
Improving Calibration and Out-of-Distribution Detection in Deep 
Models for Medical Image Segmentation

Davood Karimi,

Ali Gholipour [Senior Member, IEEE]

Department of Radiology, Boston Children’s Hospital, and Harvard Medical School, Boston, 
Massachusetts, USA

Abstract

Convolutional Neural Networks (CNNs) have proved to be powerful medical image segmentation 

models. In this study, we address some of the main unresolved issues regarding these models. 

Specifically, training of these models on small medical image datasets is still challenging, 

with many studies promoting techniques such as transfer learning. Moreover, these models 

are infamous for producing over-confident predictions and for failing silently when presented 

with out-of-distribution (OOD) test data. In this paper, for improving prediction calibration 

we advocate for multi-task learning, i.e., training a single model on several different datasets, 

spanning different organs of interest and different imaging modalities. We show that multi-task 

learning can significantly improve model confidence calibration. For OOD detection, we propose 

a novel method based on spectral analysis of CNN feature maps. We show that different datasets, 

representing different imaging modalities and/or different organs of interest, have distinct spectral 

signatures, which can be used to identify whether or not a test image is similar to the images used 

for training. We show that our proposed method is more accurate than several competing methods, 

including methods based on prediction uncertainty and image classification.
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I. Introduction

RECENT studies have shown that convolutional neural network (CNN)-based models 

outperform classical methods on many medical image segmentation tasks. Various aspects of 

the design and training of these models have been surveyed [1]. Most studies have focused 

on network architecture and loss function. However, it has been argued that more elaborate 

network architectures only marginally improve the performance of these models [2]. On the 

other hand, there are important unresolved issues regarding application of CNNs for medical 

image segmentation. One of these issues has to do with the training procedures and training 

data. The number of labeled images that are available for training is typically very small. 
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Techniques such as transfer learning, error prediction and correction, unsupervised learning, 

and learning from noisy annotations have been proposed [3]-[5]. Another outstanding issue 

is a lack of understanding of the reliability and failure modes of these models. Deep 

learning models, in general, are known to produce over-confident predictions, even when 

the predictions are wrong [6]. Deep learning models also produce confident predictions 

on out-of-distribution (OOD) data, i.e., when the test data is from an entirely different 

distribution than the training data distribution [7]. Needless to say, there is no performance 

guarantee on OOD data and, in theory, model predictions on OOD data cannot be expected 

to be any more accurate than random output.

In order to improve the reliability of CNN-based medical image segmentation models for 

clinical use, effective solutions are needed for the above-mentioned challenges. In particular, 

we need methods to train well-calibrated models from limited data. We also need methods to 

inform us when these models fail.

II. Related works

A. Training procedures for CNN-based medical image segmentation models

Large labeled datasets are an essential requirement for deep learning [8]. Since such datasets 

are difficult to come by in medical imaging, many strategies have been proposed to tackle 

this limitation. We briefly review some of these methods.

In transfer learning [9], the model is first trained on another domain/task and then fine-tuned 

for the target task. Transfer learning has been reported to improve the performance of 

CNN-based models for medical image segmentation [10], [11]. A limitation of transfer 

learning is that most public image datasets include 2D images, whereas medical images are 

3D. Semi-supervised constitute a large and diverse body of techniques [4]. These methods 

utilize a mix of labeled and unlabeled data or data that have not been labeled in detail. These 

methods have been used in deep learning-based medical image segmentation [12]. One can 

use less accurate automatic methods to generate approximate segmentations on large corpora 

of images and use those to train a more accurate CNN-based model [13]. The potential 

benefits of semi-supervised methods strongly depend on the nature of the task and training 

data [14]. It may be easier to obtain rough segmentations on large datasets. Rather than 

treating such approximate segmentation labels as ground truth, one can use more intelligent 

methods [5]. Studies have reported successful applications of such methods [15].

An alternative to transfer learning is multi-task learning [9]. Multi-task learning aims 

at learning multiple tasks simultaneously. Studies have reported successful application 

of multi-task learning for medical image segmentation [16]. Training on mixed and 

heterogeneous data for medical image segmentation has been addressed in many prior 

works. These works appear under different titles such as domain adaptation, domain 

generalization, multi-site training, and joint training [17]. Many of these studies address 

domain shift, whereby a model trained on a source domain dataset fails to perform 

accurately and reliably on a target domain dataset. This is an important consideration 

in clinical settings [18], [19]. Another aim is to remove or reduce the need for labeled 

data in the target domain [20]-[22]. To deal with the changing image intensity and 
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appearance between source and target domains, a wide range of solutions have been 

proposed [23]-[25]. Some studies incorporate domain-invariant prior information as well 

as unlabeled and weakly-labeled images [26]. Another example is the Synergistic Image 

and Feature Adaptation framework, which encourages image similarity and invariance of 

the learned features across domains [27]. Some studies resort to data simulation methods 

to improve model generalizability [28]. Federated learning methods are another class of 

related techniques, where the focus is on training using multi-site data while protecting 

institutional and patient privacy [29]. The above studies on multi-task learning have focused 

on segmentation accuracy. The effect of multi-task training on confidence calibration has not 

been explored in previous works.

B. Model calibration and uncertainty estimation

All machine learning models are bound to make wrong predictions. One would like the 

confidence of a model’s predictions to be proportional to the probability of making a 

correct prediction. Suppose that for test sample xi the model predicts the class y i with a 

probability pi. In the ideal scenario with perfect confidence calibration, P(y = y ∣ p = p) = p
[30]. Standard deep learning models are poorly calibrated [6]. This is concerning for safety-

critical applications such as medicine. Many methods have been proposed for improving 

the calibration of deep learning models. It has been shown that calibration can be improved 

by using a proper scoring rule as the loss function [6], [31], weight decay, avoiding batch 

normalization [6], training on adversarial examples [31], and Platt scaling [6]. For image 

classification, a more more accurate method was proposed by combining Platt scaling with 

histogram binning [32]. Another study proposed to train a separate model to map the 

un-calibrated output of a CNN to calibrated probabilities [33].

Another study showed that Mixup training, [34], can improve the model calibration in image 

classification [35]. Mixup was originally proposed as a data augmentation and regularization 

strategy [34]. In brief, it synthesizes additional training data using convex combinations 

of pairs of training data points and their labels. Thulasidasan et al. show that Mixup also 

improves the model’s confidence calibration in image classification [35].

