
Deep neural networks with controlled variable selection for the 
identification of putative causal genetic variants

Peyman H. Kassani1, Fred Lu2, Yann Le Guen1, Michael E. Belloy1, Zihuai He1,3,✉

1Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

2Department of Statistics, Stanford University, Stanford, CA, USA.

3Quantitative Sciences Unit, Department of Medicine (Biomedical Informatics Research), Stanford 
University, Stanford, CA, USA.

Abstract

Deep neural networks (DNNs) have been successfully utilized in many scientific problems for 

their high prediction accuracy, but their application to genetic studies remains challenging due 

to their poor interpretability. Here we consider the problem of scalable, robust variable selection 

in DNNs for the identification of putative causal genetic variants in genome sequencing studies. 

We identified a pronounced randomness in feature selection in DNNs due to its stochastic nature, 

which may hinder interpretability and give rise to misleading results. We propose an interpretable 

neural network model, stabilized using ensembling, with controlled variable selection for genetic 

studies. The merit of the proposed method includes: flexible modelling of the nonlinear effect of 

genetic variants to improve statistical power; multiple knockoffs in the input layer to rigorously 

control the false discovery rate; hierarchical layers to substantially reduce the number of weight 

parameters and activations, and improve computational efficiency; and stabilized feature selection 

to reduce the randomness in identified signals. We evaluate the proposed method in extensive 

simulation studies and apply it to the analysis of Alzheimer’s disease genetics. We show that the 

proposed method, when compared with conventional linear and nonlinear methods, can lead to 

substantially more discoveries.
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Recent advances in whole genome sequencing (WGS) technology have led the way in 

exploring the contribution of common and rare variants in both coding and non-coding 

regions towards risk for complex traits. One main theme in WGS studies is to understand 

the genetic architecture of disease phenotypes and, crucially, provide a credible set of 

well-defined, novel targets for the development of genomic-driven medicine1. However, 

the identification of causal variants in these datasets remains challenging due to the sheer 

number of genetic variants, the low signal-to-noise ratio and strong correlations among 

genetic variants. Most of the results published so far are derived from marginal association 

models that regress an outcome of interest on the linear effect of a single or multiple 

genetic variants in a gene2,3. The marginal association tests are well-known for their 

simplicity and effectiveness, but they often identify proxy variants that are only correlated 

with the true causal variants and may fail to capture nonlinear effects, including but not 

limited to non-additive and interaction (epistatic) effects, which are thought to represent 

a substantial component of the missing heritability associated with current genome-wide 

association studies (GWAS)4. Recent studies on Alzheimer’s Disease (AD) genetics have 

identified genes whose effects are modulated by the APOE genotype (interaction effects), 

for example, GPAA1, ISYNA1, OR8G5, IGHV3–7 and SLC24A35–9. Moreover, Costanzo 

et al.10 and Kuzmin et al.11 took a systematic approach to map genetics interactions among 

gene pairs and high-order interactions. The results highlighted the potential for complex 

genetic interactions to affect the biology of inheritance; however, the systematic analysis 

of nonlinear effects has been limited in the past largely due to the insufficient power and 

the massive multiple-testing burden inherent in explicitly testing genome-wide nonlinear 

patterns4,12–14. To bridge the gap, our paper focuses on the development of a new method 

to identify putative causal variants of a given phenotype while allowing for nonlinear effects 

for improved power.

Deep neural networks (DNNs) can efficiently learn the linear and nonlinear effects of data 

on an outcome of interest by using hidden layers in its framework15 without having to 

specify them explicitly. Deep neural networks have gained popularity for their superior 

performance in many scientific problems, showing exceptional prediction accuracy in many 

domains, including object detection, recognition and segmentation in image studies16–18. 

Although there are now large-scale genetic data available to potentially embark on deep 

learning approaches to genetic data analysis, the applications of DNN methods to WGS 

studies have been limited. One obstacle for the widespread application of DNNs to genetic 

data is their interpretability. Unlike linear regression or logistic regression, it is generally 

difficult to identify how changes to the genetic variants influence the disease outcome 

in a DNN due to its multilayer nonlinear structure. Although several methods have been 

developed to improve the interpretability of neural networks and quantify the relative 

importance of input features, most methods lack rigorous control of the false discovery 

rate (FDR) of selected features19. Moreover, existing methods are susceptible to noise and 

a lack of robustness. Ghorbani and co-workers20 have shown that small perturbations can 

change the feature importance, which can lead to dramatically different interpretations of the 

same dataset. In this paper we consider the scalable, robust variable selection problem in 

DNNs for the identification of putative causal genetic variants in WGS studies.
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The knockoff framework21 is a recent breakthrough in statistics that is designed for feature 

selection with rigorous FDR control. The idea of knockoff-based inference is to generate 

synthetic, noisy copies (knockoffs) of the original features. In a learning model with original 

features and their knockoff counterparts, the knockoffs serve as negative controls for feature 

selection. The Model-X knockoffs22 do not require any relationship that links genotypes 

to phenotypes, and impose no restriction on the number of features relevant to the sample 

size. They can therefore naturally bring interpretability to any learning method, including 

but not limited to marginal association tests, joint linear models such as Lasso23, and 

nonlinear DNNs. Notably, Sesia et al.24 proposed KnockoffZoom for genetic studies that 

are based on a linear Lasso regression23. For feature selection in nonlinear DNNs, Lu et 

al.25 proposed DeepPINK based on knockoffs, whereas Song and Li19 proposed SurvNet 

using conceptually similar surrogate variables, but neither are optimized for current genetic 

studies. Moreover, the knockoff copies/surrogate variables are randomly generated, adding 

extra randomness to the interpretation of a DNN that is already fragile. He et al.26 proposed 

KnockoffScreen to utilize multiple knockoffs to improve the stability of feature selection, 

but it is built on conventional marginal association tests in genetic studies, which do not 

account for nonlinear and interactive effects of genetic variants.

