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Abstract

We present a framework for learning Granger causality networks for multivariate categorical time 

series based on the mixture transition distribution (MTD) model. Traditionally, MTD is plagued 

by a nonconvex objective, non-identifiability, and presence of local optima. To circumvent these 

problems, we recast inference in the MTD as a convex problem. The new formulation facilitates 

the application of MTD to high-dimensional multivariate time series. As a baseline, we also 

formulate a multi-output logistic autoregressive model (mLTD), which while a straightforward 

extension of autoregressive Bernoulli generalized linear models, has not been previously applied 

to the analysis of multivariate categorial time series. We establish identifiability conditions of 

the MTD model and compare them to those for mLTD. We further devise novel and efficient 

optimization algorithms for MTD based on our proposed convex formulation, and compare the 

MTD and mLTD in both simulated and real data experiments. Finally, we establish consistency 

of the convex MTD in high dimensions. Our approach simultaneously provides a comparison 

of methods for network inference in categorical time series and opens the door to modern, 

regularized inference with the MTD model.
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1 Introduction.

Granger causality [17] is a popular framework for assessing the relationships between 

time series, and has been widely applied in econometrics, neuroscience, and genomics, 

amongst other fields. Given two time series x and y, the idea is to use the temporal 
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structure of the data to assess whether the past values of one, say x, are predictive of 

future values of the other, y, beyond what the past of y can predict alone; if so, x is said 

to Granger cause y. Recently, the focus has shifted to inferring Granger causality networks 

from multivariate time series data, with the goal of uncovering a sparse set of Granger 

causal relationships amongst the individual univariate time series. Building on the typical 

autoregressive framework for assessing Granger causality, the majority of approaches for 

inferring Granger causal networks have focused on real-valued Gaussian time series using 

the vector autoregressive model (VAR) with sparsity inducing penalties [19, 42]. More 

recently, this approach has been extended to non-Gaussian data such as multivariate point 

processes using sparse Hawkes processes [48], count data using autoregressive Poisson 

generalized linear models [18], or even time series with heavy tails using VAR models with 

elliptical errors [36]. In contrast, inferring networks for multivariate categorical time series 

under this paradigm has received less attention.

Multivariate categorical time series arise naturally in many domains. For example, we might 

have health states from various indicators for a patient over time, voting records for a set 

of politicians, action labels for players on a team, social behaviors for kids in a school, or 

musical notes in an orchestrated piece. There are also many datasets that can be viewed as 

binary multivariate time series based on the presence or absence of an action for some set 

of entities. Furthermore, in some applications, collections of continuous-valued time series 

are each quantized into a small set of discrete values, like the weather data from multiple 

stations [12], wind data [39], stock returns [32], or sales volume for a collection of products 

[10]. Our work develops both interpretable and computationally efficient methodology for 

Granger causality network estimation in such cases using sparse penalties [19, 42]. Existing 

approaches to modeling categorical series both do not scale to higher dimensional series and 

also lack Granger causal interpretability, hampering their ability to estimate large Granger 

causality networks. We first discuss the specific drawbacks of existing approaches and then 

introduce the contributions of our proposed framework.

The mixture transition distribution (MTD) model [4, 39], originally proposed for 

parsimonious modeling of higher order Markov chains, can provide an approach to 

modeling multivariate categorical time series [10, 32, 49]. The MTD model reduces each 

categorical interaction to a standard single dimensional Markov transition probability table. 

While alluring due to its elegant construction and intuitive interpretation, widespread use 

of the MTD model has been limited by a non-convex objective with many local optima, 

a large number of parameter constraints, and unknown identifiability conditions [32, 49, 

3]. For these reasons, the few applications of the MTD model to multivariate time series 

have looked at a maximum of three or four time series. To bypass the limitations of MTD, 

autoregressive generalized linear models have been advocated for categorical time series. In 

particular, autoregressive generalized linear binomial models are often used for the special 

case of two categories per series [18, 2]. While their multinomial-output extension to a 

larger number of states per series has not been widely adopted, they have been applied to the 

univariate time series case [24].

We refer to the autoregressive multinomial GLM as the mixture logistic transition 

distribution (mLTD). The mLTD model uses a logistic function to bypass parameter 
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constraints, results in a convex objective, and has well-known identifiability conditions. 

However, these advantages of mLTD come at the cost of reduced interpretability, mainly 

because the transition distribution in mLTD depends nonlinearly on the model parameters. 

Recently, a constrained autoregressive probit model that improves interpretability has 

been proposed [32]. However, the probit model is both non-convex and inference is 

computationally intensive, limiting applications to higher dimensional series. As such, one 

is still torn between a computational and interpretability tradeoff. Methods for learning 

Granger causality networks among general time series based on transfer entropy or 

directed information have been proposed. In particular, the empirical estimator [37] and 

the context tree weighting estimator [23] for directed information are specifically applicable 

to categorical time series. However, consistency guarantees of these estimators are derived 

under the pairwise (group-wise) Markov assumption, and implementing these algorithms 

can be computationally intensive.

We address these issues by going back to the interpretable MTD framework and showing 

how one can improve its computational drawbacks. In particular, we recast inference in the 

MTD model as a convex problem through a novel re-parameterization. We further develop 

a regularized estimation framework for identifying Granger causality for multivariate 

categorical time series. We also establish, for the first time, conditions for identifiability 

in the MTD model and compare the identifiability conditions for MTD and mLTD models. 

We find that while the identifiability conditions for the MTD model are given by a non-

convex set, we may easily enforce the constraints using our convex re-parameterization 

by augmenting the likelihood with appropriate convex penalties. We then develop efficient 

projected gradient and Frank-Wolfe algorithms for optimizing the penalized convex MTD 

objective. Our projected gradient algorithm depends on a Dykstra splitting method for 

projection onto the constraint sets of the MTD model. This computational approach for 

MTD enables this model to be applied to large, modern datasets for the first time. 

Importantly, the computational insights we provide carry over to the suite of other 

applications of MTD models, such as higher-order Markov chains, beyond the multivariate 

categorical time series which are the focus herein.

As a comparison benchmark we also develop a penalized mLTD model for Granger 

causality in multivariate Markov chains. While straightforward, the application of the 

penalized mLTD framework to multivariate categorical time series with more than two 

categories is new. We compare MTD and mLTD methods under multiple simulation 

conditions and use the MTD method to uncover Granger causality structure in both music 

[27] and iEEG brain recording [9] data sets. Finally, we also establish, for the first time, 

consistency of the convex MTD in high dimensions, which facilitates future theoretical 

developments in this area.

2. Categorical Time Series and Granger Causality.

2.1. Granger Causality.

Let xt = x1t, …, xdt ∈ X denote a d-dimensional categorical random variable indexed by time 

where X = X1 × X2 × ⋯ × Xd , with Xi denoting the set of possible values of xit. Let mi = Xi
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be the cardinality of set Xi, i.e., the number of categories that series i may take. A length T
multivariate categorical time series is the sequence X = x1, …, xt, …, xT .

An order k multivariate Markov chain models the transition probability between the 

categories at lagged times t − 1, …, t − k and those at time t using a transition probability 

distributions:

p xt |xt − 1, … = p xt |xt − 1, …, xt − k . (2.1)

Due to the complexity of fully parameterizing this transition distribution, it is common to 

simplify the model and assume that the categories at time t are conditionally independent of 

one another given the past realizations:

p xt |xt − 1, …, xt − k = ∏
i = 1

d
p xit |xt − 1, …, xt − k . (2.2)

For simplicity, we assume k = 1, but stress that all models and results equally apply to higher 

orders of k. By the decomposition assumption (2.2), the problem of estimation and inference 

can be divided into independent subproblems over each series i. Using this decomposition, 

we define Granger non-causality for two categorical time series xi and xj as follows.

Definition 2.1.—Time series xj is not Granger causal for time series xi iff ∀t,

p(xit |x1 t − 1 , …, xj t − 1 , …, xd t − 1 ) =
p xit |x1 t − 1 , …, x j − 1 t − 1 , x j + 1 t − 1 , …, xd t − 1 .