For medical image segmentation, studies have proposed methods to estimate the prediction 

uncertainty [36] or to use the uncertainty for improving the segmentation accuracy [37]. 

However, little attention has been paid to methods for improving the calibration of CNN-

based segmentation models. An example of the latter is [38], where authors show that the 

average prediction of a model ensemble is better calibrated than that of a single model. 

However, their method requires training as many as 50 models, which is inefficient.

C. Detecting out-of-distribution data and model failure

Another important problem is detection of OOD test data. A central assumption of every 

machine learning method is that the training and test data come from the same distribution. 

When a test sample comes from an entirely different distribution, the model should include 

a mechanism to detect the OOD sample. This is challenging with deep learning models 

because of their black-box nature and the complex mapping between their input and output. 

Advancements in network design have not made deep learning models more robust to OOD 
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data [39]. Different methods have been proposed to increase the robustness of deep learning 

models to OOD data. For example, deep learning models trained with Mixup are less prone 

to making over-confident predictions on OOD test data in image classification [35]. One 

study suggests that histogram equalization and Adversarial Logit Pairing improve robustness 

to corrupted data [40]. However, the latter study noted that methods that work well on some 

datasets may fail on other datasets. More importantly, these studies focus on in-distribution 

data that have been perturbed, and do not address the true OOD data, on which the model is 

expected to fail.

Several studies have proposed methods for OOD detection in deep learning. One work 

proposed a simple method that used the statistical distribution of the softmax values for 

detecting OOD data [41]. It showed that the maximum softmax value was higher for in-

distribution and correctly-classified data samples than for OOD data samples. More recent 

studies have improved upon this basic method [7], [42]. One study showed that higher OOD 

detection accuracies could be achieved by 1) temperature scaling and 2) input perturbation 

[42]. The proposed image perturbation pushes the image in the direction that increases 

its predicted class. Authors show that this way of perturbing the input images increases 

the separation between in-distribution and OOD images. Although this operation pushes 

both in-distribution and OOD images closer to their predicted class, the shift is larger for 

in-distribution data samples than it is for OOD data samples. For image classification, one 

study trained Gaussian discriminant models on the penultimate network layer and used the 

Mahalanobis Distance to detect OOD data samples [7]. The authors extended their method 

by carrying out the same computation on all network layers. A different solution, again 

for image classification, has been proposed in [43]. In addition to the prediction head, a 

confidence head is added to the end of the CNN. The model directly estimates the prediction 

confidence as a scalar value. During training, the model is allowed to obtain a “hint" 

about the true class by using a weighted average of the true class and the model-predicted 

class in computing the prediction loss. However, the model is penalized for low-confidence 

predictions. At test time, OOD data samples are detected by thresholding the confidence 

score.

Deep k-Nearest Neighbors (DkNN) detects OOD test samples based on nonconformity of 

their representations with the representations of the training set [44]. Given a test sample, 

xtest, DkNN finds its k nearest neighbors in the training set in terms of representations in each 

of the network layers, l ∈ 1…L, and records the labels of those neighbors, Ωl. Nonconformity 

of xtest with label j is defined as α(xtest, j) = ∑l ∣ i ∈ Ωl : i ≠ j ∣. DkNN also computes and stores 

nonconformity values for a calibration set, which is separate from the training set. Let us 

denote the set of nonconformity values of the calibration set with A. Then for a test sample 

xtest and label j, DkNN computes p(xtest, j) = ∣ ∣ {α ∈ A : α > α(xtest, j)} ∣ ∕ ∣ A ∣. The largest 

p(xtest, j) across all labels is referred to as prediction credibility. It quantifies the degree of 

support from the training set for the model prediction and is proposed as a measure of 

prediction confidence. We refer the reader to [44] for details.

Most methods proposed in prior works have been devised for 2D image classification 

settings and cannot be used for OOD detection in 3D medical image segmentation. This is 
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because, in volumetric image segmentation, feature maps are extremely large and typically 

only tens of training images are available. Some studies have proposed to detect OOD 

data based on prediction uncertainty [45]. However, such methods are not accurate in 

semantic segmentation applications [46]. In fact, compared with image classification, OOD 

detection in image segmentation has received much less attention. A recent study found 

that methods proposed for OOD detection in image classification do not translate well to 

segmentation tasks [47]. For segmentation of street view images, one study proposed a 

dedicated neural network to detect OOD data samples [46]. Their method classified an 

image as in-distribution or OOD using a very large “background dataset" to represent 

the variety of scenes outside of the training data distribution. However, it is difficult to 

obtain or even define the background set in medical imaging. The authors of [48] have 

proposed a method to automatically generate OOD data using a generative adversarial 

network (GAN) model that is trained in parallel with the main image classification network. 

One study evaluated the performance of several of the state of the art OOD detection 

methods for classification of 2D medical images and found that no single method achieved 

consistently-satisfying results, especially on samples that were closer to the in-distribution 

data [49]. Another study used prediction uncertainty measures to identify OOD data in 

medical image segmentation [38]. However, they evaluated their method on data that were 

hard to segment, not on true OOD data. As shown below by our results, methods based on 

prediction uncertainty cannot accurately detect OOD data in medical image segmentation.

It is worth mentioning that a related topic to OOD detection is the topic of adversarial 

examples [50]. These are examples that are crafted to fool a model into making wrong 

predictions. Adversarial examples may be important in some applications, but they are 

beyond the scope of this paper, which focuses on natural OOD data samples. By “natural 

OOD" we mean OOD data that exist due to such factors as a change in subject age, 

scanning protocol, or similar factors, as opposed to artificially-crafted OOD data created by 

an adversary.

D. Contributions of this work

In this paper, we address the problems outlined above and make the following contributions.

• We show that multi-task learning can improve the confidence calibration of 
CNN models for medical image segmentation. Through extensive experiments 

on a diverse collection of medical image segmentation datasets, we show that 

the confidence calibration of deep learning-based medical image segmentation 

models improves with multi-task learning. Importantly, in general, multi-task 

learning does not negatively impact the segmentation accuracy, and on some 

datasets it may slightly improve accuracy as well, even compared with other 

well-known training strategies such as transfer learning.