In this paper we couple a hierarchical DNN with multiple knockoffs (HiDe-MK) to develop 

an interpretable DNN for the identification of putative causal variants in genome sequencing 

studies with rigorous FDR control. Aside from the modelling of the nonlinear effects for 

enhanced power and the use of multiple knockoffs for improved stability, there are three 

additional contributions. First, we propose a hierarchical DNN architecture that is suitable 

for the analysis of common and rare variants in sequencing studies, which also allows 

adjustment of potential confounders. The new architecture requires orders of magnitude 

fewer parameters and activations compared with a fully connected neural network (FCNN) 

model. Second, we identified a vanishing gradient problem27 due to the presence of low-

frequency and rare variants in sequencing studies, and proposed a practical solution using 

the exponential rectified linear unit (ELU) activation function28. This modification leads to a 

substantial gain in power compared with the popular rectified linear unit (ReLU) activation 

function29. Third, we identified a pronounced randomness in feature selection in DNNs 

due to their stochastic nature, which may hinder interpretability and give rise to misleading 

results. We observed that different runs of a DNN with identical hyperparameters produce 

inconsistent feature importance scores (FIs), although the difference in prediction accuracy 

is negligible. We proposed a stabilized feature selection through the aggregation of FIs 

across all epochs and hyperparameters of HiDe-MK. This aggregation of FIs enabled robust 

interpretation of HiDe-MK and stabilized the feature selection. We applied the proposed 

method to the analysis of AD genetics using data from 10,797 clinically diagnosed AD cases 

and 10,308 healthy controls.

Results

Overview of the proposed stabilized HiDe-MK.

The workflow summary of the proposed stabilized Hide-MK is presented in Fig. 1 and 

Supplementary Fig. 1. The aim is to develop a deep learning-based variable selection 
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method with guarantee of FDR control through the knockoff framework. For each genetic 

variant (feature), we first construct five sets of knockoff data in which the original 

feature and knockoffs are simultaneously exchangeable, but the knockoffs are conditionally 

independent of the disease outcome given the original feature (Fig. 1a). The generation 

of multiple knockoffs for genetics data is based on the sequential conditional independent 

tuples (SCIT) algorithm proposed by He and colleagues26. Both the original and synthetic 

cohorts are fed into the neural network as inputs. Knockoffs are served as control features 

during the training and thereafter help tease apart the true signals that are explanatory for the 

response variable y ∈ ℝn, where n is the sample size.

The proposed neural network includes two hierarchical layers (Fig. 1b), which are locally 

connected dense layers. The first layer concatenates each original feature and its multiple 

knockoffs as the input for each neuron, whereas the second concatenates adjacent genetic 

variants in a nearby region. This was inspired by recent advances for the gene/window-based 

analysis of WGS data, where multiple common and rare variants are grouped for improved 

power30,31. The output of the second hierarchy includes multiple channels (filters) that help 

maximally learn the information of a local region and exploit the local correlation in each 

group. These two hierarchial layers substantially reduce the size of the parameter space 

compared with using standard dense layers. The resulting neurons are then fed into dense 

layers and then linked to the output layer together with additional covariates such as gender 

and principal components, which are used as controls for population stratifications (Fig. 1b).

The next step is to obtain the FIs, that is, the importance of each genetic variant. The 

influence of feature xi, i = 1, …, p on the response y ∈ ℝn is measured32 via the gradient 

for both true and knockoff features through the backpropagation (Fig. 1b). The gradient 

information is then summarized as FIs (see the Methods for details on how FIs are 

calculated). HiDe-MK hyperparameters were tuned based on a fivefold cross-validation. 

We then refitted the model to the whole data and calculated FIs for every epoch and every 

set of hyperparameters. We did not perform a train–test split because we focused on the 

feature selection, where sample size is critical for improved statistical power. Furthermore, 

the validity of the feature selection (that is, FDR control) is guaranteed by the knockoff 

inference, which does not require compution of FIs from held-out test data. Due to the 

random nature of fitting neural network models, and the identifiability issue that results 

from the large number of weight parameters, taking FIs from a single model can lead to 

unstable and random FIs. We therefore define the final FIs as an aggregation of FIs across 

epoch numbers and hyperparameters, which helps stabilize the proposed HiDe-MK. We 

demonstrated in both simulation studies and real data analyses that our approach—referred 

to as stabilized HiDe-MK—substantially reduced the variability and improved the stability 

of the FIs.

Once the FIs for original and knockoff features were obtained, a knockoff filter was applied 

to select causal features with controlled errors at different target FDR threshold values (for 

example, 0.10, 0.20; Fig. 1b). We used the knockoff filter for multiple knockoffs proposed 

by He and colleagues26, which leverages multiple knockoffs for improved power, stability 

and reproducibility. We describe knockoff generation, network specifications (activation 
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functions, hyperparameters, regularizations and so on), feature importance calculation and 

stabilization, and feature selection in detail in the Methods.

Stabilized HiDe-MK improved power with controlled FDR.

We performed simulation studies for both quantitative and dichotomous outcomes 

(regression and classification tasks). The aim is to evaluate the FDR and power of the 

proposed stabilized HiDe-MK compared with several conventional methods such as support 

vector machines for classification (SVM) and regression (SVR), least absolute shrinkage 

and selection operator (Lasso), ridge regression (Ridge) and DeepPINK33,34. For a fair 

comparison, all methods are based on the knockoff inference that controls the FDR. 