Definition 2.1 states that xjt is not Granger causal for time series xit if the probability that xit

is in any state at time t is conditionally independent of the value of xj t − 1  at time t − 1 given 

the values of all other series xk t − 1 , k ≠ i, j, at time t − 1. Definition 2.1 is natural since it 

implies that if xjt does not Granger cause xit, then knowing xj t − 1  does not help predicting the 

future state of series i, xit. For real-valued data, classical definitions of Granger non-causality 

generally state that the conditional mean, in homoskedastic models, or conditional variance, 

in heteroskedastic models, of xit do not depend on the past values xj t − 1 . Thus, Definition 2.1 

is a generalization of the classical case to multivariate categorical data, where notions like 

conditional mean and variance are less applicable. The same definition has been considered 

before, for example, in [14].

2.2. Tensor Representation for Categorical Time Series.

Each individual conditional distribution in Equation (2.2) can be represented as a conditional 

probability tensor Pi with d + 1 modes of dimension mi × m1 × ⋯ × md. Each entry of the 

tensor is given by

Pxit, x1 t − 1 , …, xd t − 1
i = p xit |x1 t − 1 , …, xd t − 1 . (2.3)
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Definition 2.1 may be stated equivalently using the language of tensors: xj does not Granger 

cause xi if all subtensors along the mode associated with xj are equal. Specifically,

P1:mi, 1:m1, …, xj t − 1 = 1, …, 1:md
i = ⋯ = P1:mi, 1:m1, …, xj t − 1 = mj, …, 1:md

i . (2.4)

This subtensor view of Granger non-causality in categorical time series is displayed 

graphically in Figure 1.

The tensor interpretation suggests a naive penalized likelihood method for Granger non-

causality selection in categorical time series: perform penalized maximum likelihood 

estimation of the conditional probability tensor with a penalty that enforces equality 

among the subtensors of each mode. While we have explored the above approach in low 

dimensions, e.g. for d ≤ 5, memory, and in turn, computational requirements for storing 

the complete probability tensor become infeasible for even moderate dimensions since 

Pi has mi × m1 × ⋯ × md entries. Other authors have modeled the conditional probability 

distribution of Markov chains using a Bayesian nonparametric higher order singular value 

decomposition [41] that adaptively shrinks the number of parameters needed to represent 

the high-dimensional tensor. We take an alternative approach and, instead, in Sections 

2.3 and 2.4, present tensor parameterizations where the number of parameters needed to 

represent the full conditional probability tensor grows linearly with d. We establish Granger 

non-causality conditions and associated penalized likelihood methods for estimation under 

these parameterizations in Sections 3 and 4, respectively.

In specifying our models, and throughout the remainder of the paper, we focus on a single 

conditional of xit given xt − 1 in Equation (2.2). For notational simplicity, we drop the i index.

2.3. The MTD Model.

The MTD model as in [39] provides an elegant and intuitive parameterization of a high-

order Markov chain. Here, we extend this model to the case of multiple time series, and 

model the multivariate Markov transition as a convex combination of pairwise transition 

probabilities. The MTD model is given by:

p xit |x1(t − 1), …, xd(t − 1) = γ0p0 xit + ∑
j = 1

d
γjpj xit |xj(t − 1) , (2.5)

where p0 is a probability vector, pj( . | ⋅ ) is a pairwise transition probability table between 

xj t − 1  and xit and γ = γ0, γ1, …, γd  is a d + 1 dimensional probability distribution such that 

1Tγ = 1 with γj ≥ 0, j = 0, …, d. We let the matrix Pj ∈ ℝmi × mj denote the pairwise transition 

probability Pxit, xj t − 1
j = pj xit |xj t − 1 . Thus, 1TPj = 1T , Plk

j ≥ 0, l = 1, …, mi, k = 1, …, mj. We also 

let p0 ∈ ℝmi denote the intercept, where pxit
0 = p0 xit . While past formulations of the MTD 

model neglect the p0 intercept term, we show below that the intercept is crucial for model 

identifiability and, consequently, Granger causality inference. Finally, we note that the 
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MTD model may be extended by adding interaction terms for pairwise effects [4], such as 

pjk xit |xj t − 1 , xk t − 1 , though we focus our presentation on the simple case above.

2.4. The mLTD Model.

The multinomial logistic transition distribution model (mLTD) is given by:

p xit |x1(t − 1), …, xd(t − 1) =
exp zxit

0 + ∑j = 1
d Zxit, xj(t − 1)

j

∑x′ ∈ Xi exp zx′
0 + ∑j = 1

d Zx′, xj(t − 1)
j

, (2.6)

where Zj ∈ ℝmi × mj and z0 ∈ ℝmi. The probit model in [32] is not a natural fit for inferring 

Granger causality networks both due to the non-convexity of the probit model and the 

non-convex constraints imposed on the Zj matrices. Note that, like the MTD model, the 

mLTD model naturally allows adding interaction terms, though we focus again on the simple 

case above.

2.5. Comparing MTD and mLTD Models.

Both MTD and mLTD models represent the full conditional probability tensor using 

individual matrices for each xj series, Pj for MTD and Zj for mLTD. However, how these 

matrices are composed and restrictions on their domains differ substantially between the two 

models. The MTD model is a convex combination of pairwise probability tables, whereas 

mLTD is a nonlinear function of the unrestricted Zjs. MTD may thus be thought of as a 

linear tensor factorization method for conditional probability tensors, where the tensor is 

created by summing probability table slices along each dimension. This interpretation of 

MTD is displayed graphically in Figure 2.

3. Convexity, Identifiability and Granger Causality.

In this section, we first introduce a novel re-parameterization of the MTD model that 

renders the log likelihood of the MTD model convex. The convex formulation alone opens 

up an array of possibilities for the MTD framework beyond our multivariate categorical 

time series focus, eliminating the primary barrier to adoption of this model, i.e., non-

convexity and associated computationally demanding inference procedures. The proposed 

change-of-variables also allows us to derive both novel identifiability conditions for the 

MTD model and Granger causality restrictions that hold for both MTD and mLTD models. 

The non-identifiability of the MTD model was first pointed out by [28], but no explicit 

conditions or general framework for identifiability were given. We show that while the 

identifiability conditions for MTD are non-convex, they may be enforced implicitly by 

adding an appropriate convex penalty to the convex log-likelihood objective. The proofs of 

all results are given in the Supplementary Material.

3.1. Convex MTD.

Maximum likelihood estimator for the MTD model under the γ, P  parameterization is 

defined by the non-convex optimization problem:
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minimize
P, γ

− ∑
t = 1

T
log γ0pxit

0 + ∑
j = 1

d
γjPxit, xj(t − 1)

j

subject to 1TPj = 1T , Pj ≥ 0, ∀j 1Tγ = 1, γ ≥ 0.
(3.1)

The log-likelihood surface is highly non-convex, following from the multiplication of γj and 

Pj in the log term. It also contains many local optima due to the general non-identifiability. 

Indeed, the set of equivalent models forms a non-convex region in the γ, P  parameterization 

(i.e., the convex combination of equivalent models is not necessarily another equivalent 

model). This limitation may lead to many non-convex shaped ridges and sets of equal 

probability.

Fortunately, the optimization problem in (3.1) may be recast as a convex program using the 

re-parameterization Zj = γjPj and z0 = γ0p0. Using this reparameterization, we can rewrite the 

factorization of the conditional probability tensor for MTD in Equation (2.5) as

p xit |x1(t − 1), …, xd(t − 1) = zxit
0 + ∑

j = 1

d
Zxitxj(t − 1)

j . (3.2)

The full optimization problem for maximum log-likelihood including constraints then 

becomes:

minimize
Z, γ

− ∑
t = 1

T
log zxit

0 + ∑
j = 1

d
Zxitxj(t − 1)

j

subject to 1TZj = γj1T , Zj ≥ 0, ∀j 1Tγ = 1, γ ≥ 0.
(3.3)

Problem (3.3) is convex since the objective function is a linear function composed with a log 

function and only involves linear equality and inequality constraints [6].

The Zj reparameterization in Equation (3.2) also provides clear intuition for why the MTD 

model may not be identifiable. Since the probability function is a linear sum of Zjs, one may 

move probability mass around, taking mass from some Zj and moving to some Zk, k ≠ j or 

z0, while keeping the conditional probability tensor constant. These sets of equivalent MTD 

parameterizations have the following appealing property:

Proposition 3.1.—The set of MTD parameters, Z, that yield the same factorized 
conditional distribution p xit |x t − 1  forms a convex set.