• We propose a novel and accurate OOD detection method for CNN-based 
medical image segmentation. Our method is based on spectral analysis of CNN 

feature maps. We show that whereas methods based on prediction uncertainty 

or image classification are inaccurate for OOD detection in 3D medical image 
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segmentation, our proposed method accurately detects OOD test data in different 

experimental settings.

III. Materials and Methods

A. Data

Table I summarizes the information about the datasets used in this work. The numbers 

of images in our datasets range from 15 to 400, which are typical of manually-labeled 

datasets in medical image segmentation, especially for in-house datasets because manual 

segmentation of complex 3D structures such as the brain cortical plate is time-consuming. 

Given the small size of the datasets, unless otherwise specified, we used a 3-fold cross-

validation strategy. This way, all data are used for test, thereby increasing the power 

of the statistical significance tests. We always used a patient-wise data split. Computed 

Tomography (CT) images were normalized by mapping the Hounsfield Unit values in the 

range [−1000, 1000] to intensity range [0, 1]. Magnetic Resonance (MR) images were 

normalized by dividing each image by the standard deviation of voxel intensities. The first 

column in Table I shows the names that we use to refer to each dataset throughout this paper.

B. Network architecture and training details

The CNN architecture used in this work was based on the 3D U-Net [56], which we 

substantially modified by adding residual connections with short and long skip connections. 

The skip connections connect every fine feature map directly to all coarser feature maps 

in the encoder section of the network, similar to the DenseNet [57]. We set the number 

of features in the first stage of the encoder part of our network to 14, which was the 

largest allowed by our GPU memory. The model worked on 963-voxel image blocks. During 

training, we sampled blocks from random locations in the training images, which acts as a 

form of data augmentation. Other data augmentation methods that we used during training 

included random flips and rotations (by integer multiples of π/2) in all directions as well 

as addition of random Gaussian noise to voxel intensity values. We also experimented with 

elastic deformation for data augmentation, [58], but we did not pursue that augmentation 

method because it negatively impacted segmentation of fine structures such as brain cortical 

plate. On a test image, a sliding window approach with a 24-voxel overlap between 

adjacent blocks was used to process the image. We used the negative of the Dice Similarity 

Coefficient (DSC) as the loss function and Adam [59] as the optimization method. We 

used an initial learning rate of 10−4, which was reduced by 0.90 after every 2000 training 

iterations if the loss did not decrease. If the loss did not decrease for two consecutive 

evaluations, we stopped the training. Since the focus of the study is on model calibration and 

OOD detection, we used the same settings mentioned above in all experiments.

C. Multi-task learning

In this work we advocate for training on heterogeneous data, which we refer to as “multi-

task learning", although multi-task learning has also been used in other settings as we have 

explained in Section II-A. We train a single model on a mix of training datasets that can 

come from different imaging modalities with different organs of interest to be segmented. 

We do not use additional inputs to inform the model of the image modality or the organ 
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that needs to be segmented. Furthermore, the network will still have a single segmentation 

head (i.e., single output layer). Given the input image from any modality and organ of 

interest, the network will output the predicted segmentation map of the organ of interest 

on the segmentation head. Given the GPU memory limit, we use a training batch size of 

one. For multi-task learning, we sample a block from one of the images in the training 

set and use that block and its corresponding ground truth segmentation map to update the 

model parameters. In other words, no changes are made to the network architecture and 

overall training procedures compared with training on a single dataset. The only point worth 

mentioning is the frequency of sampling from different training datasets. We sample from 

each dataset with a probability proportional to the inverse of the square root of dataset size, 

1 ∕ n. This way, if for example we train on two datasets with 10 and 100 images each, the 

probability of sampling an image from these two datasets will be 0.24 and 0.76, respectively 

( 10
10 + 100 = 0.24 and 100

10 + 100 = 0.76). We found that, especially on datasets with fewer 

images, using 1 ∕ n resulted in higher accuracy than using 1 ∕ n, which is equivalent to 

uniform sampling.

D. OOD detection using spectral analysis of feature maps

We propose a novel method for detecting OOD test data for CNN-based medical image 

segmentation models. As mentioned above, these models produce over-confident predictions 

even when a test sample is entirely outside the distribution of the training data. We show 

in Section IV that methods based on prediction uncertainty are unable to accurately detect 

OOD data. Moreover, because of the very large size of 3D medical images and their 

computed feature maps and small number of training images, methods based on analyzing 

the feature maps in their native space are ineffective. This is because these methods have 

been developed for scenarios where the size of the feature vector is on the order of hundreds 

or a few thousands and millions of training samples are available. We described several 

of these methods in Section II-C above. In Section IV, we show that such methods are 

not accurate for OOD detection in medical image segmentation applications. Instead, we 

propose computing the spectrum of the feature maps, which we define as the vector of 

singular values computed using singular value decomposition (SVD). Consider a test image 

xi and denote the feature map computed for this image at a certain stage (i.e., layer) of 

the network with F i ∈ ℝw, ℎ, d, n, where w, ℎ, d denote the dimensions of the feature map 

and n is the number of features. We reshape F i as ℝwℎd, n and compute the SVD of F i as 

F i = USV , where U and V  are orthonormal matrices and the diagonal matrix S contains 

the singular values of F i, which is referred to as its spectrum [60]. The vector of singular 

values, s = diag(S), depends on the magnitude of the feature values, which in turn depend 

on the image voxel intensities. Moreover, the spectrum has a very large dynamic range. To 

eliminate these effects, we take the logarithm of the spectrum s and then normalize it so that 

it has an ℓ2 norm of unity. We refer to the normalized logarithmic spectrum of the feature 

maps computed as explained above as “the spectral signature". We still denote this spectral 

signature with s in the following.

Figure 2 shows example signatures, where a model trained on several datasets from Table 

I including CP-younger fetus and Liver-MRI-SPIR datasets but not including Pancreas and 
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Hippocampus. The figure shows example spectral signatures of training images from these 

four datasets. Each dataset has a distinct spectral signature. Note that this model segments 

CP-younger fetus and Liver-MRI-SPIR accurately, but fails on Pancreas and Hippocampus, 

which have not been seen during training. Nonetheless, as we show in Section IV, methods 

based on prediction uncertainty cannot detect these as OOD.

