j\j
0 > 0 because Θ\j\j

0  is the upper-left submatrix of the p.d. matrix Θ 0 . Let 

α 1 = θ\j\j
1 − . Θ 1 TΘ\j\j

0 −1Θ 1 . According to Equation (30), it is obvious that α 1 > 0. Then 

we have Θ 1 > 0. ■
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Figure 1. 
Schematic overview of the learning objective of the proposed DSL: DSL simultaneously 

learns class FCNs and identify the discriminant sub-network from brain sensory data
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Figure 2. 
BHM for class k (k = 1, 2)
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Figure 3. 
AUCs of DSL and competing methods on a test dataset of 50 samples per class
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Figure 4. 
Partial correlation matrices of EM (left) and controls (right) converted from the ICs learned 

by DSL. Edges with partial correlation magnitude <0.05 are not shown for visual effect. 

Edges in red/blue represent positive/negative particle correlations. The middle graph shows 

the difference between the partial correlation matrices of EM and controls on the identified 

subgraph by DSL (red/blue edges present positive/negative difference.).
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Table 1.

Accuracy of DSL

ω Training sample size = 50 Training sample size = 100

Structural Accuracy of IC 
estimation

Subgraph identification 
accuracy

Structural Accuracy of IC 
estimation

Subgraph identification 
accuracy

10 0.89 5/10 0.96 6/10

15 0.88 9/15 0.96 10/15

20 0.88 14/20 0.96 17/20

30 0.89 26/30 0.96 28/30

40 0.89 38/40 0.96 39/40

50 0.89 49/50 0.96 50/50
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Table 2.

Names of the ROIs (odd/even numbers represent the right/left hemisphere; 33 is a midline region). 

Coordinates of the center for each ROI are provided below the name. The ROIs in the subgraph found by DSL 

are in bold.

1,2 anterior insula (+/−38, 19, −3) 3,4 anterior cingulate cortex (+/−6, 28, 
24)

5,6 mid cingulate cortex (+/−10, −7, 
46)

7,8 posterior insula (+/−40, −14, 1) 9,10 posterior cingulate cortex (+/−8, −48, 
39)

11,12 Thalamus (+/−8, −21, 7)

13,14 primary somatosensory cortex (+/
−46, −24, 47)

15,16 dorsolateral prefrontal cortex (+/
−40, 39, 24)

17,18 inferior lateral parietal (+/−57, 
−48, 30)

19,20 ventromedial prefrontal cortex 
(+/−6, 36, −14)

21,22 second somatosensory cortex (+/−52, 
−28, 21)

23,24 supplementary motor area (+/
−6, 1, 68)

25, 26 temporal pole (+/−41, 10, −32) 27,28 amygdala (+/−22, −1, −22) 29,30 middle temporal gyrus (+/−60, 
−26, −5)

31,32 Caudate (+/−14, 13, 11) 33 periaqueductal gray matter (−1, −26, 
−11)
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Table 3.

LOOCV accuracy of different methods on migraine data

AUC Sensitivity Specificity

DSL 0.81 0.82 0.79

DSL\subgraph 0.72 0.80 0.59

Vectorized SVM 0.63 0.78 0.51

Similarity-based 0.67 0.68 0.60

gBoost 0.69 0.69 0.66

MTG 0.70 0.68 0.69
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