Different methods represent different calculations of FIs. The proposed stabilized HiDe-MK, 

DeepPINK, Ridge, SVM, SVR and Lasso are equipped with five sets of knockoffs that are 

generated by the SCIT method proposed in KnockoffScreen26.

For simulating the sequence data, each replicate consists of 10,000 individuals with genetics 

data on 2,000 variants from a 200 kb region, simulated using the haplotype dataset in 

the SKAT package35 to mimic the linkage disequilibrium structure of European ancestry 

samples. We restrict the simulation studies to common (minor allele frequency MAF ≥ 1%) 

and rare (MAF < 0.01, minor allele count MAC ≥ 10) genetic variants. Ultra-rare variants 

with MAC < 10 are excluded from the experiments3,31. These restrictions result in 400–500 

variants as input features for each replicate. The quantitative and dichotomous outcomes are 

simulated as a nonlinear function of the genetic variants. Simulation details are described in 

the Methods.

For each replicate, the empirical power is defined as the proportion of detected true signals 

among all causal signals, whereas the empirical FDR is defined as the proportion of false 

signals among all detected signals. Based on 500 replicates, we report the average empirical 

power and observed FDR at different target FDR levels from 0.01 to 0.20, with a step 

size of 0.01 (Fig. 2). We also report the standard deviation of the estimated power in 

Supplementary Table 1. The proposed method exhibits higher power (for example, target 

FDR ≥ 0.10; Fig. 2) than its counterparts. The second-best model is Lasso-MK, while SVM 

and SVR are highly competitive. Stabilized HiDe-MK exhibited a higher power than other 

linear alternatives because a DNN is able to dynamically incorporate the nonlinear effects 

without having to specify them explicitly. We found that DeepPINK exhibits lower power 

than stabilized HiDe-MK, although both methods are nonlinear. One plausible explanation 

is that DeepPINK with a ReLU activation function suffers from the vanishing gradients 

problem. We evaluated the impact of activation functions on power and present the results 

in Supplementary Fig. 2. The results demonstrated that the ELU activation function used 

in the proposed method results in higher power than other alternatives. We also evaluated 

same methods with single knockoff (as in KnockoffZoom, Sesia et al.24 and DeepPink, Lu et 

al.25) and present the results in Supplementary Fig. 3. Compared with single-knockoff-based 

methods, we show that integration of the multiple knockoffs achieves improved power. This 

is because a single knockoff has diminished power when the number of signals is small 

and the target FDR is low, which is referred to as a detection threshold issue36. To further 

validate whether our proposed method could control the FDR in the presence of ultra-rare 
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variants, we conducted another experiment without the MAC ≥ 10 filter (Supplementary Fig. 

4); the results showed that the FDR remains valid.

Application of stabilized HiDe-MK to GWAS.

The main goal of WGS studies is to identify genetic variants associated with certain disease 

phenotypes, referred to as GWAS. We applied our method to two real data problems to 

study AD genetics. For comparison, we considered feature selection in Lasso with multiple 

knockoffs, which is an extension of KnockoffZoom24 that utilizes multiple knockoffs. See 

the Methods for details on dataset preparation.

Confirmatory-stage analysis of candidate regions.—In the first task, referred to as 

a confirmatory-stage analysis, we aim to study candidate regions identified by previous 

exploratory-stage analyses to pin down the final discoveries that allow for nonlinear 

effects37. We applied stabilized HiDe-MK to the confirmatory stage using a cohort of 10,797 

clinically diagnosed AD cases and 10,308 healthy controls. The candidate regions include 

472 loci associated with AD (394 from the UK biobank analysis by He et al.8; 78 from 

previous GWAS) and with a 5 kb window centered on each locus38,39. The final dataset for 

the confirmatory stage includes 21,105 samples with 11,662 genetic variants. We present 

the results in Fig. 3. We observed that stabilized HiDe-MK identified 35 AD-associated 

genetic variants that meet the target FDR of 0.10, corresponding to 27 proximal genes 

(Supplementary Table 2). By contrast, Lasso-MK identifies 24 AD-associated variants that 

correspond to 26 proximal genes at a target FDR of 0.10. A further comparison with 

DeepPINK-MK with a ReLU activation function is displayed in Supplementary Fig. 5. We 

also performed conventional marginal association tests in GWAS and presented the results in 

Supplementary Fig. 6. Based on the standard GWAS with a 5 × 10−8 threshold, we observed 

that the marginal tests identify fewer independent loci than the joint models with conditional 

tests; for example, they missed the signals in chr7 (CASTOR3, EPHA1), chr8 (SHARPIN), 

chr15 (ADAM10), chr16 (KAT8), chr18 (ABCA7) and so on.

Functionally informed analysis of pQTLs.—In the second task, referred to as 

functionally informed analysis, we aim to identify protein quantitative trait loci (pQTL 

genetic variants that increase/decrease protein abundance level) that are also associated with 

the risk of AD. This analysis aims to discover novel variants associated with AD, which 

already have some functional support such as being associated with protein abundance 

level, such that we can translate the data-driven discovery into mechanistic insights. 

Specifically, we curated pQTLs recently identified by Ferkingstad et al.40 for a total of 

8,461 variants across the genome. We applied the proposed method to the same 21,105 

samples, and present the results in Fig. 4. We observed that stabilized HiDe-MK identified 

24 AD-associated genetic variants that meet the target FDR of 0.10, corresponding to 17 

proximal genes (Supplementary Table 3 and Fig. 4). By contrast, Lasso-MK identifies ten 

AD-associated variants corresponding to nine proximal genes at target FDR 0.10.

