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Abstract

Sequential dengue virus (DENV) infections often generate neutralizing antibodies against

all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly

neutralizing antibody (bnAb) responses can inform countermeasures that avoid enhance-

ment of infection associated with non-neutralizing antibodies. Here, we used single cell tran-

scriptomics to mine the bnAb repertoire following repeated DENV infections. We identified

several new bnAbs with comparable or superior breadth and potency to known bnAbs, and

with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1,

one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and

IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1

enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-

mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demon-

strate a role for IgA in flavivirus infection and immunity with implications for vaccine and ther-

apeutic strategies.
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Author summary

A central challenge for developing clinical interventions for dengue virus or the closely

related Zika virus is the ability of IgG antibodies to enhance, rather than neutralize infec-

tion under certain conditions. When present prior to infection, as in the case of vaccina-

tion, these antibodies can worsen disease outcome. In this study, we analyzed B cells of

individuals who experienced dengue or Zika infection to identify those expressing anti-

bodies that can potently neutralize these viruses with minimal potential to enhance infec-

tion. We used a method that captured a larger number and wider variety of antibodies

than previous approaches. We discovered several potent antibodies that simultaneously

neutralized dengue and Zika viruses, including those of IgG isotype, which are common,

and one of IgA isotype, which had never been described against this group of viruses.

Although IgG antibodies enhanced infection in certain cases, the IgA antibody did not.

We further showed that modifying a region of IgG antibodies to convert them to IgA anti-

bodies eliminated their ability to enhance infection. Moreover, the modified IgA versions

inhibited the ability of IgG versions to enhance infection. These results suggest that induc-

ing IgA antibodies may be an attractive goal for safe and effective vaccines.

Introduction

Zika virus (ZIKV) and the four circulating serotypes of dengue virus (DENV1-4) are mos-

quito-borne flaviviruses with overlapping geographic distributions [1]. Climate change is pre-

dicted to further expand the geographic range of mosquito vectors [2–4], highlighting the

need for effective clinical interventions to curb epidemics. The complex antibody response to

DENV1-4 has hampered the development of safe and effective vaccines. A first exposure to a

given DENV serotype generates potently neutralizing antibodies that typically provide long-

term, though sometimes incomplete protection against reinfection by that serotype [5–7].

However, antibodies that are cross-reactive in binding but not neutralizing activity against

other DENV serotypes are also elicited [8–11] and pre-existing non-neutralizing antibodies

predict the risk of severe disease following secondary exposure to a different DENV serotype

[12–16]. This phenomenon is attributed to a process called antibody-dependent enhancement

(ADE), in which non-neutralizing IgG antibodies [12,17] facilitate the uptake of bound DENV

particles into relevant myeloid target cells via Fc-Fc gamma receptor (FcγR)-dependent path-

ways [18]. ADE-related safety concerns derailed the widespread use of the first licensed DENV

vaccine, which increased the risk of severe dengue disease following subsequent infection in

previously DENV-naive recipients [19,20]. As pre-existing IgG antibodies from one prior

exposure to ZIKV can also enhance subsequent dengue disease risk [21], a safe vaccine would

ideally induce durable antibodies that can broadly and potently neutralize DENV1-4 and

ZIKV.

In contrast to primary DENV exposure, secondary exposure to a different DENV serotype

typically elicits broadly neutralizing antibody responses associated with protection against sub-

sequent disease [8,21–26]. Studying the antibody repertoire in individuals who have experi-

enced multiple DENV infections can thus provide insight into the properties of cross-reactive

neutralizing antibody responses that an effective vaccine seeks to mimic. A handful of mono-

clonal broadly neutralizing antibodies (bnAbs) that can potently neutralize DENV1-4 and in

some cases, ZIKV, have been isolated from naturally infected individuals living in endemic

regions [22,27–29]. The most well-characterized class of flavivirus bnAbs targets a quaternary

E-dimer epitope (EDE) spanning both E protein monomers within the dimer subunit [28,30].

There are two subclasses of EDE bnAbs, of which EDE1 but not EDE2 antibodies can potently
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neutralize ZIKV in addition to DENV1-4 [31]. A few antibodies that can cross-neutralize

ZIKV and some DENV serotypes have also been described [32–35], but other than those of the

EDE1 subclass, SIgN-3C is the only known naturally occurring antibody that can potently neu-

tralize ZIKV and all four DENV serotypes [27,36,37].

The above antibodies were discovered by sorting hundreds of single B cells from individuals

infected with DENV and/or ZIKV, followed by either immortalization or PCR amplification

of variable heavy and light chain genes for recombinant IgG production and characterization

[38]. Although these approaches have successfully identified bnAbs against many viruses, they

are laborious, typically requiring robots and/or large teams to increase throughput. As an alter-

native high-throughput method, we previously provided proof-of-principle for a single cell

RNA sequencing (scRNAseq)-based approach to identify multiple DENV1-4 bnAbs, of which

two somatic IgG variants, J8 and J9, were the most potent [39]. Single cell transcriptomics also

allows unbiased profiling of multiple antibody isotypes unlike previous methods, which were

largely restricted to isolation of IgG antibodies [28,33–35,40].

Here, we have improved upon our scRNAseq-based method to discover new bnAbs by sys-

tematically profiling the antibody response in 4 individuals whose sera potently cross-neutral-

ized DENV1-4 and ZIKV. We identified 23 new bnAbs, of which a subset displayed

neutralization breadth and potency comparable or superior to leading bnAbs in the field but

with distinct epitopes. Moreover, one of our newly identified bnAbs neutralized DENV1-4

and ZIKV and is derived from the IgA1 isotype, thus representing the first non-IgG bnAb

described against flaviviruses. Notably, monomeric IgA1 versions of newly and previously

characterized bnAbs not only retained IgG neutralization capacity, but also inhibited IgG-

mediated enhancement of infection in cells expressing both IgG and IgA Fc receptors.

Results

Identifying donors with broadly neutralizing antibody responses

We previously identified bnAbs against DENV1-4 [39] via secondary analyses of relatively few

(~350) B cells from an existing scRNAseq dataset of bulk peripheral blood mononuclear cells

(PBMCs). This dataset was generated in an unrelated study with the primary goal of identify-

ing biomarkers of severe dengue [41] in a cohort of individuals with acute DENV or ZIKV

infection [42,43]. Here, we initiated a new study to specifically leverage scRNAseq for bnAb

discovery by focusing our analysis on B cells (instead of bulk PBMCs) from individuals whose

serum broadly neutralized DENV1-4 and ZIKV (Fig 1). [42,43]. To identify such individuals,

we screened longitudinal serum samples from 38 cohort participants for their ability to neu-

tralize commonly used DENV1-4 and ZIKV strains in two independent experiments. S1 Fig

summarizes the serum neutralization profile of cohort participants, along with demographic

and clinical information. When tested at a single dilution, no serum sample reproducibly neu-

tralized West Nile virus (WNV), a more distantly related flavivirus included as a control. In

contrast, even at the earliest available time point (range: 0 to 7 days after fever onset), serum

samples from 26/38 individuals inhibited infection by two or more DENV serotypes by >50%

in both experiments (S1 Fig). This high prevalence of cross-serotype neutralizing activity likely

reflects repeated DENV exposures, as confirmed by IgG avidity testing of these samples in

prior studies [42,43]. In addition to broad neutralizing activity against DENV1-4, serum sam-

ples from 11/38 individuals reproducibly neutralized >50% infection by ZIKV.