We propose detecting ooD data based on the similarity of spectral signatures. We compute 

the spectral signatures of all training images and store them as Strain. Given a test image, 

xtest
i , we compute its spectral signature stest

i . We define Out-Of-Distribution Measure (OODM) 

of xtest
i  as the Euclidean distance of its spectral signature, stest

i , to its nearest neighbor in the 

training set:

OODM(xtest
i ) = min

j
‖stest

i − strain
i ‖2 , strain

j ∈ Strain (1)

We expect OODM to be smaller for test images coming from the distribution of the training 

set than for images from other distributions. We declare a test image xtest
i  to be OOD if 

OODM(xtest
i ) > τ. We determine the threshold τ using the training set. On the training set 

we compute the vector of OODMtrain using Eq. (1) using a leave-one-out strategy. We then 

compute τ as:

τ = mean(OODMtrain) + C × std(OODMtrain), (2)

where we set C = 2.5 for computing the detection accuracy. The value of τ, and hence 

C, determine the trade-off between sensitivity and specificity. A larger τ reduces the false 

positive rate while also reducing the true positive rate. The area under the receiver-operating 

characteristic curve (AUC) is the standard measure that is used to characterize this trade-off 

[61], [62]. The receiver operating characteristic curve is the plot of the true positive rate 

versus the false positive rate at various settings of the detector threshold [61]. In our 

proposed model, we compute the AUC by changing our threshold, τ.

One can apply the above method on any of the network’s feature maps. We found that using 

the deepest feature maps (i.e., feature maps closest to the output) led to more accurate OOD 

detection. This is in agreement with the fact that deeper layers provide more disentangled 

manifolds [63]. We applied the method on the last feature maps, which had 14 channels. 

Hence, the length of the spectral signatures in this work is 14. Figure 2 displays example 

histograms of OODM values for training data, in-distribution test data, and OOD test data, 

showing that OODM easily separates in-distribution from OOD data in this experiment.

We compare our proposed method with:

(a) A common method based on prediction uncertainty [45]. We train our model using 

dropout (with a rate of 10%) in each layer. At test time, we draw N = 10 random 

dropout masks and compute the entropy of the mean of the segmentation probability 

maps, H(p̄) = − p̄ log(p̄) as the estimated voxel-wise prediction uncertainty map. We use the 

average of voxel-wise uncertainty on the predicted foreground as image-wise uncertainty. 
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Similar to our proposed method, we compute a threshold similar to Eq. (2) on the training 

set. We refer to this method as UNC-Dropout.

(b) A method based on model ensembles [31]. Recently, this method was used in medical 

image segmentation in [38]. We refer to this method as UNC-Ensemble. (c) DkNN [44], 

explained in Section II-C We use 20% of images as the calibration set. From each image, 

we generate 100 data samples via augmentation. For a test image, we sample 10 blocks 

overlapping the predicted foreground and estimate credibility as the mean of p(xtest, j′), where 

j′ is the most frequent label on the 10 blocks. We use credibility as a measure of confidence 

as suggested in [44]. This method can only be applied when the training set has more than 

one classes.

(d) Method of Outlier Exposure [64]. This method is based on training the model against 

a dataset of outliers. The proposed loss function includes an outlier exposure term that has 

the form Ex′ ∼ DoutOE ℒOE(f(x′), f(x), y , where Dout
OE is the outlier exposure dataset used during 

training. As suggested by [64], we use the cross-entropy, which is also the loss proposed 

by [48]. This method assumes the exact nature of the outlier data is unknown. Therefore, 

following the recommendations of [64], we used all other datasets listed in Table I. For 

example, if in an experiment we use “CP- younger fetus" as in-distribution and “CP- older 

fetus" and “CP- newborn" as OOD, we use all other 11 datasets in Table I as Dout
OE. We refer 

to this method as Outlier Exposure.

(e) We compare with the method of [48], which is based on the inspection of softmax 

values as proposed by [41]. Specifically, OOD samples are detected as those for which the 

maximum softmax value is smaller than a threshold. However, authors of [48] propose two 

training strategies. First, they use an extra loss term to encourage the distribution of softmax 

values for OOD data samples to be close to a uniform distribution. They also use a GAN, 

whose task is to generate informative OOD training samples. The GAN model is trained 

in an alternative optimization framework in parallel with the main model. We refer to this 

method as Lee-2017.

(f) We compare with ODIN (Out-of-DIstribution detector for Neural networks) [42]. This 

method is based on the softmax values originally proposed by [41] that we have explained 

above. ODIN introduced two additional tricks: 1) temperature scaling, and 2) image 

perturbation. We have provided more detail on this method above in Section II-C.

(g) We also compare with the method proposed in [7], which followed the work of [42] 

and showed to be more accurate in image classification. As we briefly explained above, 

this method is based on the idea of a generative classifier. It assumes that the features can 

be modeled with class-conditional Gaussian distributions. Based on this assumption, the 

authors propose a confidence score based on the Mahalanobis Distance. Given the very large 

size of the feature maps, we use average pooling, as suggested by [7]. Since this method is 

based on the Mahalanobis Distance, we refer to it as Mah-Dist.
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E. Evaluation metrics

We quantify segmentation accuracy using DSC, 95 percentile of the Hausdorff Distance 

(HD95) and Average Symmetric Surface Distance (ASSD). We assess model calibration by 

computing the Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) 

[65]. ECE and MCE are computed by dividing the probability range, [0,1], into K bins. 

Denote by Sk the set of points (i.e., voxels in a semantic segmentation problem) whose 

predicted probabilities fall in the interval [k − 1
K , k

K ], for k ∈ [1, K]. Then ECE is defined as 

[6], [65]:

ECE = ∑
k = 1

K ∣ Sk ∣
N ∣ acc(Sk) − conf(Sk) ∣ , (3)

where acc(Sk) is the average prediction accuracy for the points in Sk and conf(Sk) is the mean 

prediction probability for the points in Sk. MCE is defined as [6], [65]:

MCE = max
k

∣ acc(Sk) − conf(Sk) ∣ . (4)

Values of calibration measures such as ECE can be dramatically influenced by the large 

percentage of background voxels. These voxels are usually correctly and confidently 

segmented by a relatively good model. Including these voxels in the computation of 

calibration measures artificially improves the values of these measures. Hence, we dilate 

the surface bound-ary of the ground-truth foreground (in 3D, in both directions in/out) in 

each image by 10 voxels and use the obtained mask for computing the calibration measures. 

A similar strategy was used in [38]. For OOD detection, we report accuracy, sensitivity, 

and specificity. Furthermore, we compute the area under the receiver-operating characteristic 

curve (AUC) by changing the value of τ.