It is worth noting the development of the novel architecture was undertaken on simulations 

using the haplotype dataset in the SKAT package, which is independent of the real data 

application. The superior performance of stabilized HiDe-MK in this real data analysis 
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illustrates the generalizability of the proposed architecture. Overall, the proposed method is 

the first to embark on deep learning methods to genetic data that can robustly detect putative 

causal variants of a trait. Both examples (the confirmatory analysis and the functionally 

informed discovery stage) demonstrated the superior performance of the methods. Future 

work on distributed learning that further optimizes the memory use and computing time will 

be necessary to apply the model to large-scale, unbiased whole genome screening.

Discussion

In this study we proposed an interpretable DNN, named stabilized HiDe-MK, for the 

identification of putative causal genetic variants in WGS studies. We took advantage of 

the localizable structure of genetic variants through hierarchical layers in the architecture 

of DNN to seamlessly reduce the size of the DNN. We further employed knockoff 

framework with multiple set of knockoffs to rigorously control the FDR during feature 

selection. Although the underlying goal is to identify putative causal variants, we observed 

a non-trivial randomness in the selected genetic variants. Two different runs of any DNNs 

including HiDe-MK, from the same hyperparameters, led to different candidate variants, 

which we found concerning. To stabilize identified signals, we proposed an ensemble 

method aggregating the FIs extracted from different epochs and hyperparameters, which 

allows us to confidently determine the final selected features with much less variance. With 

a thorough experiment conducted on two simulation datasets, validated for both regression 

and classification, on both common and rare variants, we empirically showed the proposed 

method improves power with a controlled FDR and substantially increases the stability 

of FIs (Fig. 5). For real data analysis, we applied stabilized HiDe-MK to two tasks; the 

confirmatory stage of a GWAS, and functionally informed analysis of pQTLs. Stabilized 

HiDe-MK identified several genetic variants that were missed by a linear model (Lasso with 

multiple knockoffs, Lasso-MK). This may shed light on the discovery of additional risk 

variants using sophisticated DNNs in future genetic studies.

Our current analysis is based on the SCIT knockoff generator that assumes a homogenous 

population. Extensions to other ancestries, especially to minority population or admixed 

population, are particularly challenging. Previous empirical studies show that valid FDR can 

be achieved for admixed population by: (1) generating knockoffs based on the corresponding 

admixed population data and (2) adjusting for ancestry principal components as covariates26. 

However, it has been shown that new knockoff generators that account for population 

structure are required to better address population stratification41. Future incorporation of 

such new knockoff generators that directly account for population structure can further 

improve the performance of the proposed method.

We observed the prediction accuracy by itself is inadequate as a single criterion for model 

training if the goal is feature selection. Models with similar prediction accuracy, but different 

FIs, can have different power in terms of feature selection. For example, Lasso and Ridge 

regression are both linear models that can lead to similar prediction accuracy, but the 

FIs (defined by regression coefficients) can be drastically different (for example, Lasso 

coefficients are sparse, but Ridge coefficients are dense) and subsequently the power can 
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be very different (Fig. 2). Currently, we defined gradients in neuro-networks as FIs. Future 

study on the optimal choice of FIs in neuro-networks would be of great interest.

Last, we found that it remains challenging to fit a DNN to include all genetic variants in 

the genome, although substantial improvement has been made in the proposed architecture 

to improve the computational efficiency compared to usual neural networks (Fig. 6). Hence, 

the current analysis focuses on method comparisons using a replication dataset. It will be of 

interest to develop distributed learning that further optimizes the memory use and computing 

time in the future, such that DNN can be efficiently applied to large scale whole genome 

analysis for genome-wide causal variants discovery.

Methods

Simulated data to evaluate empirical FDR and power.

Extensive experiments were performed to evaluate the empirical FDR and power. The 

initial genetics data for performing simulations comprised 10,000 individuals, with 2,000 

genetic variants drawn from a 200 kb region, based on a coalescent model (COSI) 

mimicking linkage disequilibrium structure of European ancestry42. Simulations were 

devised for both rare and common variants with MAC > 10. We followed the settings in 

KnockoffScreen26 with slight modification. Strong correlation among variants (known as 

tightly linked variants) may make it difficult for learning methods to distinguish a causal 

genetic variant from its highly correlated counterpart (see Sesia et al.43). We therefore 

only picked variants from each tightly linked cluster in the presence of strong correlations. 

Specifically, hierarchical clustering is first applied to variants to not allow two clusters to 

share a cross-correlations of greater than 0.75; variants from each cluster are then randomly 

chosen as candidates and are included in our simulation studies26. We set four variants in a 

200 kb region as causal variants. We evaluated quantitative and dichotomous traits generated 

by:

Quantitative trait :Y i = Xi1 + Cf β1g1 + … + βsgs + εi,

Dichotomous trait :g μi = β0 + Xi1 + Cf β1g1 + … + βsgs

where Xi1 ∼ N 0, 1 , εi ∼ N 0, 2  and they are all independent; g1, …, gs  are selected risk 

variants; g x = log x/log 1 − x ; and μi is the conditional mean of the ith target. For the 

dichotomous trait, β0 is chosen to have a prevalence of 0.10. The reason for this choice is 

that, in the USA, the study of a national representative sample of people aged > 70 years 

yielded an AD prevalence of 0.097. We therefore chose 0.1 to mimic a similar level of 

disease prevalence44. The effect βj = a
2mj 1 − mj

, where mj is the MAF for the jth variant. 