Mining broadly neutralizing antibody repertoires at the single B cell level

To discover monoclonal bnAbs, we chose 4 individuals with cross-flavivirus serum neutraliz-

ing activity, as confirmed by dose-response neutralization assays (Fig 1A). In addition to
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serum neutralization breadth and potency, these individuals were selected due to the availabil-

ity of corresponding PBMCs at early time points during which bnAb responses were detected

(within 11 days post-fever onset) (S1 Fig). We chose early time points to maximize our likeli-

hood of detecting transiently circulating plasmablasts. This B cell subset undergoes a large

expansion following acute DENV exposure [25,40,45–48] and often encodes neutralizing anti-

bodies against multiple DENV serotypes and in some cases, ZIKV, after repeated exposures

[25,27,28,39]. Moreover, unlike memory B cells, plasmablasts constitutively secrete antibodies

so their antibody repertoire likely mimics that of contemporaneous serum.

We isolated CD19+ B cells from PBMCs of these 4 donors (Fig 1B) for scRNAseq of B cell

receptor-specific and overall gene expression libraries (Fig 1C). We obtained a total of 25,293

paired heavy and light chain antibody coding sequences, with a mean of 6,323 per donor (range

4,644–9,249), comparable to previous studies that profiled antibody repertoires using this

method [49–51]. To mine this rich repertoire for flavivirus bnAbs, we first grouped antibodies

into clonally related sequences derived from the same rearrangement event (i.e. clonal families,

Fig 1D) using partis [44]. We also used gene expression libraries to determine the B cell subset

—naïve, memory, or plasmablast—from which antibody sequences were derived. These analy-

ses allowed us to apply a set of criteria that we and others have found to predict antibody affinity

and/or neutralizing activity (summarized in Fig 1E and detailed in Methods) to downselect

antibodies for neutralization screens (Fig 1F). Briefly, we chose antibodies that were 1) from

large clonal families with>2% somatic hypermutation, suggesting antigen-specific selection

[39,51,52]; 2) encoded by plasmablasts as these are often broadly neutralizing [25,27,28,39]; and

3) most similar to their family’s amino acid consensus sequence, suggesting high affinity [53].

As shown in Fig 2A, the sizes of clonal families and the distributions of B cell subsets within

these samples varied substantially. Samples from donors 001 and 012 were dominated by naive

Fig 1. Workflow to identify broadly neutralizing antibodies (bnAbs) from donor samples. (A) Serum neutralization profile of 4 cohort participants chosen

for downstream analysis based on potent neutralizing activity against DENV1-4 and ZIKV. The mean reciprocal serum dilution that neutralized 50% of virus

infection (NT50) in 3 independent experiments is depicted as a heatmap with a darker color indicating greater potency according to the key. (B) B cells isolated

from the peripheral blood mononuclear cells (PBMCs) of donors selected in (A) were processed for (C) single-cell RNA sequencing of both global gene

expression (GEX) and B cell receptor (BCR)-specific libraries. (D) We analyzed BCR libraries using the software package partis [44], which groups antibodies

into clonal families and infers their shared ancestry. (E) Antibody sequences most likely to encode broadly neutralizing antibodies (bnAbs) were

bioinformatically downselected for functional characterization. (F) We recombinantly expressed selected antibodies as IgG1 and screened them for the ability

to neutralize DENV1-4 and ZIKV. This figure was created with Biorender.com.

https://doi.org/10.1371/journal.ppat.1011722.g001
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Fig 2. Distribution of B cell subsets and antibody isotypes within clonal families. Graphs depict the number of antibodies encoded (A) by

distinct B cell subsets and (B) as various isotypes in clonal families of different sizes in each of the four donor samples analyzed. B cell subset and

antibody isotype were determined by analysis of the cell’s transcriptome as captured by the gene expression library (see Methods and S4 Table for

details). Only B cells for which a corresponding antibody sequence was observed in the B cell receptor library were included. “Undetermined” B cell

subset indicates that the cell had too few reads or unique molecular identifiers to yield accurate gene expression information as analyzed by 10X
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B cells that were not members of any clonal family we could discern. By contrast, samples

from donors 002 and 014 were composed mostly of plasmablasts, including those in large (4–

50 members) or very large (50+ members) clonal families. While most previous methods for

antibody discovery have specifically enriched for IgG+ B cells [28,33–35], our scRNAseq-

based approach was isotype-agnostic and recorded the native isotype of every sequenced anti-

body. Like the distributions of B cell subsets, we found that antibody isotype distribution var-

ied by donor: antibodies in samples from donors 001 and 012 were mostly IgM while those

from donors 002 and 014 were primarily IgG1 (Fig 2B). The isotype data were not used in our

selection algorithm (Fig 1E), though we explored the role of isotype in antibody function, as

described later.

Functional screens for broadly neutralizing antibodies

We performed screening in two rounds. In the first round, our goal was to identify clonal

families encoding bnAbs. To do this, we selected 1–3 antibodies from each of ~20 clonal

families per donor according to the above criteria (Fig 1E). These antibodies were recombi-

nantly expressed initially as IgG1 by transfection of mammalian cells and the antibody-con-

taining supernatant screened at a single dilution (1:10) for neutralization of DENV1-4,

ZIKV, and West Nile Virus (WNV). As controls, we produced and screened previously pub-

lished antibodies, EDE1-C10 [28,31] and CR4354 [54] in parallel. Consistent with their

known specificities, EDE1-C10 broadly neutralized DENV1-4 and ZIKV, but not WNV,

while CR4354 specifically neutralized WNV (S2A Fig). Although our downselected anti-

bodies had little to no neutralizing activity (<50%) against WNV, several potently neutral-

ized DENV and/or ZIKV (S2B–S2G Fig; antibodies screened in this first round are left

aligned). The number and neutralization profile of clonal families encoding neutralizing

antibodies against DENV and/or ZIKV varied by donor. For example, of 14 total families

tested from donor 001 (S2B Fig), only two (F05, F07) encoded neutralizing antibodies: F05

displayed ZIKV-specific neutralization, while F07 neutralized DENV1-3 and ZIKV, but not

DENV4. Similarly, of the 18 selected families from donor 012 only two (F12, F15) encoded

neutralizing antibodies (S2C Fig). In contrast, almost all 25 families from donor 002 neu-

tralized DENV1 and DENV3, and one (F09) broadly neutralized DENV1-4 and ZIKV (S2D

Fig). Donor 014 antibodies displayed the broadest neutralization profile (S2E–S2G Fig):

almost all 27 selected clonal families neutralized multiple serotypes of DENV and, in some

cases, ZIKV with varying potencies. Of these, antibodies from two families (F05 and F09)

neutralized DENV1-4 by a mean of 97% and one family (F25) neutralized DENV1-4 and

ZIKV by a mean of 92%.

