Skip to main content
. Author manuscript; available in PMC: 2023 Oct 19.
Published in final edited form as: IISE Trans. 2021 Dec 6;54(11):1084–1097. doi: 10.1080/24725854.2021.1987592

Algorithm.

for solving the DSL optimization in (7)

Input: xi(1)i=1,,N1 and xj2j=1,,N2; stopping criteria, ϵAO, ϵEM; tuning parameters.
Output: solutions for Θ(1),Θ2, C.
1.  Compute covariance matrices Si(1)i=1,,N1 and Sj2j=1,,N2
2. Initialize:  0Θ(1); 0Θ(2);m0 ;
3. Repeat
4.   Compute  mC by solving the quadratic programming in (11);
5.   Compute  m+1Θ(1) using the proposed EM algorithm:
 5.1 Input Si(1)i=1,,N1,  mC,  mΘ(1) and  mΘ(2)
 5.2 Initialize  (0)Θ= mΘ(1);t0;
 5.3 Repeat
 5.4 E step: derive Q(Θ| (t)Θ) using Proposition 2;
 5.5 M step: compute  (t+1)Θ using BCD;
 5.6 tt+1
 5.7 Until  (t)Θ (t+1)ΘϵEM
 5.8  m+1Θ(1) (t+1)Θ;
6.  Compute  (m+1)Θ(2) by following similar steps under 5;
7. m m+1;
8. until v=12|| m+1Θ(v) mΘ(v)||ϵAO