Parameter a is defined such that the β1
2var g1 + … + βs

2var gs = 0.2 for the dichotomous trait 

and 0.04 for the quantitative trait. The choice of βj up-weights the effect size of rare variants. 

To mimic the real data scenario with both risk variants and protective variants, we set β1 as 

negative and the others as positive. We also considered the nonlinear effect of the causal 
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variants. We defined f x = x2 and C = 2 for both traits. This quadratic function corresponds 

to a nonlinear function that includes pairwise interactions that reflect the complex nonlinear 

effects of genetic variants. The aim is to identify signal variants and allow for nonlinear 

effects for improved power. With this set-up, the number of genetic variants including both 

common and rare variants is in the 400 to 500 range. We generate 500 replicates for each 

trait and report the average FDR and average power at different target FDR thresholds. For 

the dichotomous trait, the proposed model achieves an average validation area under the 

curve (AUC) of 0.565 (across 500 replicates), which is lower than the AUC that a single 

APOE region can achieve in AD genetics (0.65; Escott-Price et al.45). For continuous trait, 

the proposed model achieves an average validation R2 of 0.1269 (across 500 replicates), 

similar to the heritability explained by well-known AD loci (Sierksma et al.1). We chose 

these low AUC/R2 values to reasonably mimic those observed in real AD genetic studies, 

in which the signal-to-noise ratio is low and the heritability explained by each variant is 

small. We used the R package GLMNET33 to implement Lasso and Ridge regressions, and 

the R package LibLineaR34 to implement SVR and SVM. The results illustrated that the 

statistical power remains high to detect small effect sizes, especially when it is compared 

with alternative methods.

Genetic data for AD.

We queried 45,212 individual genotypes from 28 cohorts46 genotyped on genome-wide 

microarrays and imputed at high resolution on the basis of the reference panels from 

TOPMed using the Michigan Imputation Server47. Phenotypic information and genotypes 

were obtained from publicly released GWAS datasets assembled by the Alzheimer’s Disease 

Genetics Consortium (ADGC), with the phenotype and genotype ascertainment described 

elsewhere48–58. The exact cohorts used correspond with the replication data imputed in Le 

Guen and colleagues46. We restricted our analysis to European ancestry individuals. After 

quality control, restricting to case/control status, pruning for duplicates of variants, and the 

third-degree relatedness, 21,105 unique individuals remained for the analysis.

For the confirmatory-stage analysis of the candidate regions, we considered 78 candidate 

variants from previous GWAS listed in Andrews et al.59 and 394 candidate regions identified 

by a UK Biobank analysis using KnockoffScreen26. We also included genetic variants in 

the neighbouring 5 kb of each candidate variant/region. The final dataset consists of 21,105 

subjects and 11,662 variants. It is worth mentioning that the UK Biobank data (obtained 

in the United Kingdom) and the 10,797/10,308 case-control dataset (obtained in the United-

States) are fully independent60,61. However, the ADGC case-control dataset may potentially 

overlap with existing AD GWAS in which the additional 78 loci were taken. We focus 

on the confirmatory stage that includes all existing AD loci for the method comparisons 

in this paper. We considered the pQTLs identified by Ferkingstad and colleagues for the 

functionally informed analysis of pQTLs40. The final dataset consists of 21,105 subjects and 

8,461 variants.

Samples used in this manuscript are derived from the replication set imputed on the 

TOPMed reference panel and described in a work by Le Guen and colleagues62. We used 

gender, and ten principal components as covariates. The reason to exclude age as a covariate 
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is that the reported age for cases (age-at-onset) is on average lower than the age of controls 

(age-at-visit) in non-population-based studies. Hence, in a frequently used GWAS model 

such as a logistic regression, if the covariate age is on average lower for cases than for 

controls, then the model will infer a negative effect of age on disease risk, that is, AD risk 

would decrease with older age. This is an incorrect assumption as AD risk increases with 

age. The incorrect age adjustment thus leads to statistical power loss62. This is notably the 

case in the Alzheimer’s Disease Sequencing Project (ADSP) and ADGC data (case-control 

design dataset) used in our study. Details on quality control, ancestry determination and 

pruning for sample relatedness can be found in Supplementary Section 1.

The knockoff framework.

Controlling the FDR when performing variable selection can be accomplished by the 

knockoff framework. With this purpose, a set of variants (so called knockoffs denoted by 

X ∈ ℝn × p with the same size of the original input X ∈ ℝn × p) should be created, where 

p accounts for genetic variants and n for the total number of individuals. As knockoffs 

are conditionally independent of the response vector y ∈ ℝn, we expect those true variables 

to exhibit higher association with y ∈ ℝn than their knockoff counterparts. The knockoffs 

framework can be summarized in four steps:

1. Generate multiple knockoffs for each true variant.

2. Calculate the FIs for the original variants and the knockoff variants; FIs are 

assigned by a data-driven learning model.

3. Calculate the feature statistic by contrasting FIs between the original and their 

knockoff counterparts.

4. Apply a knockoff filter to select variants with a q value less than the target FDR 

level.

We explain these steps in the following section.