Taken together, the convex reparameterization and Proposition 3.1 imply that the convex 

function given in Equation (3.3) has no local optima, and that the globally optimal solution 

to Problem (3.3) is given by a convex set of equivalent MTD models.
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3.2. Identifiability.

3.2.1. Identifiability for the MTD Model.—The re-parameterization of the MTD 

model in terms of Zjs, instead of γj and Pj, combined with the introduction of an intercept 

term, allows us to explicitly characterize identifiability conditions for the MTD model.

Theorem 3.2.: Every MTD distribution has a unique parameterization where the minimal 

element in each row of Pj (and thus Zj) is zero for all j.

The intuition for this result is simple: any excess probability mass on a row of each Zj may 

be pushed onto the same row of the intercept term z0 without changing the full conditional 

probability. This operation may be done until the smallest element in each row is zero, 

but no more without violating the positivity constraints of the pairwise transitions. The 

identifiability condition in Theorem 3.2 also offers an interpretation of the parameters in 

the MTD model. Specifically, the element Zmn
j  denotes the additive increase in probability 

that xit is in state m given that xj t − 1  is in state n. Furthermore, the γj parameters now 

represent the total amount of probability mass in the full conditional distribution explained 

by categorical variable xj, providing an interpretable notion of dependence in categorical 

time series. The mLTD model, however, does not readily suggest a simple and interpretable 

notion of dependence from the Zj matrix due to the non-linearity of the link function. The 

identifiability conditions are displayed pictorially in Figure 3.

Unfortunately, the necessary constraint set for identifiability specified in Theorem 3.2 is a 

non-convex set since the locations of the zero elements in each row of Zj are unknown. 

Naively, one could search over all possible locations for the zero element in each row of 

each Zj; however, this quickly becomes infeasible as both m and d grow. Instead, we add a 

penalty term Ω Z , or prior, that biases the solution towards the uniqueness constraints. This 

regularization also aids convergence of optimization since the maximum likelihood solution 

without identifiability constraints is not unique. Letting

LMTD(Z) = − ∑
t = 1

T
log zxit

0 + ∑
j = 1

p
Zxitxj(t − 1)

j , (3.4)

the regularized estimation problem is given by

minimize
Z, γ

LMTD(Z) + λΩ(Z)

subject to 1TZj = γj1T , Zj ≥ 0, ∀j, 1Tγ = 1, γ ≥ 0 .
(3.5)

Theorem 3.3.: For any λ > 0 and Ω Z  that does not depend on z0 and is increasing with 

respect to the absolute value of entries in Zj, the solution to the problem in Equation (3.5) is 
contained in the set of identifiable MTD models described in Theorem 3.2.

Intuitively, by penalizing the entries of the Zj matrices, but not the intercept term, solutions 

will be biased to having the intercept contain the excess probability mass, rather than the Zj
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matrices. Thus, even with a very small penalty, we constrain the solution space to the set of 

identifiable models. Theorem 3.3 characterizes an entire class of regularizers that enforce the 

identifiability constraints for MTD. As we explain in Section 4.1, a simple choice for Ω Z  is 

a regularizer that also selects for Granger causality.

3.2.2. Identifiability for the mLTD Model.—The non-identifiability of multinomial 

logistic models is also well-known, as is the non-identifiability of generalized linear models 

with categorical covariates. Combining the standard identifiability restrictions for both 

settings gives the following result.

Proposition 3.4.: ([1]) Every mLTD has a unique parameterization such that first column 

and last row of Zj are zero for all j and the last element of z0 is zero.

These conditions are displayed pictorially in Figure 3. Under the identifiability constraints 

for both MTD and mLTD models, at least one element in each row must be zero. For MTD 

this zero may be in any column, while for mLTD the zero may, without loss of generality, be 

placed in the first column of each row. For mLTD, the last row of Zj must also be zero due to 

the logistic output (one category serves as the ‘baseline’); in MTD, instead, each column of 

Pj must sum to one.

3.3. Granger Causality in MTD and mLTD.

Under the Zj parameterization for MTD and mLTD specification of Equation (2.6), we have 

the following simple result for Granger non-causality conditions:

Proposition 3.5.—In both the MTD model of Equation (3.2) and the mLTD model of 

Equation (2.6), time series xj is Granger non-causal for time series xi if and only if the 

columns of Zj are all equal. Furthermore, all equivalent MTD model parameterizations give 

the same Granger causality conclusions.

Intuitively, if all columns of Zj are equal, the transition distribution for xit does not depend 

on xj t − 1 . This result for mLTD and MTD models is analogous to the general Granger 

non-causality result for the slices of the conditional probability tensor being constant along 

the xj t − 1  mode being equal. Based on Proposition 3.5, we might select for Granger non-

causality by penalizing the columns of Zj to be the same. While this approach is potentially 

interesting, a more direct, stable method takes into account the conditions required for 

identifiability of the Zj under both models.

Under the identifiability constraints for both MTD and mLTD given in Theorems 3.2 and 

Proposition 3.4, respectively, xj is Granger non-causal for xi if and only if Zj = 0 (a special 

case of all columns being equal). For both MTD and mLTD models this fact follows from 

each row having at least one zero element; for all the columns to be equal, as stated in 

Proposition 3.5, all elements in each row must also be equal to zero. Taken together, if we 

enforce the identifiability constraints, we may uniquely select for Granger non-causality by 

encouraging some Zj to be zero.
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4. Granger Causality Selection.

We now turn to procedures for inferring Granger non-causality statements from observed 

multivariate categorical time series. In Section 3, we derived that if Zj = 0, then xj is 

Granger non-causal for xi in both MTD and mLTD models. To perform model selection, 

we take a penalized likelihood approach and present a set of penalty terms that encourage 

Zj = 0, while maintaining convexity of the overall objective. The final parameter estimates 

automatically satisfy the identifiability constraints for MTD. We also develop an analogous 

penalized criterion for selecting Granger causality in the mLTD model.

4.1. Model Selection in MTD.

We now explore penalties that encourage the Zj matrices to be zero. Under the Pj; γj

parameterization, this is equivalent to encouraging the γj to be zero. We first introduce an L0

penalized problem in terms of the original γj parameterization, and then show how convex 

relaxations of the L0 norm on γj lead to natural convex penalties on Zj. Ideally, we would 

solve the penalized L0 problem:

minimize
Z, γ

LMTD(Z) + λ∥ γ1:d ∥0

subject to 1TZj = γj1T , Zj ≥ 0 ∀j, 1Tγ = 1, γ ≥ 0,
(4.1)

where λ ≥ 0 is a regularization parameter and ∥ γ1:d ∥0 is the L0 norm over the weights; 

the intercept weight γ0 is not regularized. The L0 penalty simply counts the number of 

non-zero γj, which is equivalent to the number of non-zero Zj. This results in a non-convex 

objective. Instead, we develop alternative convex penalties suited to model selection in 

MTD. Importantly, we require that any such penalty, Ω Z , fall in the intersection of two 

penalty classes: 1) Ω Z  must be a convex relaxation to the L0 norm in Problem (4.1) to 

promote sparse solutions and 2) Ω Z  must satisfy the conditions of Theorem 3.3 to ensure 

the final parameter estimates satisfy the MTD identifiability constraints. We propose and 

compare two penalties that satisfy these criteria.

Our first proposal is the standard L1 relaxation, as in lasso regression, which simply sums 

the absolute values of γj. This penalty encourages soft-thresholding, where some estimated γj

are set exactly to zero while others are shrunk relative to the estimates from the unpenalized 

objective. Note that due to the non-negativity constraint, the L1 norm on γ1:d is simply given 

by ∑j = 1
d γj. If γ0 were included in the L0 regularization, the L1 relaxation would fail due to the 

γ simplex constraints 1Tγ = 1, γ ≥ 0 so the L1 norm would always be equal to one over the 

feasible set [35]. Our addition of an unpenalized intercept to the MTD model allows us to 

sidestep this issue and leverage the sparsity promoting properties of the L1 penalty for model 

selection in MTD. The L1 regularized MTD problem is thus given by
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minimize
Z, γ

LMTD(Z) + λ
j = 1

d
γj

subject to 1TZj = γj1T , Zj ≥ 0, ∀j, 1Tγ = 1, γ ≥ 0 .
(4.2)

Equation (4.2) may be rewritten solely in terms of the Zjs by noting that γj = 1
mj

1TZj1. 