Having identified clonal families encoding bnAbs (bolded in S2B–S2G Fig), we initiated a

second round of screening to identify additional bnAbs within those families. Antibodies

screened in round two are italicized and indented in S2B–S2G Fig. In general, antibodies

within a given family displayed similar neutralization breadth. For example, all 10 antibodies

selected from family F07 of donor 001 neutralized DENV1, DENV2, DENV3, and ZIKV, but

not DENV4 (S2B Fig). Similarly, all tested antibodies from donor 014 family F09 neutralized

DENV1-4 but not ZIKV (S2F Fig), while 6/8 antibodies from family F25 broadly neutralized

DENV1-4 and ZIKV (S2G Fig). These results demonstrate that our bioinformatics-based

approach successfully identified clonal families encoding multiple bnAbs.

Genomics Cell Ranger. “Undetermined” isotype indicates insufficient sequence coverage to determine the constant gene segment within the

antibody.

https://doi.org/10.1371/journal.ppat.1011722.g002
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Functional characterization of the broadest neutralizing antibodies

Based on the above crude screens performed with transfection supernatant (S2 Fig), we puri-

fied 23 IgG1 antibodies that inhibited DENV1-4 and in some cases ZIKV by>50% for further

characterization. All but one (F15.S01 from donor 012) of these antibodies were from donor

014. We confirmed their neutralizing activities in dose-response assays and calculated the

Fig 3. Neutralization profile of top bnAbs expressed as IgG1. (A) Representative dose-response neutralization

curves of each antibody against DENV1 WP-74, DENV2 16681, DENV3 CH53489, DENV4 TVP376, and ZIKV H/PF/

2013 reporter virus particles performed in at least 3 biological replicates in duplicate wells. The data points and error

bars represent the mean and range of the duplicates, respectively. (B) Mean IC50 values for antibody-virus pairs shown

in (A) and compiled from S1 Table. *The final column displays the geometric mean IC50 values against neutralized

viruses. (C) IC50 values against additional DENV variants selected due to known antigenic divergence from the panel

in (B). Values shown are means from at least two biological replicates. (D) Mean IC50 values against fully infectious

DENV clinical isolates from 2004–2007. Values were obtained from at least two biological replicates. *The final

column displays the geometric mean IC50 of each antibody against the four viruses. In (B-D), IC50 values are

displayed as heatmaps according to the key. Gray indicates that 50% neutralization was not observed at the highest

antibody concentration tested (10,000 ng/ml).

https://doi.org/10.1371/journal.ppat.1011722.g003
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concentration at which they inhibited 50% of virus infection (IC50) (S1 Table). As compari-

son, we expressed and tested previously identified bnAbs in parallel. These include: EDE1

[28,31] and SIgN-3C [27,37] antibodies, all of which potently neutralize DENV1-4 and ZIKV;

EDE2 antibodies, which are distinguished from EDE1 by their weak potency against ZIKV

[31]; MZ4, which neutralizes ZIKV and some DENV serotypes [33]; and J9, an antibody we

previously isolated from a different donor in the same cohort, which potently neutralizes

DENV1-4, but not ZIKV [39].

We assigned antibodies into two categories based on neutralization breadth: 1) those that

neutralized DENV1-4 and ZIKV, and 2) those that neutralized DENV1-4 but not ZIKV. Anti-

bodies in each category were ranked based on geometric mean IC50 (S1 Table). Among all

category 1 antibodies tested, the top-ranking was F25.S02 from donor 014 (geometric mean

IC50 value of 69 ng/mL). Compared to previously published category 1 bnAbs, the potency of

F25.S02 against ZIKV was similar to EDE1-C10 (IC50 of 18 and 14 ng/ml, respectively) but

was ~39 times higher than that of SIgN-3C (IC50 of 694 ng/ml). The geometric mean potency

of F25.S02 against DENV1-4 was also ~2-fold higher than that of EDE1-C10 (IC50 of 96 ng/ml

versus 207 ng/ml, respectively). Family F25 contained 3 other antibodies that broadly neutral-

ized DENV1-4 and ZIKV. These antibodies (F25.S03, F25.S04, F25.S06) neutralized DENV1,

DENV2, DENV3, and ZIKV with relatively similar potency as F25.S02, but they were less

potent against DENV4 (IC50 > 1 μg/ml). Among newly identified category 2 antibodies,

F09.S05 was most potent; its geometric mean IC50 against DENV1-4 was comparable to the

previously identified J9 [39] (36 ng/ml and 33 ng/ml, respectively). Additional high-ranking

category 2 antibodies include others from family F09 and antibody F05.S03 from family F05.

Even within the same donor, bnAbs were derived from multiple germline genes and did

not display unusually high levels of somatic hypermutation (S2 Table), as has been reported

for some bnAbs against other viruses [55, 56]. For subsequent detailed characterization, we

chose the top-ranking antibody from each clonal family of donor 014, namely F25.S02,

F09.S05, and F05.S03. Fig 3A shows representative dose-response neutralization assays dem-

onstrating that these new bnAbs were roughly as potent as, and in some cases, more potent

than previously published bnAbs (Fig 3B and S1 Table).

Newly identified antibodies neutralize flavivirus antigenic variants

There is antigenic variation even within a given DENV serotype [57–59], which is composed

of distinct genotypes [60,61]. For example, the DENV1 strain West Pac-74 (WP-74) used in

the above screens belongs to genotype IV, which is the most antigenically distinct within this

serotype [58]. Additionally, this DENV1 strain is thought to display altered structural dynam-

ics that globally affect antigenicity [62,63]. To rule out the possibility that DENV1 inhibition

we observed was limited to an unusually neutralization-sensitive strain, we confirmed that our

novel bnAbs also potently neutralized the genotype II DENV1 strain 16007 (IC50 range of 4 to

30 ng/ml, Fig 3C). DENV4 also displays antigenic variation across genotypes (I and II) that

circulate in humans [64,65]. Many of our newly identified lower-ranking antibodies neutral-

ized the DENV4 genotype II TVP376 strain used in the above screens with modest potency

(S1 Table). When tested against the DENV4 genotype I strain H241, we found that category 1,

but not category 2 bnAbs retained neutralization potency (Fig 3C). This preferential neutrali-

zation of DENV4 genotype II by most antibodies is consistent with previous observations

[65–68]. Among our top-ranking newly identified bnAbs, F25.S02 and F09.S05 neutralized

DKE-121 (IC50 of 212 and 59 ng/ml, respectively), a recently described, highly divergent

DENV4 strain [69–71], though F05.S03’s neutralization of this strain was relatively weak (IC50

of 4500 ng/ml) (Fig 3C).
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Except for DKE-121, most strains used above were lab-adapted and isolated many decades

ago (1956–1982). Additionally, most were tested as single-round infectious reporter virus par-

ticles (except for DENV4 H241, which was tested as a replication competent virus). Reassur-

ingly, F25.S02, F09.S05, and F05.S03 also neutralized more contemporaneous, fully infectious

DENV1-4 clinical isolates collected between 2004 and 2007 with geometric mean IC50 values

lower than for the known bnAb EDE1-C10 but higher than SIgN-3C and J9 (Fig 3D).

