
Anterior cingulate sulcation is associated with 
onset and survival in frontotemporal dementia
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Frontotemporal dementia is the second most common form of early onset dementia (<65 years). Despite this, there are few known disease- 
modifying factors. The anterior cingulate is a focal point of pathology in behavioural variant frontotemporal dementia. Sulcation of the 
anterior cingulate is denoted by the presence of a paracingulate sulcus, a tertiary sulcus developing, where present during the third ges-
tational trimester and remaining stable throughout life. This study aims to examine the impact of right paracingulate sulcal presence on 
the expression and prognosis of behavioural variant frontotemporal dementia. This retrospective analysis drew its population from two 
clinical samples recruited from memory clinics at university hospitals in the USA and The Netherlands. Individuals with sporadic behav-
ioural variant frontotemporal dementia were enrolled between 2000 and 2022 and followed up for an average of 7.71 years. T1-MRI data 
were evaluated for hemispheric paracingulate sulcal presence in accordance with an established protocol by two blinded raters. Outcome 
measures included age at onset, survival, cortical thickness and Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating 
determined clinical disease progression. The study population consisted of 186 individuals with sporadic behavioural variant frontotem-
poral dementia (113 males and 73 females), mean age 63.28 years (SD 8.32). The mean age at onset was 2.44 years later in individuals 
possessing a right paracingulate sulcus [60.2 years (8.54)] versus individuals who did not [57.76 (8.05)], 95% confidence interval > 0.41, 
P = 0.02. Education was not associated with age at onset (β = −0.05, P = 0.75). The presence of a right paracingulate sulcus was asso-
ciated with an 83% increased risk of death per year after age at onset (hazard ratio 1.83, confidence interval [1.09–3.07], P < 0.02), whilst 
the mean age at death was similar for individuals with a present and absent right paracingulate sulcus (P = 0.7). Right paracingulate sulcal 
presence was not associated with baseline cortical thickness. Right paracingulate sulcal presence is associated with disease expression and 
survival in sporadic behavioural variant frontotemporal dementia. Findings provide evidence of neurodevelopmental brain reserve in be-
havioural variant frontotemporal dementia that may be important in the design of trials for future therapeutic approaches.
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Graphical Abstract

Introduction
Behavioural variant frontotemporal dementia (bvFTD) is the 
most common clinicoradiological syndrome within the fron-
totemporal dementias (FTDs). FTD is highly heritable, 
∼30% of suffers have a strong family history with heritabil-
ity accounted for in 10–20% of FTD by autosomal dominant 
mutations in the chromosome 9 open reading frame 72 
(C9orf72), progranulin (GRN) or microtubule-associated 
protein tau (MAPT) genes.1,2 The mean age at onset 
(AAO) is between 45 and 65 years.3 There are however docu-
mented cases under the age of 30, whilst up to 30% of pa-
tients have a later onset (≥65 years).3 AAO is variably 
affected by pathological genetic mutations, where present 
and genetic variation, including the presence of risk allele 
rs1990622 in the TMEM106B gene.4-6 Despite these few ex-
ceptions, there are no known factors affecting AAO in 
bvFTD. Environmental disease-modifying factors, including 
educational, occupational attainment and occupational en-
gagement have been shown to provide resilience to the 
neuropathological burden of FTD, however they have yet 
to be shown to be associated with AAO.5,7-11 BvFTD atro-
phy has a predilection for the Anterior Cingulate (AC) and 
frontoinsula regions.12 Gyrification of the AC may be char-
acterized morphologically by the presence of a paracingulate 
sulcus (PCS), a tertiary sulcus which, where present develops 
during the third trimester of gestation denoting the existence 
of a Paracingulate Gyrus (PCG).13 The presence of a PCS is 
more frequent in the left hemisphere of healthy 

individuals.14-17 The PCG is active during performance of 
cognitively demanding tasks drawing on higher-order execu-
tive function where possession of leftward PCS asymmetry 
(presence of a left but not right hemisphere PCS, as displayed 
in Fig. 1) has been associated with a performance advan-
tage.18,19 Furthermore, individuals with asymmetric PCS 
patterns display greater inhibitory control and cognitive effi-
ciency.20-23 Conversely, in schizophrenia, a reduced distribu-
tion of leftward PCS asymmetry is observed and interpreted 
as evidence of a prenatal neurodevelopmental aberration in 
the pathogenesis of schizophrenia.15,17