Defining zT = (vec Z1 T , …, vec Zd T ), and assuming, for simplicity of presentation, 

Xi = m ∀i, we can rewrite the MTD constraints as

Id ⊗ A z = 0, 1Tz = m, z ≥ 0,

where

A =

1m
T −1m

T 0 0 ⋯
0 1m

T −1m
T 0 ⋯

⋯ ⋯ ⋱ ⋮ ⋮
0 0 ⋯ 1m

T −1m
T

, (4.3)

and Id is a d-dimensional identity matrix. This gives the final penalized optimization 

problem only in terms of Zj as

minimize
Z

LMTD(Z) + λ
i = 1

d 1
m1TZj1

subject to Id ⊗ A z = 0, 1Tz = m, z ≥ 0 .
(4.4)

Writing the L1 penalized problem in this form shows that the L1 penalty increases with the 

absolute value of the entries in Zj and does not penalize the intercept; it thus satisfies the 

conditions of Theorem 3.3. As a result, the solution to the problem given in Equation (4.4) 

automatically satisfies the MTD identifiability constraints. Furthermore, the solution will 

lead to Granger causality estimates since many of the Zjs will be zero due to the L1 penalty.

Another natural convex relaxation of the objective in Equation (4.1) is given by a group 

lasso penalty on each Zj [47]. The relaxation is derived by writing the L0 norm as a rank 

constraint in terms of Zj, which is then relaxed to a group lasso. Specifically, assume all 

time series have the same number of categories, i.e., mj = m ∀j. Due to the equality and 

non-negativity constraints,

∥ γ1:d ∥0 = ∥ 1Tvec Z1 , …, 1Tvec Zd ∥
0

= rank QTQ
= rank Q ,

where
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Q =

vec Z1 0 … 0

0 vec Z2 … 0
0 … ⋱ ⋮

0 … … vec Zd

.

Thus, we can use the nuclear norm on Q as a convex relaxation of ∥ γ1:d ∥0. Furthermore, the 

nuclear norm of Q is given by the sum of Frobenius norms of Zj. More specifically, denoting 

by ∥ ⋅ ∥* the nuclear norm and by ∥ ⋅ ∥F the Froebenius norm,

∥ Q ∥* =
j = 1

d
∥ Zj ∥F =

j = 1

d
tr((Zj)T(Zj)) .

This group lasso penalty gives the final problem

minimize
Z

LMTD(Z) + λ
j = 1

d
∥ Zj ∥F

subject to Id ⊗ A z = 0, 1Tz = m, z ≥ 0 .
(4.5)

Here, we penalize Zj directly, rather than indirectly via γj. The group lasso penalty drives all 

elements of Zj to zero together, such that the optimal solution sets some Zj to be all zero. 

This effect naturally coincides with our conditions of Granger non-causality that all elements 

of Zj = 0. The group lasso penalty also satisfies the conditions of Theorem 3.3 since the 

L2 norm is increasing with respect to each element in Zj and the intercept is not penalized. 

Thus, solutions to Problem (4.5) automatically enforce the MTD identifiability constraints.

The group lasso penalty tends to favor larger groups [20]. When the time series have 

different number of categories, the sizes of the coefficient matrices Zjs are different. In this 

case, one can use penalties that scale with the group size, for example, λ∑j = 1
d mj ∥ Zj ∥ F. 

For simplicity, we focus on the case where all time series have the same number of 

categories hereafter, and omit the dependence of the penalty on group sizes.

4.2. Model Selection in mLTD.

To select for Granger causality in the mLTD model, we add a group lasso penalty to each of 

the Zj matrices, similar to Equation (4.5), leading to the following optimization problem:
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minimize
Z

∑
t = 1

T
zxit

0 + ∑
j = 1

d
Zxitxj(t − 1)

j

+ log ∑
x′ ∈ Xi

exp zx′
0 + ∑

j = 1

d
Zx′xj(t − 1)

j + λ ∑
j = 1

d
Zj

F

subject to Z1:mi, 1
j = 0, Zmi, 1:mj

j = 0 ∀j.

(4.6)

For two categories, mi = 2 ∀i, this problem reduces to sparse logistic regression for binary 

time series, which was recently studied theoretically [18]. As in the MTD case, the group 

lasso penalty shrinks some Zj entirely to zero.

5. Optimization.

Here we present fast proximal algorithms for fitting both penalized MTD and mLTD 

models. The convex formulation invites new optimization routines for fitting MTD 

models since many options exist for solving problems with convex objectives with linear 

equality and inequality constraints. In the Supplementary Material, we present alternative 

MTD solvers based on Frank-Wolfe [22] and Majorization-Minimization (MM) [21], and 

discuss their trade-offs. Both Frank-Wolfe and MM algorithms for MTD take elegant 

and simple forms. Furthermore, the MM algorithm for the non-penalized convex Problem 

3.2 is equivalent to an EM algorithm for the MTD model in the original non-convex 

parameterization of Problem 3.1. As a byproduct, this equivalence shows that the EM 

algorithm under the non-convex parameterization converges to a global optima. Here we 

focus on proximal algorithms since the MM algorithm for MTD is applicable only to 

the non-penalized MTD objective and Frank-Wolfe converges slowly relative to proximal 

gradient for the dimensions we consider; see the Supplementary Material for more details.

For the mLTD model, we perform gradient steps with respect to the mLTD likelihood 

followed by a proximal step with respect to the group lasso penalty. This leads to a gradient 

step of the smooth likelihood followed by separate soft group thresholding [33] on each Zj.

For the MTD model, our proximal algorithm reduces to a projected gradient algorithm 

[33]. Projected gradient algorithms take steps along the gradient of the objective, and then 

project the result onto the feasible region defined by the constraints. Compared to other 

MTD optimization methods, our projected gradient algorithm under the Zj parameterization 

is guaranteed to reach the global optima of the MTD log-likelihood. The gradient of the 

regularized MTD model with respect to entries in Zj over the feasible set is given by

dL
dZx′x″

j = ∑
t = 1

T
1 xit = x′, xj(t − 1) = x″

1
Zxit

0 + ∑j = 1
d Zxitxj(t − 1)

j
+ λ dΩ

dZx′x″
j . (5.1)

For the L1 norm, Ω Z  is not differentiable when an element in any Zj is zero. For the 

L2 group norm, Ω Z  is not differentiable when every element in at least one Zj is zero. 
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However, the MTD constraints enforce that Zj ≥ 0. Since the point of non-differentiability 

for the L2 norm in our case occurs when elements are identically zero, we modify the 

constraints so that Zj ≥ ϵ for some small ϵ when using the group penalty. This allows 

us to ignore non-differentiability issues, and instead take gradient steps directly along the 

penalized MTD objective.

Following the notation from the end of Section 4.1, let the set 

C = z|z ≥ ϵ, Id ⊗ A z = 0, 1Tz = m  denote the modified MTD constraints with respect to 

the Zj parameterization. We perform projected gradient descent by taking a step along the 

regularized MTD gradient of Equation (5.1) and then project the result onto C. Specifically, 

the algorithm iterates the following recursion starting at iteration k = 0:

zk + 1 = PC zk − δk
dL
dz , (5.2)

where δk is a step size chosen by line search [33]. For ease of presentation, here we have 

written the projected gradient steps in terms of the vectorized variables z, rather than the 

Zj matrices. The PC x  operation is the projection of a vector x onto the modified MTD 

constraint set C:

minimize
z

∥ z − x ∥2
2

subject to z ≥ ϵ, Id ⊗ A z = 0, 1Tz = m,

with ϵ = 0 for the L1 penalty and ϵ > 0 but small for the group lasso penalty. While this is a 

standard quadratic program for which we may use the dual method [16] as, e.g. implemented 

in the R quadratic programming package quadprog [43], we have found that standard solvers 

may scale poorly as the number of time series d become large. To mitigate this inefficiency, 

here we develop a fast projection algorithm based on Dykstra’s splitting algorithm [7] 

that harnesses the particular structure of the constraint set for much faster projection, as 

described in Section 5.1.