Aside from genetic diversity, flavivirus antigenic variation can also arise from heterogeneous

virion maturation states resulting from inefficient cleavage of prM, a chaperone for the E protein.

Many but not all flavivirus-specific antibodies preferentially neutralize incompletely mature viri-

ons that retain prM on the surface [72–74]. Importantly, there is increasing evidence that the abil-

ity to neutralize the structurally mature form of flaviviruses is important for in vivo protection

[75,76]. We tested the ability of our novel bnAbs to neutralize partially mature DENV2 or ZIKV

produced either under standard conditions or in the presence of excess furin to enhance prM

cleavage, resulting in more fully mature viruses [73] (S3 Fig). As controls, we included antibodies

E60 and ZV-67, which poorly neutralize mature forms of DENV2 and ZIKV, respectively, result-

ing in a large fraction of non-neutralized virions even at high antibody concentrations (S3A Fig),

consistent with previous studies [73,77,78]. In contrast to these control antibodies, F25.S02,

F09.S05, and F05.S03 potently neutralized DENV2 regardless of maturation state (maximum

IC50 fold change of 2.7) (S3A and S3B Fig). Moreover, F25.S02 was more potent against the

mature form of ZIKV (15-fold decrease in IC50) (S3B Fig). We also observed preferential neutral-

ization of mature ZIKV by known bnAbs EDE1-C10 and SIgN-3C (S3A and S3B Fig).

Overall, these results demonstrate that our new bnAbs can neutralize flavivirus antigenic

variants arising from both genetic and structural heterogeneity that are relevant for vaccine

efficacy [67,68,76], though the ability to broadly neutralize multiple DENV4 genotypes was

restricted to F25.S02.

Mapping E protein determinants of antibody binding

Many potently neutralizing flavivirus antibodies target complex epitopes displayed optimally

on virions and not on soluble monomeric E protein [79]. To determine the E protein oligo-

meric form recognized by our bnAbs, we performed ELISA to assess binding to soluble mono-

meric E protein or to virus particles of the prototype DENV2 16681 strain. Unlike antibody

B10, which we previously showed to efficiently bind E proteins displayed in both contexts [39],

F25.S02, F09.S05, and F05.S03 bound efficiently to E proteins displayed on virus particles only,

similar to the known bnAb EDE1-C10 [28] (Fig 4A and 4B). These results suggest that our

newly identified bnAbs preferentially recognize quaternary epitopes.

To identify E protein amino acid residues critical for binding, we screened antibodies

against a shotgun alanine-scanning mutagenesis library of DENV2 prM/E proteins [39,81]. As

controls, we included known bnAbs EDE1-C10 and J9. We identified alanine mutations that

specifically reduced F25.S02 or F05.S03 binding by>70% relative to wild type DENV2

(Fig 4C–4F and S3 Table shows screen results against the entire library). Despite testing multi-

ple conditions, we did not detect binding of F09.S05 to wild type DENV2 in this format.

For F25.S02, all E residues identified as important for binding were located in domain II

(G78, L82, V97, I113, N242) with the exception of M6 in domain I (Fig 4C and 4D). Mutation

at these residues minimally impacted binding by the known bnAb EDE1-C10, which retained

50–85% of wild type binding reactivity (Fig 4D). EDE1-C10 and F25.S02 are further distin-

guished by their dependence on K310A, which abolished binding by EDE1-C10, but not by

F25.S02 (Fig 4F). Thus, although F25.S02 and EDE1-C10 display a similar neutralization pro-

file against DENV1-4 and ZIKV, their binding determinants on DENV2 are distinct.
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For F05.S03, we identified two clusters of mutations that were important for binding. The

first, at E residues N153 and T155 in domain I, abolishes a potential N-linked glycosylation site

and reduced binding efficiency by ~85% (Fig 4E and 4F). The presence of this potential N-

Fig 4. Determinants of E protein binding by bnAbs. Relative binding efficiency of the indicated antibodies to (A) E protein monomers (B) or reporter

virus particles of DENV2 16681 measured by ELISA. Results are from two independent experiments, each performed in duplicate wells. The absorbance

of each duplicate, reported in arbitrary units (AU), was normalized to the wells that received positive control antibody B10 [39]. The HIV-specific

antibody PGT121 [80] was used as a negative control. Data points represent the normalized means of each experiment and the bars represent the means of

the two experiments. (C-F) DENV2 16681 E protein sites important for binding by antibody (C) F25.S02 or (E) F05.S03 are shown on the ribbon

structure of the DENV2 E dimer (PDB: 1OAN) and labeled on one monomer. Sites in E domains I, II, and III are depicted in red, yellow, and blue,

respectively. Bar graphs show the mean binding reactivity to individual alanine mutants that selectively impact (D) F25.S02 or (F) F05.S03 as a percentage

of wildtype (WT) DENV2 E protein reactivity. Binding of control antibodies EDE1-C10 and J9 to these mutants was tested in parallel. Error bars show the

range of binding reactivity from two independent experiments. The dotted line in (D-E) indicates 70% reduction in antibody binding activity to mutant

compared to WT.

https://doi.org/10.1371/journal.ppat.1011722.g004
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linked glycosylation site has also been shown to be important for recognition by J9 [39]

(Fig 4F) and by the EDE2 subclass of bnAbs [28], all of which potently neutralize DENV1-4,

but not ZIKV (Fig 3). The second cluster, which is composed of residues V308, V309, and

K310, is in domain III but is near the domain I N-linked glycosylation site (Fig 4E). Of these

mutations, K310A also strongly reduced binding efficiency by J9 and EDE1-C10 (Fig 4F).

Mapping neutralization determinants

As F09.S05 neutralized DENV1-4 but not ZIKV, we screened neutralizing activity against a

previously described DENV library encoding mutations at solvent accessible E residues that

were identical or similar across representative DENV1-4 strains but different from ZIKV [39].

Specifically, amino acids at these E protein sites in DENV2 16681 were substituted with corre-

sponding ZIKV H/PF/2013 amino acids individually or in combination to identify those that

reduce antibody potency against DENV2 and thus comprise the neutralization epitope. We

also tested a subset of DENV2 alanine mutations identified in the binding screen above to vali-

date their role in neutralization.