In previous work, the distribution of hemispheric PCS fre-
quency in sporadic bvFTD was similar to that of healthy in-
dividuals.24 Significantly however, right PCS presence was 
associated with a later AAO in sporadic bvFTD, and is a po-
tential proxy of brain reserve.24 Studied proxies of reserve 
(including education in AD) provide resilience to disease bur-
den prior to phenoconversion. Following this critical point, 
compensatory reserve mechanisms become overwhelmed 
and clinical decline proceeds more rapidly than in those lack-
ing such proxies.25 Despite the possible effect on disease ex-
pression, the impact of right PCS presence on disease 
progression and survival after AAO in bvFTD is not yet 
known. The present study aims to confirm and expand 
upon findings from Harper et al.24 in a novel independent co-
hort with longitudinal data. Our primary hypothesis was an 
association between right PCS presence and a later AAO in 
sporadic bvFTD. Secondary hypotheses were that following 
disease onset, and independent of education, disease 
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progression would occur more rapidly, and survival would 
be shorter in individuals possessing a right PCS. Our tertiary 
hypothesis was that whilst at the same clinical stage, bvFTD 
individuals with a present right PCS would display greater 
disease burden, demonstrated by cortical atrophy, than those 
without.

Materials and methods
Participants
This retrospective analysis included individuals with sporadic 
bvFTD drawn from two clinical samples recruited from mem-
ory clinics at university hospitals in the USA (Penn FTDC, en-
rolment between 2004 and 2018) and The Netherlands 
(Amsterdam Dementia Cohort,26 enrolment between 2000 
and 2022). BvFTD was diagnosed in accordance with revised 
International bvFTD Consortium criteria27 following multi-
disciplinary team assessment, clinical examination, standar-
dized symptom assessment, neuropsychological and 
neurological examination, blood, and cerebrospinal fluid 
analysis of core Alzheimer’s disease biomarkers and brain 
MRI. Detailed cohort descriptions are published in the 
Supplementary Material. Individuals with suspected 
hereditary bvFTD; Woods28 criteria ‘High’ or ‘Medium’ 
(Penn FTDC) or Goldmans29 criterion ≤ 3.0 (Amsterdam 
Dementia Cohort) were excluded. C9orf72 mutations were 

excluded in all and GRN and MAPT mutations were ex-
cluded in 92 individuals. Two individuals met subclassifica-
tion criteria30 for right temporal lobe variant FTD and eight 
individuals met FTD-ALS criteria31 and were excluded. 
Neuropathological data were available in 38 individuals. 
Where neuropathology was consistent with isolated 
non-FTLD neurodegenerative disease, (n = 4) individuals 
were excluded whereas individuals with concomitant FTLD 
and non-FTLD neurodegenerative disease were included 
(n = 1). All subjects gave informed consent in accordance 
with the Declaration of Helsinki prior to inclusion in their 
native studies. Native studies were conducted with approval 
of respective local ethics committees, as detailed in the 
Supplementary Material.

Magnetic resonance image 
acquisition and software
High-resolution volumetric whole brain T1-weighted mag-
netic resonance (MR) images were obtained from all indivi-
duals using 1.5 or 3.0 Tesla systems with a minimum spatial 
resolution of 1.5 × 1.5 × 1.5 mm. Protocols and MRI related 
details are provided in the Supplementary Material.