Generate multiple knockoff variables.—To generate knockoff variants X ∈ ℝn × p, 

two properties should be deemed: (1) X ∈ ℝn × p is independent of y ∈ ℝn conditional 

on X ∈ ℝn × p; and (2) X and X are exchangeable22. With this set-up, knockoff variants 

can serve as control variables for feature selection. There are two limitations for a single 

knockoff procedure: (1) a single knockoff is limited by the detection threshold 1
α , which is 

the minimum number of independent rejections that are needed to detect any association36; 

(2) a single knockoff is not stable in terms of the selected sets of features, that is, two 

different runs of a single knockoff may generate different sets of features and lead to 

different selected features. To reduce the randomness issue and improve power, we used 

the efficient SCIT algorithm proposed by He et al.26 to generate multiple knockoffs that 

are simultaneously exchangeable. Algorithm 1 shows the main steps of the SCIT algorithm, 

which yield a sequence of random variables obeying the exchangeability property.
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Calculate the FIs.—For a FCNN, DeepPINK25 used the multiplication of weight 

parameters from all layers as FIs. In DNNs with more complicated architectures, the 

multiplication of tensorial weights is not well-defined. To compute FIs in the proposed 

hierarchical DNN, we define FIs using the gradients of output y ∈ ℝn with respect to inputs 

X ∈ ℝn × p × (M + 1); that is, the importance of feature xj on the response y ∈ ℝn is measured 

by the local sensitivity of the predictive function to that feature. This is represented by a 

vector T = T1, T2, …, Tp , of length p, in which Tj = E ∂f X / ∂Xj , where E represents the 

expectation with respect to the joint distribution y, X1, …, Xp  and f represents the DNN. 

To compute this, we take the gradients for the input data X ∈ ℝn × p × M + 1 , giving a 

gradient tensor T ∈ ℝn × p × M + 1 , where M is the number of knockoffs. We then take the 

average over samples, which leads to the final FI matrix T ∈ ℝp × M + 1 . The jth row of 

T ∈ ℝp × M + 1  contains the FIs of original and knockoffs for the jth feature. Obtaining 

FIs with gradient information is architecture-independent; regardless of the neural network’s 

architecture, the gradients of output with respect to inputs can be easily monitored and 

calculated.

Calculate the knockoff feature statistic.—Assume T = T 0, T 1, …, T M  is the matrix 

of FIs, where T 0 ∈ ℝp represents FIs for the original variants and the rest are for M sets of 

knockoffs. For the selection of important variants, the absolute values of FIs (or absolute 

values of gradients) are passed to the knockoff selection procedure. For a single knockoff-

based model, W j = T j
0 − T j

1 . Intuitively, the original variants with higher FIs than its 

knockoffs are more likely to be causal. For multiple knockoffs, we used a multiple-knockoff 

feature statistic proposed by He and co-workers26. Two metrics κj and τj are calculated for 

each feature 1 ≤ j ≤ p as follows

κj = arg max
0 ≤ m ≤ M

T j
m, 1 ≤ j ≤ p, m ∈ {0, 1, …, M}

τj = T j
0 − median

1 ≤ m ≤ M
T j

m

Where κj denotes the index of the original (denoted as 0 ) or the knockoff feature that has 

the largest importance score; τj denotes the difference between the largest importance score 

T j
0  and the median of the remaining scores. The indexing in parenthesis refers to the ordered 

sequence of FIs in descending order; T j
0  is therefore the largest FI for the jth feature, which 

can be either for the original feature or one of the knockoffs. The feature statistic is defined 

as

W j = T j
0 − median

1 ≤ m ≤ M
T j

m ITj
0 ≥ max

1 ≤ m ≤ M
T j

m
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It has been empirically shown that the knockoff statistics with median substantially improves 

stability and reproducibility of knockoffs26.

Knockoff filter and Q-statistics for feature selection.—The last step of knockoff 

framework is feature selection with FDR ≤ α, where α is a pre-defined bound for FDR, 

known as target FDR level. For a single knockoff, the feature statistic is defined as, 

W j = Tj
0 − Tj

1  and the knockoff threshold τ̂ is chosen as follows22:

τ̂ = min t > 0 : 1 + # j : W j ≤ − t
# j : W j ≥ t ≤ α ,

For multiple knockoffs,

τ̂ = min t > 0 :
1

M + 1
M # κj ≥ 1, τj ≥ t

# κj = 0, τj ≥ t ≤ α .

Variants with W j ≥ τ̂ are selected. Equivalently, a knockoff Q value can be computed as

qj = min
t ≤ τj

1
M + 1

M # j : κj ≠ 0, τj ≥ t
# j : κj = 0, τj ≥ t

for variants with statistics κ = 0, and qj = 1 for variants with κ ≠ 0. Selecting variants/

windows with W j > τ̂ is equivalent to selecting variants/windows with qj ≤ α.

The advantage of the multiple-knockoff selection procedure is the new offset term 1
M

(averaging over M knockoffs) that enables us to decrease the threshold of minimum number 

of rejections from 1
α  to 1

Mα , leading to an improvement in the power. The use of median in 

the calculation of W  improves the stability.

The proposed hierarchical deep learning structure.

Conventional FCNNs can be computationally intensive for genetic data due to the massive 

number of genetic variants p. Furthermore, to control FDR, the inclusion of the knockoff 

data adds more to both computational time and resources. Knowing the fact that the first 

layers of a deep learner include many weight parameters and it is essential to control 

the size of the neural network in its first layers; hierarchical deep neural networks are 

used to exponentially reduce the size of a DNN63–66. Assume that the number of neurons 

corresponding to each variant is M + 1 × p, where M is the number of knockoffs (set to 

five in our experiments). In our proposed hierarchical deep learner, we group every original 

feature and its knockoffs in the first layer to a single neuron in the next layer through 

a nonlinear activation function. Hence, the size of neurons in the next layer reduces to 

p neurons. We call this combination between two feature types as feature-wise hierarchy. 