Except for the K310A mutation in E domain III, which reduced F09.S05 potency by

~14-fold, mutations that strongly impacted F09.S05 neutralizing activity were in domain I

(Fig 5A). Removing the potential N-linked glycosylation site through mutation at residue

N153 or T155 abrogated neutralization, while the nearby V151T mutation reduced F09.S05

potency by ~50-fold. Combining V151T with H149S abolished neutralizing activity. These gly-

cosylation site mutations also abolished neutralization by F05.S03 (Fig 5B) and J9 (Fig 5C),

consistent with results from our binding screen above (Fig 4F) and our previous study with J9

[39]. In addition to these shared residues important for neutralization, we identified determi-

nants that distinguished F09.S05 and F05.S03 from each other and from the previously charac-

terized J9. For example, although the individual S145A and H149S mutations minimally

impacted F09.S05 (Fig 5A) and J9 (Fig 5C) (maximum of 5-fold change in IC50), each muta-

tion reduced F05.S03 neutralization potency by ~20-fold (Fig 5B). Moreover, the combination

of K47T+F279S mutations in domain I minimally impacted F09.S05 and F05.S03 (< 4-fold

IC50 change, Fig 5A and 5B), but reduced J9 potency by 76-fold (Fig 5C).

In contrast to their effects on F09.S05, F05.S03, and J9, mutations at N153 and T155

increased neutralization potency of EDE1-C10 and F25.S02 by up to 50-fold (Fig 5D and 5E).

Another shared feature between EDE1-C10 and F25.S02 is a reduced neutralization potency

against the K47T+F279S double mutation in E domain I (36- and 14-fold IC50 increase,

respectively, Fig 5D and 5E). However, there were distinct neutralization determinants for

these bnAbs. Specifically, the I113A and N242A mutations in domain II each reduced F25.S02

potency by ~30-fold (Fig 5D) but minimally impacted EDE1-C10 neutralization (<4-fold

IC50 change, Fig 5E). Conversely, the K310A mutation in domain III strongly reduced

EDE1-C10 (~90-fold IC50 increase, Fig 5E) but not F25.S02 potency (0.7-fold IC50 change,

Fig 5D). These results are consistent with the alanine binding screen (Fig 4D). Thus, despite

some similarities, we identified E residues that differentially impacted neutralization by newly

discovered bnAbs relative to each other and to known bnAbs, suggesting they have distinct

epitope specificities.

Effect of antibody valency on neutralizing activity

To gain additional insight into the epitope specificities, we compared the neutralization

potency of F25.S02, F09.S05, and F05.S03 tested as bivalent IgG1 or monovalent Fab against

DENV2 and ZIKV (S4 Fig). Except for F09.S05, the Fab versions of all antibodies tested,

including known bnAb controls EDE1-C10 and SIgN-3C, failed to neutralize DENV2 by at
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Fig 5. E protein residues critical for neutralization by bnAbs. (Left panel) Bar graphs show the mean IC50 fold

change against DENV2 16681 reporter virus particles encoding E protein variants relative to wild type (WT) DENV2

for antibodies (A) F09.S05, (B) F05.S03, (C) J9, (D) F25.S02, and (E) EDE1-C10. Sites in E domains I, II, and III are

shown in red, yellow, and blue, respectively. Values of 1,>1, and<1 indicate no change, decreased sensitivity, and

increased sensitivity of mutant relative to WT DENV2, respectively. Mean values were obtained from at least 2

independent experiments shown as individual data points in which WT and mutant DENV2 were tested in parallel.

WT ZIKV H/PF/2013 (gray) was included as a control. Error bars indicate the standard deviation (n>2) or range

(n = 2). In each graph, the dotted horizontal line represents a 4-fold IC50 change. (Right panel) For each bnAb, sites of

mutations that reduced neutralization potency when tested either individually or in combination by> 4-fold are

depicted as spheres on both monomers of the DENV2 E dimer subunit (PDB 1OAN).

https://doi.org/10.1371/journal.ppat.1011722.g005
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least 50% at the highest antibody concentration tested (400 nM), suggesting that bivalent

engagement is important for potent DENV2 neutralization by these antibodies [82]. Although

SIgN-3C IgG1 neutralized ZIKV with moderate potency, no neutralization was detected with

Fab, consistent with previous findings [37]. In contrast, EDE1-C10 and F25.S02 retained the

ability to completely neutralize ZIKV as Fab. Although IgG1 versions of EDE1-C10 and

F25.S02 neutralized ZIKV with similar potency, their Fab neutralization profiles were more

distinct; unlike EDE1-C10 Fab, which retained relatively potent neutralization consistent with

previous findings (<10-fold increase in IC50 compared to IgG) [82], F25.S02 neutralized

ZIKV with much reduced potency as Fab (64-fold increase in IC50 compared IgG). These

results suggest that EDE1-C10, SIgN-3C, and F25.S02 target distinct epitopes on ZIKV.

Neutralizing activity of IgA1 antibodies is similar to or better than IgG1

versions

As neutralizing activity is traditionally thought to be dependent mainly on changes within the

antibody variable region, neutralizing antibodies have typically been tested as the IgG1 sub-

class, regardless of their native isotype [83]. Moreover, most studies profiling the neutralizing

antibody repertoire against flaviviruses have specifically isolated IgG antibodies [28,33–

35,40,45]. While we did not bias our scRNAseq-based approach towards a particular antibody

isotype, we initially expressed and screened all antibodies as IgG1, similar to previous studies.

Given increasing evidence that antibody Fc isotype can impact neutralizing activity against

many viruses [84–89], we used scRNAseq data to confirm that the native isotype of almost all

23 antibodies downselected for detailed characterization was indeed IgG1 (S2 Table). How-

ever, unlike other flavivirus bnAbs described here or previously, our top-ranking bnAb,

F25.S02, was derived from the IgA1 isotype.

To investigate the impact of isotype on neutralizing activity, we expressed F25.S02,

EDE1-C10, and SIgN-3C as monomeric or dimeric IgA1 and compared their neutralization

profile to IgG1 versions. Although we purified IgA1 dimers by size-exclusion chromatography

(SEC), we could not exclude the presence of higher order polymers [90] by SDS-PAGE analysis

(S5 Fig) so we refer to these antibodies as polymeric IgA1 hereafter.

As shown in Fig 6, all 3 bnAbs retained neutralization breadth and potency as monomeric

IgA1. Moreover, while F25.S02 monomeric IgA1 and IgG1 displayed comparable potency

against DENV1-4 and ZIKV (maximum of 2-fold IC50 change), monomeric IgA1 versions of

EDE1-C10 and SigN-3C were more potent against some viruses (Fig 6B). For example, com-

pared to their IgG1 versions, EDE1-C10 and SigN-3C monomeric IgA1 antibodies were ~4

times more potent against DENV3, though sample sizes (n = 3) were too small to achieve sta-

tistical significance. SigN-3C potency against ZIKV was also 9 times higher as monomeric

IgA1 compared to IgG1.

Antibody expression as polymeric IgA1 further increased potency compared to IgG1 to

varying extents. This effect was most apparent for viruses against which the IgG1 version of

the particular antibody was the least potent; for F25.S02, EDE1-C10 and SigN-3C polymeric

IgA1, the largest IC50 reduction compared to IgG1 was observed against DENV2 (20-fold),

DENV3 (9-fold), and ZIKV (167-fold), respectively (Fig 6B). This increased potency of IgA1

bnAbs is unlikely due to non-specific effects as none neutralized the more antigenically distant

WNV (Fig 6A).