Prior to analysis, images were pseudo-anonymized and 
visually inspected. Six individuals were removed due to dis-
tortion of their MR data by movement artefact. A further 
two individuals were removed with postoperative 

Figure 1 Cingulate and paracingulate sulci identification and measurement. A 58-year-old male with probable bvFTD displays a 
leftward pattern of paracingulate asymmetry, A and B. A. The left hemisphere displaying a traced ‘present’ (length ≥ 20 mm), left paracingulate 
sulcus (red) and a traced cingulate sulcus (yellow). B. The right hemisphere displays a traced cingulate sulcus (yellow) with absence of a right PCS. 
C. A 62-year-old male with definite bvFTD, images display a traced ‘present’ right paracingulate sulcus, 23 mm in length (red). D. A 60-year-old 
female with probable bvFTD, images display a traced ‘prominent’ (length ≥ 40 mm) right paracingulate sulcus, 53 mm in length (red).
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intracranial anatomy obscuring PCS identification. Cortical 
reconstruction and volumetric segmentation were performed 
on T1 3D MR images using FreeSurfer Software version 
7.3.2 image analysis pipeline (http://surfer.nmr.mgh. 
harvard.edu/). This procedure is described elsewhere32 and 
briefly in the Supplementary Material. Reconstructed data 
sets were visually inspected for accuracy by a single rater. 
Cortical thickness was successfully calculated in 176 indivi-
duals. Nineteen scans were excluded following quality con-
trol on the basis of poor surface reconstruction.

Paracingulate sulcus measurement 
and classification criteria
Manual PCS classification was performed radiographically 
according to a protocol adapted from Garrison’s established 
protocol for PCS classification,33 which has been used and de-
scribed in Harper et al.24 and is documented in full in the 
Supplementary Material. The PCS was categorized in a bin-
ary fashion; ‘present’ (≥20 mm) or ‘absent’ (<20 mm), as is 
standard amongst PCS classification protocols.15,17,33-35

Additionally, present PCS were subclassified as ‘prominent’ 
where their length exceeded 40 mm, as is standard.14,33

Sulcation ratings were performed by two raters, L.H. and 
A.F.S., who were blinded to individuals’ clinical and demo-
graphic data.

Clinical disease expression, 
progression and survival
AAO was determined by a clinician based on patient and 
caregiver history as the first date at which typical symp-
toms, compatible with a diagnosis of bvFTD,27 became 
apparent. Disease severity was assessed longitudinally in 
the Penn FTDC cohort at baseline and follow-up accord-
ing to the Frontotemporal Lobar Degeneration-modified 
Clinical Dementia Rating (FTLD-CDR)36 The FTLD- 
CDR was selected over other clinical rating tools due to 
its superiority in the accurate classification of disease 
severity in FTD.36,37 Survival data were collected from 
all individuals.

Statistical analysis
Group differences in categorical variables were tested using 
chi-squared tests. Continuous measures were compared 
using two-sample t-tests. Normality was confirmed using 
the Shapiro–Wilk test. A one-sided t-test was conducted to 
analyse the association between right PCS presence and 
AAO. Effect sizes were calculated according to Cohen’s d. 
Simple and multiple linear regression models were fitted to 
evaluate covariable and interaction effects on AAO. 
Correlations between continuous variables were calculated 
using Pearson’s method whilst correlation between categor-
ical and continuous variables utilized point biserial correl-
ation. Survival analyses were performed from AAO to time 
of death from any cause (outcome = 1) or censoring date 

(outcome = 0). The censoring date was recorded as the date 
of last contact with the individual. Survival analyses were 
carried out using the Kaplan–Meier method with log rank 
post hoc testing by means of univariate and multivariate 
stepwise Cox proportional-hazard regression analysis. 
Hazard ratios (HRs) are provided with 95% confidence in-
tervals (CIs) and reported as percentage risk of death per 
year for the right PCS present group compared to the right 
PCS absent group. A linear mixed effects model with random 
intercepts and slopes was fitted to analyse clinical disease 
progression. Cortical thickness calculations were under-
taken in FreeSurfer Software version 7.3.2 (http://surfer. 
nmr.mgh.harvard.edu/). Group differences in cortical thick-
ness according to right PCS presence were analysed by fitting 
a vertex-based general linear model corrected for the effect of 
age and sex. Cluster-wise correction for multiple compari-
sons was performed using Monte Carlo simulation,38 with 
a threshold of P < 0.05. Statistical analysis was performed 
using R software (R CoreTeam 2016, https://www.r- 
project.org/). P < 0.05 was considered statistically signifi-
cant. Statistical procedures related to primary and secondary 
hypotheses alongside power calculations were pre-registered 
and may be accessed at https://aspredicted.org/SKM_6C1. 
Primary analyses were performed in accordance with the 
pre-registration, and secondary analyses with relation to 
PCS presence and local gyrification index are documented 
in the Supplementary Material.