Next, adjacent variants inherit similar traits and therefore one can take the variants of the 
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adjacent regions into the same groups. Assume that the number of variants in each group 

is set to σ > 1. Then every σ neurons out of p neurons in the second layer are grouped 

to a small set of θ neurons (channels) in the next layer. Hence, the number of neurons is 

further reduced to θ p/σ . We call this combination between features in the second layer 

as region-wise hierarchy. These are analogous to filters in a convolutional neural network. 

The architecture of the proposed HiDe-MK is illustrated in Fig. 1 and Supplementary Fig. 

1. Also see Supplementary Fig. 7 for the impact of different numbers of kernel size on 

the observed FDR, power and the total number of weight parameters of HiDe-MK. In our 

experiments, the number of channels in the second hierarchical layer is set to 8. We present 

detailed model configurations in Supplementary Section 2.

Activation functions of HiDe-MK.

Deep learning consists of several layers in its structure, which learn the underlying structure 

of data through nonlinear activation functions. Although a sufficiently deep neural network 

structure can learn complex features of real-world applications, having several layers in 

the DNN structure introduce some challenges to training, such as the vanishing gradient 

problem and the saturation problem of activation functions67. The ReLU is one of the 

most popular activation functions in deep learning29 due to its outstanding performance 

and low computational cost compared with other activation functions such as the logistic 

sigmoid and the hyperbolic tangent68. However, if the data fall into the hard zero negative 

part of the ReLU, many neurons will not be reactivated during the training process and its 

corresponding gradients are set to zero, which avoid the weight update. This issue is known 

as the dying ReLU problem. In our experiments, the ELU activation function exhibited the 

best performance among the other activation functions listed above. We tabulate a list of 

important activation functions In Supplementary Table 4. Results of FDR and power with 

unique activation functions (namely, ELU, Swish, GeLU and ReLU) are also displayed in 

Supplementary Fig. 2.

Stabilized FIs.

Interpretations of DNN methods are known to be fragile20. In the application of HiDe-MK 

to the analysis of AD genetics, we observed that different HiDe-MK runs—with the same 

dataset, knockoff features, hyperparameters, epoch number and validation loss—lead to 

drastically different FIs and therefore produce different sets of selected features. This 

is plausibly due to the non-convexity of deep learning methods, which rely on random 

parameter initialization and stochastic gradient descent to reach a local optimum. The 

resulting gradient-based FIs thus tend to be stochastic. We present the randomness of 

FIs in Fig. 5a in terms of the correlation between FIs across ten HiDe-MK runs. HiDe-

MK was applied to the aforementioned AD genetics data, with the knockoff features, 

hyperparameters and epoch number remaining identical in each run. Although the difference 

in validation loss is negligible, we observed a poor correlation < 0.50  between different 

runs. This result suggests that direct application of conventional DNNs can give rise to 

misleading results. It also implies that the usual criteria for prediction cannot be directly 

applied to feature selection. A more consistent set of FIs is desirable to ensure rigorous 

inference.
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To have a DNN method that reliably expresses the relationship between the genotype and 

phenotype, the neural network and its feature importance values should be stabilized, and 

the criteria to choose the optimal epoch number should be modified. We proposed an 

ensemble of FIs across epoch numbers and hyperparameters to improve the stability of 

HiDe-MK. Specifically, we first set the maximum epoch number and the search space for 

candidate hyperparameters. We conduct fivefold cross-validation over the epoch numbers 

and hyperparameters. For each combination of epoch number and hyperparameters, we 

compute the gradients as FIs and the validation loss. Finally, we calculate the weighted FIs, 

where the weights are defined by the validation loss. For the jth set of hyperparameters and 

the kth epoch number, the weight ψjk is calculated as:

ψjk = max val_loss − val_lossjk
max val_loss − min val_loss

Where val_loss is the validation loss. The stabilized FIs are eventually calculated as 

FI = ∑jk ψjkFIjk. Intuitively, the proposed ensemble up-weights models with lower validation 

loss and vice versa. As the ensemble is embedded in the cross-validation of model training, 

it only requires fitting the model once without additional computational cost. We refer to this 

ensemble method as stabilized HiDe-MK. We present the empirical results in Fig. 5b. We 

observed a high correlation > 0.95  between different stabilized HiDe-MK runs, where each 

run aggregates sets of FIs that are drawn from different epoch numbers and hyperparameters, 

demonstrating that the ensemble method helps stabilize FIs. This step of stabilization was 

crucial in our modelling as our goal was to report a credible set of AD-associated genes. 

Furthermore, we evaluated the stability of FIs across epoch numbers. For every epoch, 

we monitored the knockoff feature W statistics and calculated the correlation for every 

two consecutive epochs. We evaluate both HiDe-MK and its stabilized version (Fig. 5c). 

We observed a high correlation in FIs between two consecutive epochs as epoch number 

increases. We also observed that the stabilized HiDe-MK is more stable than HiDe-MK.

Aside from the randomness due to the stochastic nature of deep learning methods, many 

interpretable DNNs rely on a set of randomly generated ‘control’ features, such as the 

surrogate variables in SurvNet and the knockoff variables in the proposed methods. We 

also note that randomness brought by surrogate/knockoff variables may also hinder the 

interpretability. We propose using multiple knockoffs and a corresponding knockoff filter 

to stabilize the feature selection. A detailed comparison between multiple-knockoff and 

single-knockoff methods was discussed by He and colleagues26.

The hierarchical layers improve computational efficiency.