5.1. Dykstra’s Splitting Algorithm for Projection onto the MTD Constraints.

The set C may be written as the intersection of two simpler sets: C = S ∩ B, where S is the 

simplex constraint set of the first column of each Zj matrix and the non-negativity constraint 

for all entries of Zj. Specifically,

S = Zj ∈ ℝm × m
j = 0

d
| ∑
j = 0

d
∑
i = 1

m
Zi1

j = 1, Zj ≥ 0 ∀j . (5.3)

On the other hand, B = ∪j = 1
d Bj, where Bj is the constraint set that all columns in Zj sum to 

the same value:
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Bj = Zj ∈ ℝm × m |A vec Zj = 0 , (5.4)

where the matrix A is given in Equation (4.3). Dykstra’s algorithm alternates between 

projecting onto the simplex constraints S and the equal column sums B by iterating the 

following steps. Let w0 = x, u0 = v0 = 0. Denote by PS the projection onto the set S and by 

PB the projection onto the set B. Dykstra’s algorithm amounts to the following iterations 

starting with l = 0:

yl = PS wl + ul

ul + 1 = wl + ul − yl

wl = PB yl + vl

vl + 1 = yl + vl − wl .

The PS projection may be split into a simplex projection for the constraint 

∑j = 0
d ∑i = 1

m Zi1
j = 1, Zi1

j ≥ 0 ∀i, j and a non-negativity constraint Zni
j ≥ 0 ∀i, j and n > 1. We 

perform the simplex projection in dm log dm  time using the algorithm of [13]; the non-

negativity projection is simply thresholding elements at zero and is performed in linear time. 

The PB linear projection is performed separately for each Zj:

PBj x = I − A AAT −1AT x, (5.5)

where I − A AAT −1AT  may be precomputed so the per-iteration complexity for the full 

B projection is dm4 since A is a m − 1 × m2 matrix. Importantly, this projection scheme 

harnesses the structure of the constraint set by splitting the projections into components that 

admit fast and simple low-dimensional projections. The full projection algorithm is given in 

Algorithm 5.2.

We compare projection times of the Dykstra algorithm to the active set method of [16] 

implemented in the R package quadprog [43]. The Dykstra projection for the MTD 

constraints was implemented in C++. Elements of Zj were drawn independently from a 

normal distribution with standard deviation .7 and then projected onto C. Average run times 

across 10 random realizations for d ∈ 10, 20, 30, 40, 50, 60, 70  series and m = 5 categories are 

displayed in Figure 4. The Dykstra algorithm was run until iterates changed by less than 

10−10. For each run, the elementwise maximum difference between the Dykstra projection 

and the quadprog projection was always on the scale of 10−10. Across this range of d, the 
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quadprog runtime appears to scale quadratically in d, with a total run time on the scale of 

seconds for d ≥ 20. The Dykstra projection method, however, appears to scale near linearly 

in this range with run times on the order of milliseconds. We also performed experiments 

with differing standard deviations for the independent draws of Zj and observed very similar 

results.

Algorithm 5.1

Projected gradient algorithm for MTD using Dykstra projections.

Initialize Z(0) ∀j
k = 0

whileZ(k) not converged do

 compute ∇L Z(k)  via Equation 5.1

 determine γk by line search [33]

 Z(k + 1) = DykstraMTD Z(k) + γk∇L Z(k)

end while

returnZ(k)

5.2. Comparing Model Selection and Optimization in MTD and mLTD.

Approaches to model selection in MTD and mLTD models are conceptually similar; both 

add regularizing penalties to enforce elements in Zj to zero. However, these two approaches 

differ in practice. We explore the differences in selecting for Granger causality between 

these two approaches via extensive simulations in Section 7.

Both MTD and mLTD models take gradient steps followed by a proximal operation. In 

the mLTD model, this proximal operation is given by soft thresholding on the elements 

of Zj. In the MTD optimization the proximal operation reduces to a projection onto the 

MTD constraint set. Importantly, due to the restricted domain of the MTD parameter set, 

the normally non-smooth penalty terms become smooth over the constraint set and we 

thus include them in the gradient step. In mLTD, the soft threshold proximal operation is 

performed in linear time while in MTD the projection is performed by iteratively using the 

Dykstra algorithm, where each step of the Dykstra algorithm is performed in log-linear time.

Algorithm 5.2

DykstraMTD: Dykstra algorithm for projection onto the MTD constraints.

z = z0 T , vec Z1 T , …, vec Zd T T

Let S be the ordered indices of z whose elements belong in the first column of some Zj, j > 0 or in z0

Let (j) refer to ordered indices of z whose elements belong to Zj ∀j.
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w0 = z
u0 = v0 = 0
l = 0

whilewl not converged do

 yS
l = Simplex Projection wS

l + pS
l

 via [13]

 y\S
l = Positive Threshold w\S

l + u\S
l

 ul + 1 = wl + ul − yl

 w(0)
k = y(0)

l + v(0)
l

 forj = l:ddo

  w(j)
l = PBj y(j)

l + v(j)
l

 via Equation 5.5

 end for

 v(l + 1) = yl + ql − wl

 l = l + l
end while

returnwl

6. Estimation Consistency of MTD Model.

In this section, we establish an upper bound for estimation error of MTD parameters under 

the group lasso penalty. Analogous results can be obtained for the standard lasso penalty.

We first note that the MTD likelihood is of the same form as a multinomial GLM model 

with identity link, i.e., with probability modeled as linear combination of covariates. 

However, the dependence in the time series and the identity link create additional 

technicalities in the proof, and we will use newly developed concentration and entropy 

results in the dependent sample setting to overcome these difficulties.

We begin by stating the assumptions. Recall that X = x1, …, xt, …, xT  is a Markov chain 

with state space X. The transition kernel is given by (2.2) and (2.5). As in [34], we say that 

X is φ-irreducible, if there exists a non-zero σ-finite measure φ on X such that for all A ⊂ X
with φ A > 0 and for all x ∈ X, there exists a positive integer n such that Pn x; A > 0. Here, 

Pn x; ⋅  is the distribution of xn given x0 = x. Our first assumption concerns the nature of the 

data generating model and is rather mild.

Assumption 1.

X is aperiodic and φ-irreducible, and has a unique stationary distribution π.

For the ease of presentation, we will write the MTD likelihood as a multinomial model 

with identity link. Let I ⋅  be the indicator function. Define W t0 = W t0
1 , …, W t0

m ⊤ ∈ ℝm

where W t0
l = I xit = l , and hence W t0 indicates the state of time series i at time t. We 
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define W tj = W tj
1 ⊤, …, W tj

m ⊤ ⊤
∈ ℝm2

, for each j ∈ 1, …, d , where W tj
l = W tj

l1, …, W tj
lm ⊤

and W tj
lk = I xit = l, xj t − 1 = k . Hence, W tj indicates both the state of time series i at time t

and the state of time series j at time t − 1. Define a new covariate vector W ∈ ℝm + dm2
 as 

W t = W t0
⊤, W t1

⊤, …, W td
⊤ ⊤. We note that each component of W  can take values only in {0, 1}, 

and denote the possible values of W  as W. The MTD model can then be written as

p xit |xt − 1 = W t
⊤β0, (6.1)

where β0 ∈ ℝm + dm2
 is the coefficient of interest defined in terms of Z’s. Specifically, 

for a general set of MTD parameters, we let β0 = Z0, βj = vec Zj  for j ∈ 1, …, d  and 

define β = β0
⊤, β1

⊤, …, βd
⊤ ⊤. In other words, the first m components correspond to the intercept 

and each subsequent consecutive m2 components correspond to a transition matrix. The 

superscript 0 denotes the true parameter value.

Denote the group lasso penalty by Ω(β) = ∑j = 1
d ∥ βj ∥2 = ∑j = 1

d ∥ Zj ∥F, where the intercept is 

left unpenalized. The MTD optimization problem can be written as

minimizeβ − 1
T ∑

t = 1

T
log W t

⊤β + λΩ(β) , (6.2)

subject to Id ⊗ A β1:d = 0, m1⊤β0 + ∑
j = 1

d
1⊤βj = m, β ≥ 0. (6.3)

Let Rn and R be the empirical and conditional expected negative log-likelihood risks, 

respectively

Rn(β) = − 1
T ∑

t = 1

T
log W t

⊤β ; R(β) = − 1
T ∑

t = 1

T
E log W t

⊤β |At − 1 , (6.4)

where At is the σ-algebra generated by x1, …, xt. Furthermore, let S denote the active 

set of β0, i.e., S = j: j > 0, βj
0 ≠ 0  and Sc denote its complement in 1, …, d . We define 

Ω+(β) = ∑j ∈ S ∥ βj ∥1 and Ω−(β) = ∑j ∈ Sc ∥ βj ∥1. With this formulation, we are now ready to 

state the next assumptions.