IgA1 antibodies inhibit enhancement of infection by IgG1

Virtually all IgG antibodies can enhance flavivirus infection in vitro at sub-neutralizing con-

centrations, presumably by facilitating uptake of IgG-virus complexes into FcγR-expressing
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cells [91]. Accordingly, IgG1 versions of newly and previously identified bnAbs enhanced

infection to various extents in K562 cells (S6A Fig) commonly used to study ADE as they

express FcγRIIa (S7 Fig) and are poorly permissive to flavivirus infection in the absence of IgG

[92]. We did not detect enhancement of ZIKV infection by J9, F09.S05, and F05.S03 (S6A

Fig). As IgG-bound, but not naked virions efficiently infect K562 cells, this finding suggests an

inability for these antibodies to bind ZIKV, which could explain their lack of ZIKV neutraliz-

ing activity (Fig 3A and 3B).

As existing studies of ADE of viral infection or disease have focused on the role of IgG-FcγR

interactions [12,17,21,93–95], we next investigated the role of IgA in enhancing DENV infec-

tion. We first tested the ability of monomeric IgA1 versions of F25.S02, EDE1-C10, and SIgN-

3C to enhance infection of DENV in K562 cells. For these experiments, we chose DENV1 and

DENV4 as the infectivity curves obtained across the concentration range of IgG1 versions of

bnAbs of interest fully captured both enhancement and neutralization in K562 cells (S6A Fig).

As expected, IgG1 but not IgA1 versions of F25.S02, EDE1-C10, and SIgN-3C enhanced

DENV infection in K562 cells (S6B Fig), which do not express Fc alpha receptor (FcαRI)

(S7 Fig).

We next investigated ADE in U937 monocytic cells, which express FcαRI in addition to

FcγRIIa (S7 Fig) [96,97]. For these experiments, we used a concentrated preparation of

DENV2 as we observed relatively inefficient IgG1-mediated ADE in U937 compared to K562

cells. Although we obtained the canonical dose-response ADE curve using IgG1 versions of

Fig 6. Neutralization profile of antibodies expressed as IgA1. (A) IgG1 (open circles), monomeric IgA1 (blue circles), and polymeric IgA1 (orange circles)

versions of F25.S02 (top row), EDE1-C10 (middle row), and SigN-3C (bottom row) were tested for their ability to neutralize DENV1 WP-74, DENV2 16681,

DENV3 CH53489, DENV4 TVP376, and ZIKV H/PF/2013 reporter virus particles. Dose-response curves are representative of 3 independent experiments,

each tested in duplicate wells. Data points and error bars represent the mean and range of the duplicates, respectively. (B) Comparison of IC50 values of

F25.S02 (left), EDE1-C10 (middle), SigN-3C (right) expressed as IgG1, monomeric IgA1, and polymeric IgA1 against the viruses indicated on the x-axes. Color

scheme is similar to (A). Each data point represents an independent experiment in which antibody isotypes were tested in parallel. Horizontal bars indicate the

mean. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.ppat.1011722.g006
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bnAbs, neither monomeric nor polymeric IgA1 antibodies enhanced DENV infection in U937

monocytes (Fig 7A). Moreover, competitive ADE assays using mixtures of IgG1 and mono-

meric IgA1 antibodies at various ratios demonstrated that autologous IgA1 antibodies inhib-

ited IgG1-mediated ADE of DENV infection in U937 cells (Fig 7B) in a dose-dependent

manner (Fig 7C). This effect was also observed for all three bnAbs in K562 cells (S6B Fig),

indicating that IgA1 antibodies can interfere with IgG1-mediated ADE in multiple cell types

regardless of native isotype and epitope specificity. Crucially, an isotype control IgA1 antibody

had virtually no effect on ADE mediated by IgG1 in U937 (Fig 7B and 7C) or K562 (S6B Fig)

cells, indicating that inhibition was due neither to a reduction in IgG1 concentration in IgG1/

IgA1 mixtures nor the presence of non-specific IgA1. Rather, IgA1 inhibited ADE mediated

by IgG1 likely via direct competition of binding to virions.

Discussion

Unlike most antibody discovery approaches that involve screening large panels of antibodies

expressed by sorted B cells [38], we previously established a proof-of-concept for a bioinfor-

matics-based strategy to identify not only antigen-specific antibodies, as shown previously by

other groups [51,98,99], but also those with broadly neutralizing activity [39]. Here, we have

improved upon our previous approach and leveraged scRNAseq of B cells to identify multiple

antibodies that broadly and potently neutralized DENV1-4 and in some cases, ZIKV. Previous

studies characterizing flavivirus bnAb responses have used antibody isolation protocols that

specifically enriched the IgG isotype [28,33–35]. In contrast, our scRNAseq approach is

designed to capture full-length antibody sequences in an unbiased manner. Although most

new bnAbs we discovered were of the IgG1 isotype, consistent with previous findings

[27,28,39], we also describe for the first time an IgA1 antibody with broadly neutralizing activ-

ity against DENV1-4 and ZIKV.

Despite broad and potent serum neutralizing activity in all 4 donors selected for antibody

repertoire analysis, almost all monoclonal bnAbs were isolated from only one donor (014).

Although we did not set out to formally investigate the basis for donor-dependent effects, con-

sistent with previous findings [46,47], antibody neutralizing activity could be partly explained

by sample collection time (S1 Fig), which likely affected our ability to capture transiently circu-

lating plasmablasts (Fig 2A), many of which encode bnAbs [25,27,28,39]. Alternatively, the

observed serum neutralization breadth and potency across donors could be due to a combina-

tion of antibodies with multiple specificities. However, within a given donor, we did not detect

an obvious pattern of complementary neutralizing activity among antibodies from distinct

clonal families to support this hypothesis (S2B–S2G Fig). The number and order of prior flavi-

virus exposures also impact bnAb development [12]. It is interesting that unlike other donors

analyzed, donor 014 was confirmed to have been acutely co-infected with two DENV serotypes

(S1 Fig). Prior studies have documented concurrent infection by multiple DENV serotypes in

hyperendemic regions [100–105], but whether co-infection uniquely impacts bnAb induction

has not been systematically explored. Finally, while we successfully identified multiple new

bnAbs, our in silico down-selection criteria are likely subject to stochastic processes to some

extent [106].