The computational cost plays a key role in the application of deep learning methods to 

genetics data in the presence of knockoffs data, which multiply the number of input 

features. Deep learning methods that use several hidden layers in its structure can be 

computationally intensive. As the number of features increases, the network size in terms of 

the number of weight parameters and number of activations gets larger and, consequently, 

the computational burden increases. We compared three different learning methods to 

illustrate the importance of hierarchically structured DNNs: (1) a FCNN, that is, a neural 
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network with one level of hierarchy (as in DeepPINK); and (2,3) a neural network with 

two levels of hierarchy. FCNN is a conventional DNN with three dense hidden layers. 

The one-level-hierarchy model uses an initial locally connected layer to join each original 

feature with its five knockoffs from input layer to the next layer, and this reduced set of 

neurons is connected to the remaining layers with the same architecture as FCNN. The 

two-levels-of-hierarchy model uses one more level of hierarchy than a one-level-hierarchy 

model to group adjacent genetic variants, replacing the corresponding dense layer.

We applied these methods to the genetic data consisting of 21,105 individuals and 11,662 

genetic variants. The batch size and the number of epochs are set to 1,024 and 50 

respectively. On our computing system (2.40 GHz Intel CPU and 128 GB of RAM), we 

noticed that experiments with FCNN causes an out-of-memory error due to the huge number 

of its weight parameters. We therefore limited our experiments to the random selection of 

only 1,000 genetic variants and their five set of knockoffs as a proof of concept. We ran 

these models 50 times and reported the average number of weights, computational time 

and the number of activations (see Fig. 6 for the results). A two-level hierarchy has two 

orders of magnitude fewer weight parameters in its architecture than a one-level hierarchy, 

and four orders of magnitude fewer than a FCNN that does not use any hierarchical layer 

(Fig. 6a). Figure 6b displays the averaged time per epoch for three counterparts: a two-level 

hierarchy is two times faster than one-level hierarchy, and 40 times faster than a FCNN. We 

also quantified the number of activations as it is also an important factor in measuring the 

model’s efficiency69 and present the results in Fig. 6c. Again, a two-level hierarchy uses 

about 2- and 12-times-fewer activation functions than the one-level hierarchy and FCNN, 

respectively. DNNs with hierarchical layers are much more efficient than DNNs with dense 

layers. In terms of the memory usage, the peak memory use is, on average, 29.51 GB for a 

one-level hierarchy, 30.18 GB for a two-level hierarchy, and 31.05 GB for a FCNN.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Overview of the workflow.
a,b, Knockoff feature generation (a; we generated five sets of knockoffs using SCIT in 

this study) and the proposed hierarchical deep learner along with aggregation of Fls and 

a knockoff filter for feature selection (b). We used two hierarchial layers to substantially 

decrease the size of the network. We also used an ELU activation function for better network 

performance. Gradients were used to measure Fls, which are monitored and collected for 

each epoch and each set of hyperparameters. The size of the Fls is the same as the input 

data. The obtained Fls were stabilized by weighted averaging and used to compute a q value. 

Variants with q values less than the target FDR level will be selected.
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Fig. 2 |. Power and FDR comparison.
a,b, The observed power and FDR for dichotomous (a) and quantitative traits (b) with 

varying target FDRs from 0.01 to 0.20. Stabilized HiDe-MK, stabilized version of 

hierarchical deep neuro-network with multiple knockoffs; DeepPINK, deep feature selection 

using paired-input nonlinear knockoffs. All methods are equipped with five sets of knockoff 

features.
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Fig. 3 |. Confirmatory-stage analysis of candidate regions.
a,b, Manhattan plots for a stabilized HiDe-MK (a) and a Lasso-MK (b). Each data point 

represents a genetic variant. The dashed horizontal lines indicate target FDRs. c, The 

number of identified genes and variants for stabilized HiDe-MK and Lasso-MK at target 

FDRs of 0.05 (left), 0.10 (middle) and 0.20 (right).
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Fig. 4 |. Functionally informed analysis of pQTLs.
a,b, Manhattan plots for a stabilized HiDe-MK (a) and a Lasso-MK (b). Each dot point 

represents a genetic variant. The dashed horizontal lines indicate target FDRs of 0.05 (left), 

0.10 (middle) and 0.20 (right). c, The number of identified genes and variants for stabilized 

HiDe-MK and Lasso-MK at different target FDRs.
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Fig. 5 |. Stabilized HiDe-MK improves the stability of Fls compared with a single HiDe-MK run.
a, The correlation matrix of ten different runs of HiDe-MK with identical learning 

hyperparameters reveals a drastic randomness in every run. b, The correlation matrix of 

ten different stabilized HiDe-MK runs reveals strong correlation of Fls in every run. c, We 

also measured the stability of Fls across epoch numbers in terms of knockoff feature W
statistics for both HiDe-MK and stabilized HiDe-MK.

Kassani et al. Page 23

Nat Mach Intell. Author manuscript; available in PMC 2023 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6 |. The hierarchical layers improve computational efficiency.
The comparison was measured on data with 21,105 individuals, 1,000 randomly selected 

genetic variants, and five knockoffs per variant. a, The number of weights of the three 

models. b, The averaged time per epoch. c, The number of activation functions.
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Algorithm 1.

Sequential conditional independent tuples (multiple knockoffs)

 j = 1
 whilej ≤ pdo

  Sample xj
1, …, xj

M
 independently from ℒ xj ∣ x−j, x1: j − 1

1 , …, x1: j − 1
M

  j = j + 1
 End

where ℒ xj ∣ x−j, x1: j − 1
1 , ⋯, x1: j − 1

M
 is the conditional distribution of xj given x−j, x1: j − 1

1 , ⋯, x1: j − 1
M

 where −j indicates the variable xj is 

excluded and M is the total number of knockoffs.
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