Assumption 2.

For all W ∈ W such that W Tβ0 ≠ 0, W Tβ0 ≥ c T, d  for some function c that only depends on 

T  and d. Moreover, we assume that
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S
c2 T, d

log(d)log3 T
T = o 1 . (6.5)

Assumption 3.

Define a semi-norm τ ⋅  as τ(β) = β⊤Eπ W tW t
⊤ β. For a stretching factor L ≥ 1, define

ΓΩ(L, S, τ) = min
β

τ β :β ∈ ℬ, ∥ β0 ∥1 + Ω+ β = 1, Ω− β ≤ L
−1

, (6.6)

ϕ2 L, S, τ = ΓΩ
−2 L, S, τ S , (6.7)

where ℬ is the set of all β that can be written as a scaled difference between two vectors that 
satisfy the MTD model constraints and identifiability constraints. We assume that for some 

L ≥ 1, ϕ2 L, S, τ ≥ c1 for some constant c1.

Assumption 2 states that the transition probabilities are either 0 or bounded away from 0 

by some quantity that only depends on the sample size and dimension. We further assume 

that this quantity is larger than the estimation error, which we will derive later. It ensures 

that when the parameter estimates are close to the true value, the likelihoods are also close. 

This in general may not be the case, as log(⋅) is unbounded when its argument approaches 

0 and is not Lipschitz-continuous. Assumption 3 is a compatibility condition, often used in 

establishing estimation consistency of lasso-type estimators [8]. It is slightly weaker than 

the restricted eigenvalue condition which is also commonly used. Intuitively, this assumption 

requires that inactive groups are not too correlated with the active ones. The requirement that 

β ∈ ℬ constrains the inherent co-linearity among the covariates.

Due to the Markovian structure, the design W t t = 1
T  has to be treated as random, yet the 

compatibility constant is defined using population quantities. Hence, we need to show that 

the sample version of compatibility constant converges to its population counterpart defined 

in Assumption 3. To this end we use concentration results for Markov chains developed in 

[34] based on spectral methods.

A key quantity for the concentration results is the pseudo spectral gap of the chain [34]. 

We re-state the relevant definitions here for completeness. Let L2 π  be the Hilbert space of 

complex valued measurable functions on X that are square integrable with respect to π. We 

equip L2 π  with the inner product f, g π = ∫ fg*dπ. Define a linear operator P on L2 π  as 

Pf x = EP x, ⋅ f , which is induced from the transition kernel P . The spectrum of a chain is 

defined as

S2 = {λ ∈ ℂ:(λI − P)−1 does not exist as a bounded linear operator on L2(π)} . (6.8)
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If P is a self-adjoint operator, the spectral gap is defined as

γ = 1 − sup λ:λ ∈ S2, λ ≠ 1 if eigenvalue 1 has multiplicity 1,
0 otherwise. (6.9)

The self-adjointness of P corresponds to the reversibility of the Markov chain with transition 

kernel P . In general, the chain specified by the MTD model may not be reversible. In this 

case, define the time reversal of P  as the transition kernel

P*(x, y) = P y, x
π x π(y) . (6.10)

Then, the induced linear operator P* is the adjoint of P on L2 π . Note that when the chain is 

indeed reversible, we have P* = P. Finally, the pseudo spectral gap of P is defined as

γps = max
k ≥ 1

γ((P*)kPk)/k , (6.11)

where γ((P*)kPk) denotes the spectral gap of the self-adjoint operator (P*)kPk. See Section 

3.1 in [34] for additional discussion on the pseudo spectral gap. We make the following 

assumption on the pseudo spectral gap:

Assumption 4.

The pseudo spectral gap γps satisfies |S | log d /Tγps = o(1).

This assumption requires that as d grows, the pseudo spectral gap of the chain does not 

approach 0 too fast. For a uniformly ergodic chain, the pseudo spectral gap is closely related 

to its mixing time, and this assumption requires that the mixing time does not grow too 

large. If γps is lower bounded by some constant, Assumption 4 reduces to an assumption 

on the dimension and sparsity relative to the sample size. Methods have been proposed 

to estimate the pseudo spectral gap [44], which can be used to assess the validity of this 

assumption empirically.

We are now ready to state our main theorem on the estimation error of the MTD model.

Theorem 6.1.

(Estimation error) Let 0 < δ < 1. Suppose that there exists Mmax ≥ 0 and λϵ such that for all 

0 ≤ M ≤ Mmax

sup
β:∥ β0 − β0

0 ∥1 + Ω β − β0 ≤ M
Rn β − R β − Rn β0 − R β0 ≤ λϵM,

(6.12)

and
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32λϵ(1 + δ)2 S
δ2ϕ2(1/(1 − δ), S, τ)

≤ Mmax . (6.13)

Take λ ≥ 8λϵ/δ. Then, under Assumption 1 and Assumption 4, for sufficiently large T , we 

have that

∥ β̂0 − β0
0 ∥1 + Ω(β̂ − β0) ≤

4λ(1 + δ)2 S
δϕ2( 1

1 − δ , S, τ)
. (6.14)

Furthermore, under Assumption 3, the RHS is upper bounded by C δ λ S  where C δ  is a 

constant depending on δ.

This theorem states that the estimation error defined in terms of Ω ⋅  is closely related to λϵ. 

The next lemma quantifies the magnitude of λϵ.

Lemma 6.2.

Under Assumption 2 and Assumption 3, we can take λϵ and Mmax to satisfy (6.12) and (6.13), 

and

λϵ = Op
1

c T , d
log d log3 T

T , Mmax = O(c(T , d)) . (6.15)

Combining Theorem 6.1 and Lemma 6.2, we have the following corollary.

Corollary 6.3. Under Assumptions 1–4, we have that

∥ β̂0 − β0
0 ∥1 + Ω(β̂ − β0) = Op

S
c T , d

log d log3 T
T . (6.16)

If the minimal nonzero transition probability is large enough so that 1/c T , d = O 1 , we 

get a convergence rate of Op |S |
log d log3 T

T . Compared with the classical results on the 

estimation error of lasso (see, for example, [5]), we have an extra log T  term. This is due to 

a concentration result in the dependent data setting [40]. Investigating whether this log factor 

can be removed would be an interesting question for future research.

Based on the estimation error bound, one can consider a thresholded version of the MTD 

estimator to achieve variable selection consistency. The thresholding step helps eliminating 

false positives, without the stringent irrepresentable condition, which is required for variable 
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selection consistency of the lasso [30]. Specifically, we can use a threshold of ct
log d log3 T

T
for some appropriately chosen ct. If we additionally assume that the minimal signal strength 

is of order larger than the estimation error bound, we can achieve variable selection 

consistency asymptotically.

7. Experiments.

We study the performance of our approaches to Granger causality detection in categorical 

time series. First, we compare penalized mLTD and MTD methods across multiple 

simulated data scenarios in Section 7.1. In Section 7.2 we apply our penalized MTD method 

to detect Granger causal connectivity between musical elements in a music dataset of Bach 

chorales and in Section 7.3 between iEEG sensors during seizures in an awake canine.

7.1. Simulated Data.

We perform a set of simulation experiments to compare the MTD and mLTD model 

selection methods. Specifically, we compare the MTD group lasso, L1-MTD, and mLTD 

group lasso methods on simulated categorical time series generated from a sparse MTD 

model, a sparse mLTD model and a sparse latent vector autoregressive model (VAR) with 

quantized outputs. In the sparse VAR setting, we also compare the three proposed methods 

to a penalized VAR fit using the ordinal categorical variables. For all experiments, we 

consider time series of length T ∈ 200, 400, 800, 1600 , d ∈ 15, 25 , and number of categories 

m ∈ 2,3, 4,5, 6 . We first explain the details of each simulation condition and then discuss the 

results.