Results
The study population consisted of 186 sporadic bvFTD indi-
viduals (113 males and 73 females), with a mean age of 63.28 
years (SD 8.32) and AAO of 59.15 (8.4). Demographic and 
results data are displayed in Table 1 and Supplementary 
Table 1.

Mean AAO was 2.44 years later (Cohen’s d = 0.29, CI 
[>0.41], P = 0.02) in individuals with a present [mean 
AAO 60.20 years (SD 8.54)] versus absent right PCS 
[57.76 (8.05)]. These data are displayed in Fig. 2. In sensitiv-
ity analyses, independently both the Penn FTDC [mean dif-
ference (MD) = 2.48 years, P = 0.08] and the Amsterdam 
Dementia Cohort (MD = 2.8 years, P = 0.06) showed a non- 
significant, but later AAO in individuals with a present right 
PCS. Importantly this analysis was powered to identify sig-
nificance at n = 173. Mean AAO did not differ significantly 
according to left PCS presence (MD = 1.53, P = 0.16). 
Right PCS length was not significantly correlated with 
AAO (r = 0.04, CI [−0.15–0.23], P = 0.66) however mean 
AAO in individuals with a prominent right PCS was 3.11 
years later than in individuals with an absent right PCS 
[mean AAO = 60.87 years (SD 6.92) and 57.76 (8.05)], re-
spectively (t = 2.02, CI [>0.55], P = 0.02). A one-sided uni-
variate linear regression model identified a significant 
association between right PCS presence and AAO (β =  
2.44, P = 0.03). In univariate linear models, neither educa-
tion, sex or handedness was independently associated with 
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AAO (P = 0.75, 0.3 and 0.45, respectively) nor was signifi-
cant associations with AAO identified after including right 
PCS presence in a multivariate model with these variables 
(P = 0.64, 0.41 and 0.27, respectively).

Education was similar in individuals with a present 
and absent right PCS (t = 1.12, CI [−0.5–1.82], P = 0.26). 
A correlation between education and AAO was not observed 
(r = 0.09, CI [−0.06–0.23], P = 0.25). Furthermore, after 
correction for education in a one-sided multivariate linear 
model, the association between right PCS presence and 
AAO was retained (β = 2.27, P = 0.04). An interaction effect 
between education (β = 0.05, CI [−0.6–0.71], P = 0.87) and 
right PCS presence on AAO was not identified. After correct-
ing a one-sided multivariate linear model for sex, the associ-
ation between right PCS presence and AAO was retained 
(β = 2.33, P = 0.03). An interaction between sex and right 
PCS presence was identified such that AAO was greater 
in males processing a right PCS (β = 5.14, CI [0.17–10.1], 
P = 0.04), Supplementary Fig. 1.

Individuals were followed for a median of 7.71 years 
(Interquartile Range 5.00–10.8.7). Mean age at death was 
similar in individuals with present [66.94 years, (SD 9.66)] 
and absent [67.62, (7.38)] right PCS, P = 0.7. Survival was 
significantly affected by right PCS presence (chi-squared 
6.6, P = 0.01). The unadjusted risk of death per year after 

AAO was 65.1% greater in individuals processing a right 
PCS (HR 1.65, CI [1.13–2.42], P = 0.01). Kaplan–Meier es-
timates for this result are presented in Fig. 3. Risk of death 
was enhanced to 83% following correction for baseline 
FTLD-CDR, AAO, sex and years of education (HR 1.83, 
CI [1.09–3.07], P < 0.02). Sensitivity analyses after fitting 
this model identified a significantly increased risk of death 
following AAO in the Penn FTDC cohort (HR 3.82, CI 
[1.06–13.82], P = 0.04) and a non-significant increase in 
the Amsterdam Dementia Cohort (HR 1.64, CI [0.88– 
3.09], P = 0.12). No interaction effect of sex and right PCS 
presence on survival was observed (P > 0.1).

