Skip to main content
. Author manuscript; available in PMC: 2024 Apr 1.
Published in final edited form as: IEEE Trans Artif Intell. 2022 Mar 15;4(2):383–397. doi: 10.1109/tai.2022.3159510

TABLE III.

Results of experiments on cortical plate segmentation. We compare three different transfer learning approaches with our proposed method of multi-task learning with heterogeneous data. We ran paired t-tests between the four results (three transfer learning trials and multi-task learning trial), separately for each of the three datasets. Statistically better results (p = 0.01), were marked with bold type.

Training/fine-tuning data Test data DSC HD95 (mm) ASSD (mm) ECE MCE
Train on CP- younger fetus CP- younger fetus 0.90 ± 0.03 0.82 ± 0.03 0.21 ± 0.03 0.07 ± 0.02 0.20 ± 0.04
   ↳ Fine-tune on CP- older fetus CP- older fetus 0.80 ± 0.05 1.05 ± 0.22 0.40 ± 0.12 0.13 ± 0.06 0.31 ± 0.07
    ↳ Fine-tune on CP- newborn CP- newborn 0.92 ± 0.07 0.80 ± 0.03 0.19 ± 0.02 0.07 ± 0.02 0.19 ± 0.02
Train on CP- older fetus CP- older fetus 0.82 ± 0.04 1.10 ± 0.21 0.37 ± 0.08 0.10 ± 0.04 0.22 ± 0.10
   ↳ Fine-tune on CP- younger fetus CP- younger fetus 0.90 ± 0.04 0.88 ± 0.04 0.22 ± 0.04 0.10 ± 0.03 0.17 ± 0.06
    ↳ Fine-tune on CP- newborn CP- newborn 0.92 ± 0.03 0.89 ± 0.04 0.18 ± 0.02 0.07 ± 0.01 0.17 ± 0.03
Train on CP- newborn CP- newborn 0.92 ± 0.03 0.84 ± 0.01 0.18 ± 0.03 0.06 ± 0.03 0.12 ± 0.04
   ↳ Fine-tune on CP- younger fetus CP- younger fetus 0.90 ± 0.03 0.85 ± 0.03 0.22 ± 0.04 0.08 ± 0.02 0.19 ± 0.03
    ↳ Fine-tune on CP- older fetus CP- older fetus 0.81 ± 0.05 0.96 ± 0.18 0.34 ± 0.14 0.16 ± 0.05 0.34 ± 0.05
Train a single model for all datasets CP- younger fetus 0.90 ± 0.02 0.81 ± 0.01 0.18±0.03 0.05±0.03 0.13±0.08
CP- older fetus 0.85±0.03 0.90±0.16 0.30±0.05 0.04±0.02 0.09±0.05
CP- newborn 0.92 ± 0.02 0.81 ± 0.02 0.16±0.02 0.03±0.01 0.07 ±0.02