Although neutralizing activity is thought to be primarily determined by somatic hypermu-

tation within antibody variable regions, Fc isotype can also impact neutralization potency and/

or breadth against many viruses, including flaviviruses [84–88]. For example, a recent study

described a naturally occurring ZIKV-specific pentameric IgM antibody (DH1017.IgM)

whose potency depended on the IgM isotype [88]. Unlike DH1017.IgM, which did not neutral-

ize DENV, here we identified F25.S02, an IgA1 antibody that potently cross-neutralized ZIKV
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Fig 7. Effect of antibody isotype on antibody dependent enhancement (ADE) of infection of U937 monocytes. (A) DENV2 16681

reporter virus particles were pre-incubated with serial dilutions of IgG1 (filled circles), monomeric IgA1 (open circles), or polymeric IgA1

(open squares) forms of F25.S02 (blue), EDE1-C10 (orange), or SIgN-3C (green) prior to infection of U937 cells, which express Fc

receptors for both IgG and IgA. IgG1 and IgA1 antibodies were tested individually in the assay. (B) Competitive ADE assays in U937

monocytes. F25.S02 (top row, blue), EDE1-C10 (middle row, orange) or SIgN-3C (bottom row, green) IgG1 was mixed with either
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and DENV1-4 and retained its potency as IgG1. In addition to its distinct isotype, our epitope

mapping results demonstrate that despite some similarities, F25.S02 has unique binding and

neutralization determinants compared to EDE1-C10 [28,30,31] and SIgN-3C [27,36,37] IgG1

antibodies, which represent the only 2 known classes of bnAbs that potently neutralize

DENV1-4 and ZIKV.

While IgA bnAbs have been described for antigenically distinct viruses that infect mucosal

surfaces such as HIV [83,107], SARS-CoV-2 [85], and common respiratory viruses [108], to

our knowledge, F25.S02 is the first known IgA bnAb against flaviviruses. A recent study

showed that infection by the malaria parasite, Plasmodium falciparum, another mosquito-

borne pathogen, induces serum IgA production in humans that contribute to protection

against disease [109]. These results indicate a functional role for IgA even in the context of

infections that do not occur primarily at mucosal surfaces.

Human IgA antibodies in serum and mucosal sites exist primarily as monomeric or

dimeric/polymeric forms, respectively [90]. As monomeric IgA1, F25.S02 displayed compara-

ble neutralizing activity to IgG1 against DENV1-4 and ZIKV. In contrast, we show that expres-

sion of EDE1-C10 and SIgN-3C bnAbs as monomeric IgA1 improved potency against some

viruses, despite their native IgG1 isotype [28,40]. These findings are consistent with epitope-

and virus-dependent effects of antibody isotype on neutralization [83]. Expression of all 3

bnAbs as polymeric IgA1 increased potency relative to corresponding monomeric IgA1 or

IgG1 versions to varying extents, depending on the virus/antibody combination. Defining the

mechanism(s) behind this observation awaits further studies but it suggests that the epitope

arrangement of these bnAbs allows multivalent engagement by polymeric IgA on the same

virion in a context-dependent manner. Alternatively, or in addition to this mechanism, poly-

meric IgA could bind the same epitope on multiple virions to cause aggregation. Both mecha-

nisms of virion engagement have been shown for DH1017.IgM, depending on the particular

antibody conformation [88].

Compared to other isotypes, IgA1 antibodies have a greater distance between Fabs relative

to each other and to the Fc domain [110,111], providing a possible mechanism for unique neu-

tralizing and Fc-dependent effector functions [83]. Further, engagement of IgA with FcαRI is

distinguished from engagement of other isotypes with their Fc receptors in terms of stoichiom-

etry, orientation, and location of protein binding sites [112], which could impact the efficiency

with which different antibody isotypes facilitate ADE. These differences may explain our

observation that IgG1, but not IgA1 antibodies mediated ADE of DENV in U937 cells

(Fig 7A). The significance of this finding is highlighted by another group’s almost concurrent

observation that the IgG1 but not IgA1 form of a DENV-specific, neutralizing antibody medi-

ated ADE in primary monocyte-derived macrophages, and that FcαRI expression on circulat-

ing monocytes was limited during acute DENV infection [113]. Here, we further show that

IgA1 versions of bnAbs inhibited IgG1-mediated ADE in a dose-dependent manner, likely via

competition for binding to virions. Combined, these results indicate that IgA1 forms of anti-

bodies may offer protection against DENV with minimal risk of enhancement of infection.

Existing studies of flavivirus immunity have heavily focused on the role of IgG antibodies

and their interactions with FcγRs [12,16,17,21,93,114]. Although the in vivo relevance of our

autologous IgA1 (left panel, solid lines) or an IgA1 isotype control (right panel, dashed lines) at the indicated ratios by mass before serial

dilution and pre-incubation with concentrated DENV2 16681 reporter virus particles. The assay performed in two independent

experiments, each in duplicate wells. The data points and the error bars represent the means and the range of the duplicates, respectively,

from one representative experiment. (C) Area under the curve analysis for experiments represented in (B). For both biological replicates

the area of the curve for each infection condition was calculated and normalized to infection in the 100% IgG1 condition. The data points

and error bars represent the mean and the range of two independent experiments, respectively.

https://doi.org/10.1371/journal.ppat.1011722.g007
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results remains to be validated, they nevertheless highlight an underappreciated role for flavivi-

rus-specific IgA antibodies in infection and immunity. Indeed, recent studies reported a high

proportion of DENV-reactive IgA-expressing plasmablasts following acute primary infection

and to a lesser extent, secondary infection [49,115,116]. Our analysis of circulating B cell reper-

toires here also demonstrates that while IgG dominated the response, IgA and IgM antibodies

were prevalent (Fig 2B). Notably, FcαRI is expressed on myeloid cells, including monocytes,

macrophages, and dendritic cell subsets [117–120], all of which also express FcγRs and are

thought to be principal target cells for DENV in vivo [41,121–125]. Intriguingly, IgA-FcαRI

interactions can modulate activating or inhibitory responses mediated by other Fc receptors

[126,127]. Together, these observations underscore the importance of future studies to account

for the complex interplay among distinct antibody isotypes and Fc receptors in modulating fla-

vivirus immunity and pathogenesis. Determining whether IgA and other non-IgG isotypes

mitigate or potentiate antibody-associated disease in vivo will inform strategies to improve the

safety and efficacy of antibody-based countermeasures [128].

A limitation of our study is that we did not evaluate the in vivo protective and pathogenic

potential of identified bnAbs, in part due to the lack of an animal model that fully recapitulates

dengue immunity and disease [129–131]. Evaluating these properties for IgA antibodies in

existing mouse models is especially challenging as they do not express FcαRI homologs [132].

Moreover, rapid IgA clearance in mice [133,134] likely necessitates IgA deglycosylation to

improve stability [109], which limits the biological relevance of these animal models for assess-

ing protective or pathogenic functions of IgA antibodies in their native form. Thus, cohort

studies similar to those that have defined IgG-associated correlates of protection or disease

[12,13,17,21] would be most informative.

Another limitation is that we analyzed antibody repertoires from a relatively small donor

sample size. Additionally, because our primary goal was to discover bnAbs, we focused on

antibodies encoded by transiently circulating plasmablasts, which often display neutralization

breadth and potency. Although there is functional overlap between the DENV-specific plasma-

blast antibody repertoire with that of memory B cell and long-lived plasma cell subsets [47],

future studies will need to determine whether the bnAbs we identified here contribute to dura-

ble immunity.