IV. Results and Discussion

A. Feasibility and benefits of multi-task learning

As we mentioned above, we advocate for training a single model to segment different organs 

in different imaging modalities. To show that this is a viable approach, we trained a model 

on twelve datasets spanning various organs in MRI and cT images. We then trained twelve 

separate models, one on each of the datasets. We show a comparison of the test performance 

of these two training strategies in Table II, where the statistically significant differences have 

been marked using bold type. All statistical significance tests were performed using paired 

t-tests with a significance threshold of p = 0.01.

The results show that in general multi-task learning improves model prediction calibration. 

The joint model was significantly better-calibrated than the dedicated models on 9 out of 

12 datasets in terms of ECE and on 10 out of 12 datasets in terms of McE. only on the 

Hippocampus dataset the dedicated model was significantly better calibrated than the joint 

model. Hippocampus dataset included 260 images, compared with 15-32 images in eight of 

the other datasets used in this experiment. Therefore, this could be the influence of dataset 
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size on the potential benefits of multi-task learning. However, there are three other large 

datasets in this experiment: CP-newborn (n = 400), Pancreas (n = 281), and KiTs (n = 300). 

For Pancreas and KiTs, multi-task learning resulted in better-calibrated models in terms of 

all four calibration measures (ECE and MCE). For CP-newborn, too, multi-task learning 

resulted in a better-calibrated model in terms of ECE. We repeated the above experiment 

with a randomly-selected subset of n = 30 images from this dataset. We observed that with 

this reduced dataset size, multi-task learning indeed resulted in statistically significantly 

better calibrated models. With n = 30, a single model trained on the Hippocampus dataset 

achieved ECE and MCE of 0.16±0.04 and 0.32±0.08, respectively, whereas multi-task 

learning achieved ECE and MCE of 0.14±0.03 and 0.27±0.05, respectively, which were both 

significantly lower. Hence, multi-task learning in general improves the model prediction 

calibration, even for relatively large datasets. However, on some segmentation tasks (e.g., 

Hippocampus in this experiment) the positive effects of multi-task learning may disappear 

if large datasets are available. Figure 3 shows examples of estimated uncertainty maps. For 

this figure, we have intentionally selected test images on which the segmentation accuracy 

was relatively low. The figure shows that the model displays high segmentation uncertainty 

at the locations where segmentation error occurs, visually confirming that the model is 

well-calibrated.

In terms of segmentation accuracy, the results are somewhat mixed. Nonetheless, on average 

Table II shows that training a single model on a pool of heterogeneous datasets can 

achieve results that are as good as or even better than when dedicated models. Multi-task 

learning achieved significantly higher DSC on five datasets, significantly lower HD95 on 

seven datasets, and significantly lower AssD on four datasets. only on one of the datasets 

(Hippocampus) multitask learning was significantly worse. Given the small size of most of 

our datasets, the fact that a single model can learn to automatically recognize the context 

and accurately segment the organ of interest is interesting. Figure 4 shows example slices 

of several test images from different datasets and the computed segmentations. They show 

that the joint model accurately segments different organs in different imaging modalities. 

Please note that here our aim was to improve the model confidence calibration and not to 

improve the segmentation accuracy. As we showed above, the proposed strategy of training 

on heterogeneous data did improve the model confidence calibration on the overwhelming 

majority of the datasets. The fact that it also “on average" improved the segmentation 

accuracy is an incidental advantage.

We investigated the effect of mixup, [34], on the calibration and segmentation accuracy 

with the same twelve datasets used in Table II. As we mentioned above, recent works 

have shown that mixup can improve calibration of image classification models [35] and 

segmentation accuracy [66]. However, those studies used images from the same modality 

and organ. In our setting with a mix of twelve different datasets, mixup resulted in a 

consistent deterioration of model performance and calibration. on all twelve datasets, mixup 

resulted in lower DSC, often by large margins. For example on CP-younger fetus, Heart, 

and Hippocampus datasets, DSC dropped by approximately 0.09-0.13 compared with the 

results shown in Table II, which were statistically significant reductions. similarly, model 

calibration was worse when mixup was used. Therefore, mixup is very ineffective on 
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datasets with heterogeneous modalities and organs of interest. Below, we present the results 

of using mixup on a more homogeneous set of data, i.e. CP segmentation in MRI.

Here we present an experiment to compare the multi-task learning approach with transfer 

learning using the three cortical plate datasets (see Table I). As shown in Figure 5, the shape 

and complexity of cortical plate evolves dramatically before and after birth. In addition, the 

sizes of the three datasets are highly unequal. Given the much smaller sizes of two of the 

datasets, transfer learning is the method that is recommended by some studies [4], [10]. 

Table III compares the results obtained with different transfer learning trials and the results 

obtained with multi-task learning. In each of the transfer learning trials, we first trained the 

model to convergence on one of the datasets and then fine-tuned it on another dataset. We 

then further fine-tuned the model on the third dataset. our fine-tuning strategy was “deep 

fine-tuning" [10]; we reduced the initial learning rate by half and fine-tuned all model layers. 

Shallow fine-tuning and keeping the initial learning rate produced inferior results. We also 

tried other fine-tuning curricula, i.e., orders of datasets used in fine-tuning, but did not 

achieve better results than those in Table III. For each dataset, we performed paired t-tests 

between the four results (i.e., the three transfer learning trials and the multi-task learning 

trial). statistically better results, at p = 0.01, were marked with bold type.

Table III shows that the joint model had better-calibrated predictions than models trained 

on individual datasets as well as all three transfer learning trials on all three datasets in 

terms of ECE and MCE. In terms of accuracy, the multi-task learning approach was similar 

to or better than transfer learning. Although transfer learning improved the segmentation 

accuracy in some cases, the improvements were marginal. Multi-task learning, on the other 

hand, resulted in statistically significant improvements in segmentation accuracy. For the 

smallest dataset, i.e., CP-older fetus, multi-task learning significantly improved DSC, HD95, 

and ASSD. For the other two datasets, multi-task learning significantly improved ASSD. 

Figure 6 shows segmentation results on example test images from the three cortical plate 

segmentations for models trained on each of the three datasets, separately, and also for the 

joint model. The results show that a model trained on all three datasets can segment the test 

data from all three datasets with high accuracy. However, a model trained on each one of the 

datasets may perform very poorly on the test images from the other two datasets.