Sparse MTD.—For the MTD model, we randomly generate parameters by γij ∼ zijϕij

∑l = 1
d zilϕil

where ϕi ∼ Dirichlet α  and zij ∼ Binomial δ . We let δ = . 15, α = 5. Columns of Pij are 

generated according to P: l
ij ∼ Dirichlet(γ) with γ = . 7. (Note that here we have added a 

superscript i to P to specifically indicate the j to i interaction, whereas previously we 

dropped the i index for notational simplicity by assuming we were just looking at the series 

i term.) To ensure that the columns are not close to identical in Pij (which would imply 

Granger non-causality), Pij is sampled until the average total variation norm between the 

columns is greater than some tolerance ρ. This ensures that non-causality occurs only when 

Pij are zero, and not due to equal columns in the simulation. For our simulations, we set 

ρ = . 3. A lower value of ρ makes it more difficult to learn the Granger causality graph since 

some true interactions might be extremely weak.

Sparse mLTD.—For the mLTD model, the nonzero Zij parameters are generated by 

Zlk
ij ∼ zijN 0, σZ

2  where zij ∼ Binomial δ  with δ = . 15.

Sparse Latent VAR.—To examine data generated from neither of the models considered, 

we simulate data from a continuous time series yt ∈ ℝd according to a sparse VAR(1):
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yt = Ayt − 1 + ϵt, (7.1)

where ϵt ∼ N 0, σ2Id . The sparse matrix A is generated by first sampling entries Bij ∼ N 0, σA
2

and then setting Aij = Bijzij, where zij ∼ Binomial δ  with δ = . 15. We then quantize each 

dimension, yit, into m categories to create a categorical time series xit. For example, when 

m = 3, xit = 1 if yit is in the (0,.33) quantile of yi1, …yiT , and so forth.

Results.—For all methods — MTD L1, MTD group lasso, and mLTD group lasso — we 

compute the true positive rate and false positive rate over a grid of λ values, and trace out 

the ROC curve. We then compute the area under the ROC curve. The results are displayed 

as boxplots across 20 simulation runs in Figures 5, 6, and 7 for the categorical time series 

generated by MTD, mLTD, and latent VAR, respectively. We note that the mLTD group 

lasso model performs best when the data are generated from a mLTD, and likewise the 

MTD L1 and MTD group lasso perform better when the data are generated from a MTD. As 

pointed out in [20], when the groups are homogeneous in the sense that most coefficients 

in the active group are nonzero, group lasso tends to perform well. This is the case in the 

MTD model as the coefficients in nonzero Pij are generated from a Dirichlet distribution. 

However, this principle is less applicable when the data are generated from a mLTD model 

as we have model misspecification. MTD with either group lasso or lasso penalty tries to 

find the best MTD approximation to the true data generating mechanism. Interestingly, for 

data generated from mLTD, we see improved performance as a function of the number 

of categories m for all T  and d settings, while for MTD performance starts high, dips 

and goes back up with increasing m. This is probably due to the simulation conditions, 

as in both MTD and mLTD models Granger causality can be quantified as the difference 

between the columns of Zij. When there are more categories, there is higher probability 

under our simulation conditions that there will be some columns with large deviation from 

other columns in Zij. This leads to improved Granger causality detection when it exists. 

Furthermore, we notice that in general the performances of all three methods are better when 

the data are generated from a mLTD model compared to a MTD model. This is again related 

to the simulation conditions. In the MTD model, the columns of Zij are generated from a 

Dirichlet distribution with values constrained between 0 and 1, and the differences among 

columns are in general smaller than those in the mLTD model where the coefficients are 

generated using a normal distribution. Thus the connections among time series in the sense 

of Granger causality are weaker in the MTD model than the mLTD model. The difference in 

the signal strengths is illustrated in Figure SM3 in the Supplementary Material.

In the latent VAR simulation, the MTD L1 and the mLTD methods have comparable 

performance, and both outperform the MTD group lasso approach. However, under model 

misspecfication, the relative performance of these methods might depend on how well 

they approximate the true data generating mechanism. There is also evidence of worsened 

performance for all three methods as the quantization of the latent VAR processes becomes 

finer, and the number of categories increases. This might be due to the increased extent of 

model misspecification. We additionally compare the proposed methods to a sparse VAR fit, 
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where we use the ordinal categorical variables directly. We observe that when the number 

of categories is small, our proposed methods perform similarly to the sparse VAR approach, 

as not much information is lost by ignoring the order. However, as the number of categories 

increases, sparse VAR approach performs better by taking the order into account.

As expected, across all simulation conditions and estimation methods increasing the 

sample size T  leads to improved performance while increasing the dimension d worsens 

performance.

We additionally present the median ROC curves in the Supplementary Material, along with 

points on the ROC curves chosen by cross-validation and BIC. In general, our numerical 

experiments indicate that the values of the tuning parameter selected by cross-validation 

tend to over-select edges, which has been observed in previous studies [29]. This highlights 

the importance of the thresholding step to reduce false positives. In contrast, BIC tends to 

give a large tuning parameter and results in an overly sparse graph when the sample size 

is small compared to the dimension; however, its performance improves considerably with 

large sample sizes.

7.2. Music Data Analysis.

We analyze Granger causality connections in the ‘Bach Choral Harmony’ data set 

available at the UCI machine learning repository [27] (https://archive.ics.uci.edu/ml/

datasets/Bach+Chorales). This data set, which has been used previously [38, 15], consists 

of 60 chorales for a total of 5665 time steps. At each time step, 15 unique discrete events 

are recorded. There are 12 harmony notes, {C, C#, D, F#, D#, E, F, G, G#, A, A#, B}, that 

take values either ‘on’ (played) or ‘off’ (not played), i.e., xjt ∈ 0,1  for j ∈ 1, …, 12 . There 

is a ‘meter’ category taking values in 1, …, 5 , where lower numbers indicate less accented 

events and higher numbers higher accented events. There is also the ‘pitch class of the base 

note’, taking 12 different values and a ‘chord’ category. We group all chords that occur less 

than 200 times into one group, giving a total of 12 chord categories.

We apply the sparse MTD model for Granger causality selection. As the sample size is 

relatively small compared to the number of time series and number of categories per series, 

we choose the tuning parameter λ by five-fold cross validation over a grid of λ values. 

However, since cross-validation tends to over-select Granger causality relationships, we 

threshold the γ weights at .01. The estimated resulting Granger causality graph is plotted in 

Figure 8. To aide in the presentation of our structural analysis below, we bold all edges with 

γ weight magnitudes greater than .06.

The harmony notes in the graph are displayed in a circle corresponding to the circle of 

fifths; the circle of fifths is a sequence of pitches where the next pitch in the circle 

is found seven semitones higher or lower, and it is a common way of displaying and 

understanding relationships between pitches in western classical music. Plotting the graph 

in this way shows substantially higher connections with respect to sequences on this circle. 

For example, moving both clockwise and counter-clockwise around the circle of fifths we 

see strong connections between adjacent pitches, and in some cases strong connections 

between pitches that are two hops away on the circle of fifths. Strong connections to pitches 
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far away on the circle of fifths are much rarer. Together, the results suggest that in these 

chorales there is strong dependence in time between pitches moving in both the clockwise 

and counter-clockwise direction on the circle of fifths.

We also note that the ‘chord’ category has very strong outgoing connections implying it has 

strong Granger causality relationship with all harmony pitches. This result is intuitive, as it 

implies that there is strong dependence between what chord is played at time step t and what 

harmony notes are played at time step t + 1. The ‘bass’ pitch is also influenced by ‘chord’ 

and tends to both influence and be influenced by most harmony pitches. Finally, we note 

that the ‘meter’ category has much fewer and weaker incoming and outgoing connections, 

capturing the intuitive notion that the level of accentuation of certain notes does not really 

relate to what notes are played.

As mentioned in Section 3.2.1, the MTD model is much more appropriate than the mLTD 

model for this type of exploratory Granger causality analysis: The γ weights intuitively 

describe the amount of probability mass that is accounted for in the conditional probability 

table, giving an intuitive notion of dependence between categorical variables. In the mLTD 

model, in contrast, there is not as an intuitive interpretation of ‘link strength’ between 

two categorical variables due to the non-linearity of the softmax function. For this reason, 

it is not clear how to define the strength of interaction and dependence given a set of 

estimated Zij parameters. We still attempted to draw such a comparison. We chose to use 

the normalized L2 norm of each Zij matrix, ∥ Zij ∥
mi mj

, as a measure of connection strength in 

the mLTD model. However, this metric does not have a direct interpretation with respect to 

the conditional probability tensor. Due to these interpretational difficulties, we present the 

results of the mLTD Bach analysis in the Supplementary Material. We note here that the 

final graph shows some of the structure of the MTD analysis: strong connections between 

chord and the harmony notes and some strong connections between notes on the circle of 

fifths. However, in general, the resulting graph is much less sparse and interpretable than the 

MTD graph.