Longitudinal FTLD-CDR data were available for 44 indi-
viduals with a median follow-up time of 15.83 months. 
FTLD-CDR sum of boxes and global scores at baseline 
were similar in individuals with present and absent right 
PCS after adjusting for age, sex and education (β=−1.02, 
CI [−2.30–0.27], P = 0.12 and β=−0.24, CI [−0.16–1.89], 
P = 0.1, respectively). In a linear mixed effects model with 
fixed effects; age, sex and education, there was a non- 
significant increase in the rate of clinical disease progression 
in individuals possessing a right PCS (FTLD-CDR sum of 
boxes; β=0.26, CI [−0.79–1.32], P = 0.63 and FTLD-CDR 
global score; β=0.09, CI [−0.11–0.29], P = 0.37). These 
data are depicted in Supplementary Fig. 2.

Table 1 Study population and paracingulate status

Entire population Penn FTDC Amsterdam Dementia Cohort P-value

Participants 186 94 92
Age, mean (SD), years 63.28 (8.32) 63.15 (8.82) 63.38 (7.98) 0.87
Age at onset, mean (SD), years 59.15 (8.4) 58.16 (8.29) 60.14 (8.43) 0.11
Sex 113M: F73 59M: 35F 54M: 38F 0.54
Education,a years (SD) 13.34 (3.79) 15.88 (2.74) 10.63 (2.72) <000.1
Handedness, No. 0.69
Right 146 81 65
Left 12 9 3
Ambidextrous 5 4 1
Unknown 23 0 23
Diagnostic classification,b No
Possible 8 8 0
Probable 140 51 89
Definite 26 24 2
Unknown 11 11 0
MMSE, mean (SD) 24.18 (5.35) 23.63 (6.07) 24.8 (4.35) 0.14
FTLD-CDR sum of boxes, mean (SD) 7.51 (3.83) 9.01 (3.74) 6.71 (3.65) 0.001
FTLD-CDR global scores, mean (SD) 1.59 (0.72) 1.79 (0.59) 1.45 (0.76) 0.01
Hemispheric PCS, No. (%)
Left present 145 (78) 73 (78) 72 (78) 1
Left prominent 59 (32) 28 (30) 31 (34) 0.68
Right present 106 (57) 58 (62) 48 (52) 0.53
Right prominent 31 (17) 18 (19) 13 (14) 0.47
Deceased,c No. (%) 112 (60) 51 (56) 61 (66) 0.13
Age at death, mean (SD), years 67.19 (8.86) 67.42 (9.14) 66.92 (8.62) 0.79

Demographic and results data for entire population and according to cohort, Penn FTDC (The University of Pennsylvania Frontotemporal Degeneration Centre, PA, USA) and 
Alzheimer Center of the VU University Medical Center, Amsterdam (Amsterdam Dementia Cohort).26 Sex data: male (M); female (F). present = PCS length ≥ 20 mm, prominent =  
PCS length ≥ 40 mm. Frequency. t-Tests and chi-squared tests were performed to evaluate differences in continuous and nominal data, respectively. 
SD, standard deviation; MMSE, Mini Mental State Examination; FTLD-CDR, Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating;36 Sum, sum of boxes; Global, 
global score; Hemispheric PCS, hemispheric paracingulate sulcus. 
aEducation, years data available for 94/94 Penn FTDC and 88/92 Amsterdam Dementia Cohort. 
bDiagnostic classification according to revised International bvFTD Consortium criteria.27

cSurvival data were available for 185/186 individuals.
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Individuals were at a similar clinical disease stage at time 
of MRI imaging, with no association identified between 
baseline FTLD-CDR sum of boxes scores and right PCS pres-
ence, corrected for time from MRI imaging to CDR-FTLD 
scoring (β=−0.71, CI [−1.99–0.57], P = 0.27). Twenty-three 
regions were initially identified with significant differences in 
cortical thickness according to right PCS presence. All how-
ever failed to survive cluster correction for multiple analysis. 
Cluster details are reported in the Supplementary Tables 2 
and 3. In a complementary analysis, cortical thickness differ-
ences between groups were investigated based on cortical 
parcellations according to the Desikan-Killiany atlas,39

traced in regions corresponding of the PCS, displayed in 
Supplementary Figs 3 and 4. In a multiple linear regression 
model corrected for age at scan, sex, handedness and years 
of education, no right hemisphere regions were identified 
with a significant difference in cortical thickness according 
to right PCS presence before correction for multiple compar-
isons. Individuals with a right PCS displayed increased insula 
cortical thickness (β = 0.1, CI [0.001–0.2], P = 0.048). This 
result did not however survive correction for multiple 
analyses.