Table IV presents a comparison of multi-task learning with mixup on the same three CP 

datasets. Unlike with the twelve heterogeneous datasets in Table II, in this experiment mixup 

works and it does improve the segmentation accuracy of the model compared with standard 

training results presented in Table III. However, improvements in model calibration due 

to mixup are marginal, and ECE and MCE values achieved with multi-task learning are 

significantly better than those with mixup on all three datasets.

An additional appeal of a joint model that accurately segments all three datasets is that 

one would need to maintain only one set of model weights. When trained on one of the 

datasets, the model will perform poorly on the other datasets, one would need to maintain 

three separate models, and for a test image one would need to know which of the three 

datasets the image belongs to. Furthermore, the time required to train a single model on 

several datasets is generally less than the time needed to train separate models. For example, 
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for CP segmentation, the training time for a model to segment cp-younger fetus, CP-older 

fetus, and CP-newborn is approximately 9 hours, whereas the training time for a model for 

each of these three datasets is approximately 5 hours, for a total of approximately 15 hours.

B. Detecting OOD test data

We present the results of OOD detection with our method and competing methods in four 

different experiments.

In the first experiment, we used a mixture of eight different datasets for training. These 

included CP-younger fetus, CP-older fetus, Prostate, Heart, Liver-CT, Liver-MRI-SPIR, 

Liver-MRI-DUAL-In and Liver-MRI-DUAL-Out datasets. We used test images from the 

same eight dataset as in-distribution data. As OOD data, we used Pancreas, Hippocampus, 

and Spleen datasets. Histograms of OODM have been shown in the lower part of Figure 

2. Table V compares different methods for OOD detection. Our method perfectly detected 

the OOD images. UNC-Dropout failed, achieving an accuracy of 0.55. The other methods 

performed better than UNC-Dropout, but none of them achieves the level of accuracy of 

our method. Among the competing methods, UNC-Ensemble achieved better results, but 

it requires training tens of models. Following the recommendations of [38], we trained 50 

models for this method.

In the second experiment, we trained a model on CP-newborn and applied the model on 

test images from the same dataset and the other two CP datasets. Figure 7 shows OODM 

histograms for this experiment. The OODM values for both CP-younger fetus and CP-older 

fetus fall outside of the distribution of CP-newborn. This model achieved DSC of 0.689 ± 

0.095 and 0.781 ± 0.028 on CP-younger fetus and CP-older fetus datasets, respectively. 

These are very low compared with the results shown in Table III. Therefore, images 

from CP-younger fetus and CP-older fetus datasets are OOD. Our proposed method easily 

distinguished OOD data from in-distribution data. It is interesting to note that OODM values 

for CP-younger fetus are distributed farther away than those of CP-older fetus. This makes 

sense because CP-younger fetus is less similar to CP-newborn than CP-older fetus is. As 

shown in Table VI, our method accurately separated OOD data samples from in-distribution 

data samples. UNC-Dropout achieved an accuracy of 0.57, while UNC-Ensemble and Mah-

Dist achieved 0.80. Outlier Exposure was the best of the competing methods, but still 

achieved accuracy, sensitivity, and specificity of 20% lower than the proposed method. 

DkNN cannot be applied in this experiment because the training set has only one class.

In another experiment, we trained our model on CP-younger fetus dataset and tested on 

the other two CP datasets and on four completely different datasets: Heart, Liver-CT, 

Hippocampus, and Pancreas. This model achieved a DSC of 0.788 ± 0.045 and 0.765 ± 

0.061 on CP-older fetus and CP-newborn datasets, respectively, which are lower than the 

results in Table III. Also, as expected, on the other four datasets the model failed, achieving 

a mean DSC of 0.20-0.45. We present the results of this experiment separately for two 

CP datasets and the four non-CP datasets. Table VII shows the OOD detection accuracy 

results for different methods. For both CP and non-CP datasets our method achieved high 

detection accuracy and performed better than the other techniques. Among the competing 

methods, UNC-Ensemble and Outlier exposure achieved better results, but the accuracy for 
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our method was much higher. Figure 8 displays the histograms of the OODM values for this 

experiment.

Finally, we report an experiment with the three liver MRI datasets (See Table I). The 

top section of Figure 9 shows a sample image from each of these datasets. This 

experiment demonstrates that OOD data are often not easy to distinguish visually. Our 

experiments show that a model trained on Liver-MRI-SPIR and Liver-MRI-DUAL-In 

accurately segments images from Liver-MRI-DUAL-Out (mean DSC= 0.89). Similarly, a 

model trained on Liver-MRI-SPIR and Liver-MRI-DUAL-Out achieved a mean DSC of 0.86 

on Liver-MRI-DUAL-In. Even a model trained on Liver-MRI-DUAL-SPIR alone, accurately 

segmented Liver-MRI-DUAL-In and Liver-MRI-DUAL-Out. On the other hand, a model 

trained on Liver-MRI-DUAL-In and/or Liver-MRI-DUAL-Out failed on images from Liver-

MRI-SPIR (mean DSC ≈ 0.40). These observations are not intuitive and are not at all 

easy to foretell by visually inspecting these images. Specifically, there are asymmetries that 

cannot be predicted by visual inspection. As an example, as mentioned above, Liver-MRI-

DUAL-SPIR is OOD for a model trained on Liver-MRI-DUAL-In but Liver-MRI-DUAL-In 

is not OOD for a model trained on Liver-MRI-DUAL-SPIR. This example further highlights 

the importance and challenging nature of OOD detection in CNN-based medical image 

segmentation.

Figure 9(a) shows OODM histograms for an experiment where Liver-MRI-DUAL-In and 

Liver-MRI-DUAL-Out were used for training. The OODM values were computed on the 

test data from the same datasets and Liver-MRI-SPIR, which is OOD for this model. Our 

proposed method easily separates in-distribution from OOD data. Table VIII shows that 

UNC-Dropout and DkNN have low accuracies. UNC-Ensemble achieved better results, but 

still has an accuracy and AUC that are approximately 20% lower than our proposed method. 

Figure 9(b) shows the OODM for an experiment where Liver-MRI-SPIR and Liver-MRI-

DUAL-In were used for training. The trained model works well on Liver-MRI-DUAL-Out 

dataset as well. As desired, the OODM values for most images from Liver-MRI-DUAL-Out 

fall below τ, and hence correctly classified as in-distribution. Figure 9(c) shows the same for 

an experiment in which Liver-MRI-SPIR and Liver-MRI-DUAL-Out were used for training.