7.3. Functional Connectivity in Canine iEEG.

We analyze functional connectivity among intracranial electroencephalogram (iEEG) 

sensors during seizures in an awake canine [11]. The data was collected from a single canine 

undergoing seizures and is available at ieeg.org [9]. Recent time series segmentation of 

iEEG data around seizure events has shown that different discrete dynamic states are active 

before, during, and after a seizure onset [45, 11]. We analyze Granger causal connectivity 

between the iEEG recording channels at the level of these discrete dynamic states, providing 

a Granger causal analysis at a more abstract level. Specifically, we segment the continuous 

measurements into nominal categorical states using a Markov switching autoregressive 

model. This analysis illustrates which channel’s dynamic states are predictive of another 

channel’s states.

Each of 18 iEEG recordings from a single dog contains d = 16 channels and T = 20000 time 

points corresponding to a two minute window around a seizure event. The time series for 

Tank et al. Page 25

SIAM J Math Data Sci. Author manuscript; available in PMC 2023 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ieeg.org


each channel was segmented into a categorical time series with m = 5 states using a Markov 

switching autoregressive model of multiple time series [46, 45]. See the Supplementary 

Material for details on the segmentation model and procedure.

We separately apply our sparse MTD model to the resulting iEEG multivariate categorical 

time series from 18 different seizure events. For each seizure, the hyperparameter λ was 

varied over 800 values sampled uniformly between 0.01 and 100000. As the sample size 

is large, the final model was selected by the Bayesian information criterion (BIC). The 

resulting estimated graphs for six representative seizure events are shown in Figure 9. For 

aided interpretability, only edges that contribute more than 1% of the total conditional 

probability tensor are displayed. In Figure 10 we display two graphs that summarize 

Granger causality across all 18 seizures. In the first, we compute the average edge weight 

across all seizures and threshold the final graph at 0.5%. In the second, for each edge we 

display the number of times that edge is included across all seizures.

The graphs in Figures 9 and 10 indicate persistent shared structure across seizures. 

The four nodes in the same row represent a strip of four electrodes that were placed 

along the anterior-posterior direction. There were two parallel strips of four electrodes 

on each hemisphere. Most connections appear horizontally across the sensor locations, 

corresponding to anterior-posterior connections among regions within the same strip, which 

should be close both spatially and functionally. The few vertical connections are between 

adjacent rows, which represent connections between strips next to each other. Some groups 

of edges like 1 → 9, 14 → 13, 13 → 14, 3 → 7, 7 → 3, 4 → 8, 8 → 4, 12 → 16, 16 → 12 

and others, appear in at least fifteen of the seizure graphs, showing the persistence in some 

Granger causal connectivity across different seizure events. Future work aims to assess the 

clinical significance of these findings. But, at a high level, we have identified that AR states, 

that capture the frequency content in individual channel signals, are correlated across time in 

a structured and sparse manner during seizure events.

8. Discussion.

We have proposed a novel convex framework for the MTD model, as well as two penalized 

estimation strategies that simultaneously promote sparsity in Granger causality estimation 

and constrain the solution to an identifiable space. We have also introduced the mLTD 

model as a baseline for multivariate categorical time series that although straightforward, 

has not been explored in the literature. Novel identifiability conditions for the MTD have 

been derived and compared to those for the mLTD model. Finally, we have developed both 

projected gradient and Frank-Wolfe algorithms for the MTD model that harnesses the new 

convex formulation. For the projected gradient optimization, we also developed a Dykstra 

projection method to quickly project onto the MTD constraint set, allowing the MTD model 

to scale to much higher dimensions. Our experiments demonstrate the utility of both the 

MTD and mLTD model for inferring Granger causality networks from categorical time 

series, even under model misspecification.

There are a number of potential directions for future work. Consistency of high dimensional 

autoregressive GLMs with univariate natural parameters for each series has been recently 
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established [18]. With less stringent parametric assumptions, the MTD model offers a more 

flexible framework than autoregressive GLMs. To handle this additional flexibility, we need 

additional assumptions on the Gram matrix and the spectral properties of the process when 

deriving an upper bound for the estimation error. We also have an extra log T  factor in 

the upper bound compared to the results for lasso-type estimators in the independent data 

setting. This log factor also appears in [18]. Whether it can be removed or not would be 

an interesting question for future research. Further theoretical comparison between mLTD 

and MTD is also important. For example, to what extent may a mLTD distribution be 

represented by an MTD one, and vice versa; or, to what extent are both models consistent for 

Granger causality estimation under model misspecification? Our simulation results suggest 

that both methods perform well under model misspecification but more general theoretical 

results are certainly needed. Our sparse MTD framework also presents a simple approach 

to sparsity estimation under simplex constraints. As mentioned in Section 4.1, typically L1

penalties are avoided under simplex constraints since the sum is constrained to equal one. 

Many authors have proposed a variety of non-convex sparsity regularizers that demand more 

involved optimization routines [35]. Inspired by our work with MTD, a simple solution is to 

leave some of the important coefficients known to be in the model unpenalized. For instance, 

treasury bonds in a sparse portfolio optimization [26] or large background clusters in sparse 

clustering and density estimation [25, 35].

It would also be interesting to explore other regularized MTD objectives, such as the 

nuclear norm on Zj when the number of categories per time series is large. This penalty 

would both select for sparse dependencies, while simultaneously sharing information about 

transitions within each Zj. While we have considered sparsity in γ, in other applications 

including categorical time series with large state-spaces, such as language modeling, the 

entries within each Zj might be sparse. Comparing the projected gradient and Frank-Wolfe 

algorithms in these sparse, large state-space settings would be interesting. Another possible 

extension includes the hierarchical group lasso over lags for higher order Markov chains 

[31] to automatically obtain the order of the Markov chain. Overall, the methods presented 

herein open many new opportunities for analyzing multivariate categorical time series both 

in practice and theoretically.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of Granger non-causality in an example with d = 2 and m1 = m2 = 3. Since the 

tensor represents conditional probabilities, the columns of the front face of the tensor, the 

vertical x1t axis, must sum to one. Here, x2 is not Granger causal for x1 since each slice of the 

conditional probability tensor along the x2 mode is equal.
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Figure 2. 
Schematic of the MTD factorization of the conditional probability tensor p x1t |x1 t − 1 , x2 t − 1

for d = 2 time series and m = 3 categories.
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Figure 3. 
Schematic displaying the identifiability conditions for the MTD model (top) and the mLTD 
model (bottom) for an example with d = 3 and m1 = m2 = m3 = 3. Identifiability for MTD 

requires a zero entry in each row of Zj, while for mLTD the first column and last row must 

all be zero. In MTD the columns of each Zj must also sum to the same value, and must sum 

to one across all Zj.
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Figure 4. 
(left) A runtime comparison of the quadprog projection method and the Dykstra projection 

method on a range of time series dimensions. (right) A zoom in of only the compute time of 

the Dykstra method.
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Figure 5. 
AUC for data generated by a sparse MTD process. Boxplots over 20 simulation runs.
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Figure 6. 
AUC for data generated by a sparse mLTD process. Boxplots over 20 simulation runs.
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Figure 7. 
AUC for data generated by a sparse latent VAR process. Boxplots over 20 simulation runs.
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Figure 8. 
The Granger causality graph for the ‘Bach Choral Harmony’ data set using the penalized 

MTD method. The harmony notes are displayed around the edge in a circle corresponding 

to the circle of fifths. Orange links display directed interactions between the harmony notes 

while green links display interactions to and from the ‘bass’, ‘chord’, and ‘meter’ variables.
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Figure 9. 
Granger causality graphs estimated from a sparse MTD model across six different seizure 

events for canine iEEG data.
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Figure 10. 
(left) Graph weighted by the average across 18 siezures and (right) graph weighted and 

colored by the number of edge inclusions across 18 seizures.
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