Discussion
In keeping with Harper et al.,24 this study provides confirm-
ation in a novel, adequately powered cohort of an associ-
ation between right PCS presence and a later AAO in 
sporadic bvFTD. Moreover, we demonstrate that this effect 
is independent of education and that right PCS presence is a 
prognostic biomarker in sporadic bvFTD, associated with 
worse survival following AAO. These findings have import-
ant consequences; they develop our understanding of the 
natural history of sporadic bvFTD, give an insight into the 
implications of neurodevelopmental variability on the ex-
pression of a neurodegenerative disease and offer a proxy 
for brain reserve in bvFTD with potential implications for 
therapeutic trials.

Reserve theories suggest that individuals possessing 
adaptable functional brain processes; cognitive reserve, 
and/or preferential neurobiological capital; and brain reserve 
possess resilience to the clinical manifestations of a 
disease despite significant pathological burden.40 Cognitive 
reserve is a widely accepted concept in AD41-44 where life-
time experiences, including but not limited to educational at-
tainment, are associated with reduced age-specific risk of 
developing AD.40,45,46 Furthermore, the concept of motor 
reserve has recently emerged in Parkinson’s disease.47 In 
FTD, greater occupational attainment,7 degree of occupa-
tion8 and active leisure engagement48 have, in some studies, 
been associated with increased functional and/or structural 
cerebral impairment despite comparable clinical severity. 
Furthermore, individuals with greater composite education-
al and occupational attainment scores process increased 
brain maintenance, with preservation of frontal anatomical 
integrity compared to individuals with lower scores.5

Independently, education has also been suggested as a proxy 
of cognitive reserve in both FTD9-11,48,49 and bvFTD specif-
ically.7 Conversely, others have contested the association in 
bvFTD50 or restrict this claim to certain disease pheno-
types.51 Comparison of studies is difficult due to methodo-
logical heterogeneity. Furthermore, there are likely power 
issues in the published literature. In keeping with Harper 
et al.24 years of education was not associated with AAO in 
the present study. As for brain reserve, there is significant 
support for this model in AD where gross anatomical mea-
sures such as head circumference and brain volume are iden-
tified proxies.52-54 To the best of our knowledge, a proxy of 
brain reserve, as defined by Stern et al.,40 has yet to be estab-
lished in FTD. Results from the present study alongside 
Harper et al.24 therefore provide evidence for the first proxy 
of brain reserve in FTD. The rapidity of decline in survival 
after disease onset in individuals possessing a right PCS is 
in accordance with reserve theories and the wealth of data 
in AD, whereby despite initial tolerance of disease burden, 
following phenoconversion individuals with higher reserve 
suffer a more rapid rate of clinical decline than individuals 
with low reserve.25,41,55 This phenomenon has been ob-
served with respect to occupational attainment in bvFTD.56

Figure 2 Age at symptom onset by right hemisphere 
paracingulate sulcal presence in bvFTD. Red dots represent 
individuals with a present right paracingulate sulcus (PCS), n = 80. 
Blue dots represent individuals with an absent right PCS, n = 106. 
Black lines represent group mean age at symptom onset; 57.76 (SD 
8.05) and 60.2 (8.54), respectively, for individuals with an absent and 
present right PCS, mean difference = 2.44, P = 0.02. Boxes extend 
from the 25th to 75th percentile, and horizontal black lines within 
the boxes denote median values.
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Longitudinal analysis of clinical disease progression did 
not reach statistical significance in the present study due to 
powering, the direction of the observed result however 
may indicate quicker disease progression in individuals 
with a right PCS, supporting the rapid decline theory follow-
ing overload of compensatory mechanisms.