In terms of computation time, our method processes an image in approximately 5 seconds 

on a Linux machine with 32 GB of memory and an NVIDIA GeForce GTX 1080 GPU. 

With our implementation of UNC-Dropout, UNC-Ensemble, Mah-Dist, ODIN, and DkNN, 

they take approximately 4, 15, 5, 12, and 35 seconds, respectively. Another advantage of our 

OOD detection method is relative simplicity. The only hyperparameter in the OOD detection 

method itself is C that determines the threshold, τ. This value influences the trade-off 

between sensitivity and specificity. In all of our experiments we reported the value of 

AUC, which accounts for this trade-off. The accuracy/sensitivity/specificity values reported 

above were all obtained with C = 2.5. The actual impact of the value of C depends on the 

experiment. For example, for the experiment shown in Figure 8(a) using C = 2.0 would result 

in sensitivity and specificity of 0.96 and 0.86, respectively, and using C = 3.0 would result in 

sensitivity and specificity of 0.88 and 1.00, respectively. In Figure 8(b), on the other hand, 

sensitivity and specificity remain at 1.00 for all value in the range C ∈ [2.0, 3.0].
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Applying the method on other feature maps resulted in lower accuracy than on the last layer. 

As an example, in the experiment with brain cortical plate datasets reported in Table V, 

applying the method on the 2nd deepest feature map resulted in accuracy, sensitivity, and 

specificity of 0.92, 0.89, and 0.92, respectively. Moreover, applying the method on the 3rd 

deepest feature map resulted in accuracy, sensitivity, and specificity of 0.90, 0.88, and 0.91, 

respectively. On the coarsest feature maps (i.e., the last encoder feature maps) the achieved 

accuracy, sensitivity, and specificity were 0.84, 0.83, and 0.86, respectively. Better accuracy 

achieved at deeper layers is likely due to the higher degree of disentanglement in deeper 

layers [63].

This study used a large number of dataset to evaluate the proposed methods. Nonetheless, 

the variability in medical image data is very high. It would be instructive to explore the 

potential of the proposed methods in multi-label and multi-class settings. In one experiment, 

we repeated the experiment reported in Table VII by considering a two-class segmentation 

for the Hippocampus data, where the Hippocampus dataset has two segmentation labels 

(anterior and posterior). Therefore, the output layer in this experiment had one extra channel 

for the Hippocampus dataset. For other datasets this channel is padded with zeros in the 

training data. With this setting, our OOD detection method achieved an accuracies of 

0.94 and 1.00 on the CP and non-CP test data, which are similar to the results presented 

in Table VII. Another potentially important factor is image resolution. Increasing image 

resolution beyond the native (acquisition) resolution by upsampling did not significantly 

improve the segmentation accuracy or confidence calibration. even for fine structures such 

as the brain cortical plate. This may be due to the fact that after image upsampling 

the corresponding segmentations also need to be upsampled. For fine structures such as 

cortical plate, expert-provided labels are most accurate in the resolution used during manual 

annotation. Upsampling leads to inevitable errors in the training labels of fine structures 

that may contribute to model inaccuracy and poor calibration. Downsampling the images 

and labels substantially reduced the segmentation accuracy and calibration on fine structures 

such as cortical plate. significantly increasing/decreasing image resolution can also render an 

in-distribution test image OOD with respect to a model trained on images with very different 

resolutions. In terms of segmentation accuracy, another factor is the probability of sampling 

from different datasets. As we mentioned in section III-C, we sampled from each dataset 

with a probability proportional to the inverse of the square root of dataset size, 1 ∕ n. This 

usually resulted in higher accuracy than uniform sampling (i.e., 1 ∕ n). As an example, using 

a uniform sampling for the experiment reported in Table II resulted in DSC, HD95, and 

ASSD of 0.87±0.04, 0.88±0.03, and 0.24 ± 0.08 for CP- younger fetus, and 0.87 ± 0.11, 

8.9 ± 7.8, and 2.20 ± 2.28 for the Heart dataset. These are slightly worse than the results 

presented in Table II.

V. Conclusion

We showed that, compared with the standard approach of training on one dataset, multi-task 

learning can improve the confidence calibration of CNN-based medical image segmentation 

models. our results showed that multi-task learning leads to lower calibration errors in 

terms of ECE and MCE and strong spatial correlation between prediction confidence and 

segmentation accuracy. Additional benefits of multi-task learning include overall higher 
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segmentation accuracy and generalizability of the trained model across datasets, imaging 

modalities, and age groups. our proposed OOD detection method proved to be very accurate 

in several experiments with different datasets. As we showed in our experiments on liver 

segmentation in MRi, visually identifying OOD data could be non-trivial. Therefore, reliable 

deployment of CNN-based segmentation models for medical applications requires accurate 

OOD detection methods. This has been a challenging problem because of the massive size 

and complexity of deep learning models. Previous studies have used measures of prediction 

uncertainty for this purpose. But our experiments show that such methods are inaccurate. To 

the best of our knowledge, this is the first study to propose a method for OOD detection 

in medical image segmentation by analyzing CNN features. Some prior works, such as 

Mah-Dist [7], are based on modeling the distribution of features, which may be accurate 

for image classification, but, as our experiments show, are bound to fail in 3D medical 

image segmentation. Similarly, many previous methods have been tailored for natural image 

classification and perform poorly in medical image segmentation, as our experiments with 

DkNN have shown. Therefore, our proposed OOD detection method offers a solution to a 

hitherto-unsolved problem.
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Impact Statement—

Modern artificial intelligence methods have great potential for automatic medical 

image analysis, with applications in disease detection, assessment, and computer-aided 

intervention. However, their predictions are usually over-confident, even when the 

predictions are completely wrong. This presents a serious shortcoming of these methods 

for deployment in medical and clinical applications. In this paper, we address this 

problem for medical image segmentation, which is a central task in medical image 

analysis. We propose techniques that can reduce the over-confidence of these artificial 

intelligence methods on erroneous predictions. We also develop techniques that can 

detect when these methods fail. The techniques that we have developed in this paper can 

significantly improve the reliability of artificial intelligence methods for medical image 

analysis applications.

Karimi and Gholipour Page 20

IEEE Trans Artif Intell. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A schematic of our network architecture.
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Fig. 2. 
A demonstration of our proposed OOD detection method. Here, the model is trained on 

several datasets including CP-older fetus, Heart, and Liver-MRI-DUAL-In. TOP: Spectral 

signatures of four datasets, two of which (CP-older fetus and Liver-MRI-DUAL-In) are 

from the training data, while the other two (Hippocampus and Pancreas) are OOD. The 

spectra for the training and test samples for in-distribution data are very similar and not 

visually distinguishable. BOTTOM: Histograms of OODM, where OOD test images are 

from Pancreas, Hippocampus, and Spleen datasets. The value of the threshold τ = 0.011 is 

marked with the vertical black line.
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Fig. 3. 
Examples prediction uncertainty maps produced by a model trained to segment a 

heterogeneous pool of datasets. From left, the first column shows a slice of the image. 

The second column is the ground-truth segmentation map. The third column is the model’s 

predicted probability map (in the range [0,1]) that each voxel is a foreground voxel. The 

fourth column is the probability map thresholded at 0.5, showing the binary prediction of the 

model. The fifth column is the binary difference between the ground-truth (second column) 

and prediction (fourth column). In other words, the fifth column shows voxels where the 

model makes wrong predictions. The last column shows a voxel-wise prediction uncertainty 

map computed as −p log(p) where p is the predicted class probability for the voxel (in the 

range [0, −0.5 log(0.5)]). Note that all images in this figure are in-distribution data.
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Fig. 4. 
A slice from selected test images in the experiment reported in Table II and the output 

segmentation of the joint model that was trained on all datasets as well as individual models 

trained on each dataset. This is able to accurately segment different organs in different 

modalities. Moreover, it performs better than or comparable with dedicated models trained 

to segment each dataset separately. Note that all images used in this study are 3D; we have 

shown selected slices for visualization.
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Fig. 5. 
Example images and segmentations (in red) from the cortical plate datasets. From left, 

images come from CP-younger fetus, CP-older fetus, and CP-newborn. Postmenstrual age of 

each subject is displayed above the image.
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Fig. 6. 
An example test image from each of the three brain cortical plate datasets, the corresponding 

ground truth segmentation, and segmentations produced by models trained on each of the 

three datasets separately and by a model trained on all three datasets. A model trained on 

each one of the datasets does not segment the other two datasets accurately. For example, 

a model trained in CP- younger fetus has large errors on CP- newborn test images. On the 

other hand, a model trained on all three training datasets accurately segments test images 

from all three datasets.
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Fig. 7. 
OODM Histograms (computed using Eq. (1)) for an experiment on cortical plate 

segmentation with the model trained on CP-newborn dataset. The threshold τ = 0.00358 

is marked with the vertical black line.
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Fig. 8. 
OODM Histograms for an experiment where the model was trained on CP-younger fetus. 

(a): OODM histograms for the two other CP datasets (CP- older fetus and CP-newborn). (b): 

OODM histograms for four other datasets (Heart, Liver-CT, Hippocampus, and Pancreas).

Karimi and Gholipour Page 28

IEEE Trans Artif Intell. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
TOP: Sample images from the three liver MRI datasets. BOTTOM: The results of OOD 

detection experiment when different pairs of these three datasets are used for training. In 

the left section, green ✓ and red ✗ symbols, respectively, denote success and failure at 

test time. (a) The model was trained on Liver-MRI-DUAL-In and Liver-MRI-DUAL-Out 

datasets. The OOD data included Liver-MRI-SPIR dataset, on which the model failed at test 

time. OODM perfectly separated the OOD data from in-distribution data. (b) Liver-MRI-

SPIR and Liver-MRI-DUAL-In datasets were used for training. At test time the model 

accurately segmented Liver-MRI-DUAL-Out dataset (DSC= 0.886). OODM values for 

Liver-MRI-DUAL-Out are distributed similar to the training data. (c) Liver-MRI-SPIR and 

Liver-MRI-DUAL-Out were used for training. Note that the scales of the horizontal axes in 

(b) and (c) are different from (a).
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TABLE V

OOD detection accuracy in an experiment where in-distribution data came from CP-younger fetus, CP-older 

fetus, Prostate, Heart, Liver-CT, Liver-MRI-SPIR, Liver-MRI-DUAL-In and Liver-MRI-DUAL-Out datasets, 

and OOD data came from Pancreas, Hippocampus, and Spleen datasets.

Method accuracy sensitivity specificity AUC

Proposed method 1.00 0.98 1.00 0.98

UNC-Dropout 0.55 0.48 0.63 0.62

DkNN 0.76 0.67 0.82 0.79

UNC-Ensemble 0.84 0.87 0.71 0.82

Outlier exposure 0.83 0.80 0.86 0.80

Lee-2017 0.76 0.69 0.78 0.77

ODIN 0.70 0.61 0.68 0.67

Mah-Dist 0.74 0.66 0.80 0.77
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TABLE VI

OOD detection accuracy in an experiment on CP segmentation. The model was trained on CP-newborn. CP-

younger fetus and CP-older fetus are used as OOD.

Method accuracy sensitivity specificity AUC

Proposed method 1.00 1.00 1.00 1.00

UNC-Dropout 0.57 0.54 0.68 0.67

UNC-Ensemble 0.80 0.77 0.81 0.79

Outlier exposure 0.82 0.77 0.81 0.80

Lee-2017 0.70 0.68 0.71 0.73

ODIN 0.67 0.68 0.68 0.70

Mah-Dist 0.80 0.72 0.78 0.77
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TABLE VIII

OOD detection accuracy in an experiment where the model was trained on Liver-MRI-DUAL-In and Liver-

MRI-DUAL-Out datasets. Images from Liver-MRI-SPIR dataset are OOD.

Method accuracy sensitivity specificity AUC

Proposed method 1.00 1.00 1.00 1.00

UNC-Dropout 0.64 0.61 0.60 0.65

UNC-Ensemble 0.82 0.81 0.84 0.84

Outlier exposure 0.80 0.84 0.75 0.82

Lee-2017 0.77 0.78 0.74 0.78

ODIN 0.60 0.55 0.62 0.59

Mah-Dist 0.66 0.74 0.60 0.70

DkNN 0.59 0.59 0.56 0.57
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