Right PCS presence was not associated with cortical thick-
ness, a surrogate for cortical atrophy in this study. A discon-
nect between cortical atrophy and clinical disease expression 
is however described in bvFTD,57,58 suggesting that cortical 
thickness may not provide an accurate representation of dis-
ease burden in all bvFTD sufferers.

The precise neurobiological substrate of reserve remains 
unknown although greater synaptic density, neuron quantity, 
brain size, advantageous metabolic properties and increased 
cerebral blood flow have all been suggested as potential struc-
tural and functional underpinnings.5,9,48,49 Functionally, dis-
ruption of the salience network, an intrinsic resting state 
network anchored in the AC, is correlated with clinical sever-
ity in bvFTD.50,59,60 PCS presence has been shown to alter the 
functional architecture of the AC cortex at rest with 

hemispheres possessing a present PCS displaying enhanced 
connectivity.61 Furthermore, gyrification is considered to re-
flect the density of structural neural connectivity, with the de-
gree of cortical folding partially pathway-specific dependent 
on mechanical tensions.62-66 As such, a salience network 
topographically and/or structurally altered by the presence 
of a right PCS may therefore possess resilience to bvFTD.

The right laterality of our findings is relevant for several 
reasons. The right dorsal ACC (dACC) is active unilaterally, 
early in decision-making and monitoring of cognitive con-
flict.67,68 Thus, right but not left dACC could be more closely 
linked with development of core bvFTD symptoms. 
Secondly, the salience network is organizationally dominant 
in the right hemisphere69,70 with multimodal structural and 
functional imaging studies69-71 identifying stronger and 
broader intrinsic functional network couplings in the right 
compared to left dACC. Finally, Von Economo neurons 
that are selectively targeted in bvFTD are more numerous 
in the right than left hemisphere.72,73

A non-significant but later AAO in females with sporadic 
bvFTD74 and all cause bvFTD75 has been reported. Others 

Figure 3 Kaplan–Meier estimate of survival by right paracingulate sulcal presence. Kaplan–Meier curve for survival in individuals with 
behavioural variant frontotemporal dementia (n = 185) according to right paracingulate sulcal presence. Red line indicates survival in individuals 
with a present right paracingulate sulcus (PCS). Blue line represents individuals with an absent right PCS.
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have demonstrated better than expected executive function in 
females despite similar levels of atrophy to males.75 In keeping 
with previous work,24 however, we did not observe a direct as-
sociation between sex and AAO in sporadic bvFTD. An inter-
action effect was observed with right PCS presence such that 
males with a present PCS had a later AAO than other sub-
groups. As reported by Illan-Gala et al.,75 survival after AAO 
in the present study was similar in males and females.

This study is subject to limitations, importantly neuro-
pathological diagnostic verification was available in only a 
minority of individuals. Access to data regarding individual’s 
presenting symptoms and their phenotypic development was 
unavailable for this study. It’s recommended that this is ad-
dressed in future study preferably aided by neuropsycho-
logical testing in relation to PCS presence. Furthermore, 
the retrospective determination of AAO and assessment of 
clinical disease severity may be subject to bias. Finally, life-
time exposures with a potential impact on bvFTD onset in-
cluding but are not limited to occupation, physical exercise 
and dietary habits were not accounted for in this study but 
have been considered to impact upon cognitive reserve.40,76

The effect of PCS on disease progression requires further 
study in a sufficiently powered cohort with neuropathologic-
al and longitudinal clinical and radiological data. The impact 
of PCS presence on disease expression and progression re-
mains unstudied in a genetic bvFTD and is highly indicated 
given that therapeutic trials of disease-modifying therapies 
for bvFTD will likely be studied first in genetic cases. The 
present study identifies that gyrification in a region with a 
predilection to early and extensive pathological insult by a 
neurodegenerative disease provides resilience to clinical dis-
ease expression. Future study may explore the impact of rele-
vant local gyrification patterns across the spectrum of the 
neurodegenerative diseases.

Summary
Findings presented in the present study indicate an associ-
ation between right PCS presence and disease expression 
and survival in sporadic bvFTD, providing evidence for the 
first proxy of brain reserve in FTD that may be important 
in the design of trials for future therapeutic approaches.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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