Finally, we acknowledge that by performing single point neutralization assays without nor-

malizing to antibody concentration in the first round of screening, we may have missed some

neutralizing antibodies due to low expression. However, we found that neutralizing activity

was not simply explained by expression level: 6 out of the 25 highest expressing antibodies

(> 575 μg/ml) failed to neutralize any virus while 15 out of 25 of the lowest-expressing anti-

bodies (< 62 μg/ml) neutralized one or more viruses by > 50% (S2 Fig). These results suggest

that the majority of antibodies screened were tested at concentrations sufficient to identify

potently neutralizing antibodies. Moreover, this approach succeeded in achieving our goal of

discovering novel flavivirus bnAbs, including the first non-IgG isotype that can potently and

broadly neutralize DENV1-4 and ZIKV.

Methods

Ethics statement

The study’s use of samples from human donors with acute DENV and/or ZIKV infection was

approved by the Stanford University Administrative Panel on Human Subjects in Medical

Research (Protocol #35460) and the Fundación Valle del Lili Ethics committee in biomedical

research (Cali, Colombia). All participants, their parents, or legal guardians provided written

informed consent, and subjects 6 years of age and older provided assent.
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Cohort samples

We collected blood samples from individuals who presented with symptoms compatible with

dengue between 2016 and 2017 to the Fundación Valle del Lili in Cali, Colombia. Each blood

sample was centrifuged to separate serum and peripheral blood mononuclear cells (PBMCs).

Sera was stored at -80˚C and corresponding PBMCs were cryopreserved and stored in liquid

nitrogen. Cohort details have been previously described [41,42].

Cell lines

ExpiCHO-S Cells (Cat# A29127; ThermoFisher Scientific, Waltham MA) were cultured in

ExpiCHO Expression Medium (Cat# A2910001; ThermoFisher Scientific) and maintained at

37˚C in 8% CO2 on a platform rotating at 125 rpm with a rotational diameter of 19 cm. They

were subcultured according to the manufacturer’s instructions. HEK-293T/17 cells (Cat#

CRL-11268, ATCC, Manassas, VA) and Vero-C1008 cells (Cat# CRL-1586, ATCC) were

maintained in DMEM (Cat# 11965118; ThermoFisher Scientific) supplemented with 7% fetal

bovine serum (FBS) (Cat# 26140079, lot 2358194RP, ThermoFisher Scientific) and 100 U/mL

penicillin-streptomycin (Cat# 15140–122; ThermoFisher Scientific). Raji cells stably express-

ing DCSIGNR (Raji-DCSIGNR) [135] (provided by Ted Pierson, NIH), K562 cells (Cat# CCL-

243, ATCC), and U937 cells (Cat# CRL-1593.2, ATCC) were maintained in RPMI 1640 sup-

plemented with GlutaMAX (Cat# 72400–047; ThermoFisher Scientific), 7% FBS and 100 U/

mL penicillin-streptomycin. C6/36 cells (Cat# CRL-1660, ATCC) were maintained in EMEM

(Cat# 30–2003, ATCC) supplemented with 10% FBS at 30˚C in 5% CO2. All cell lines were

maintained at 37˚C in 5% CO2 unless otherwise stated.

Preparation of cells for single-cell RNA sequencing

Cryopreserved PBMCs were thawed quickly in a 37˚C water bath and transferred to a 50 mL

conical tube. Thirty mL of RPMI 1640 supplemented with 10% FBS (no antibiotics) was added

to the cells dropwise while gently swirling. Cells were counted and CD19+ B cells were isolated

using the EasySep Human Pan-B cell enrichment kit (Cat# 19554, StemCell Technologies,

Vancouver, Canada) according to the manufacturer’s instructions. The resulting cells were

incubated in a cocktail containing a live/dead stain (Cat# L34957, Thermo Scientific) and fluo-

rescently labeled antibodies for CD20-eFluor450 (Cat# 48-0209-42, Invitrogen, Waltham,

MA), CD38-FITC (Cat# 303504, Biolegend, San Diego, CA), CD27-PE-Cy7 (Cat# 25-0271-82,

Invitrogen), CD19-APC (Cat# 555415, BD Biosciences, Franklin Lakes, NJ), CD3-APC-Cy7

(Cat# 300318, Biolegend), CD8-APC-Cy7 (Cat# 344714) and CD14-APC-Cy7 (Cat# 301820)

for 30 min at 4˚C. Stained cells were washed twice in FACS wash buffer (10% FBS in PBS) and

strained through FACS tubes with strainer caps (Cat# 352235, BD Biosciences). The cells were

analyzed on a BD FACS Aria flow cytometer to assess the purity of B cells (CD19+) and deter-

mine the fraction of cells that were plasmablasts (CD3-, CD8-, CD14-, CD19 mid to hi, CD20-,

CD27+, CD38+). In pilot experiments, we found that when we sorted samples with fewer than

30,000 plasmablasts, we had difficulty recovering enough cells to achieve the required density

and volume for subsequent processing on the 10X Genomics chip. We therefore chose to

enrich plasmablasts by FACS only if the sample met two criteria: 1) the fraction of B cells that

were plasmablasts was <10%, and 2) the total number of plasmablasts in the sample

was> 30,000. Based on these criteria, only one donor’s sample (002) was enriched for plasma-

blasts via FACS; magnetically enriched CD19+ B cells from the remaining samples (001, 012,

014) were processed for scRNAseq without further enrichment.

The cells were prepared for RNA library generation using the Chromium Next GEM Single

Cell 5’ Library and Gel Bead Kit v1.1 (Cat# PN-1000167, 10X Genomics, Pleasanton, CA)
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according to the manufacturer’s instructions. A library enriched for variable regions of B cell

receptors (BCR library) was generated using the Chromium Single Cell V(D)J Enrichment Kit,

Human B Cell (Cat# PN-1000016, 10X Genomics) and the global gene expression library

(GEX library) was generated using the Chromium Single Cell 5’ Library Construction Kit

(Cat# PN-1000020, 10X Genomics), both according to the manufacturer’s instructions. Both

libraries from the sample from donor 014 (D014) were sequenced on an Illumina HiSeq. The

libraries for the samples D001 (donor 001), D002 (donor 002), and D012 (donor 012) were

sequenced on an Illumina NovaSeq 6000. Sequencing data were demultiplexed and aligned to

the human transcriptome GRCh38-2020-A using cellranger (10X Genomics) version 5.0.1

(D001, D002, D012) or 5.0.0 (D014), which also identified the isotype of each antibody. The

“filtered” cellranger output was then passed to partis for paired heavy/light chain clustering

and annotation with default parameters [44]. This included the default partis disambiguation

of incomplete and ambiguous heavy/light pairing information, which for instance resolved an

atypically large number of droplets in D014 with reads from more than one cell. After group-

ing all sequences from an individual donor into clonal families, partis estimated the V, D, and

J gene segments that composed the naive antibody sequence. B cell subtypes were identified

using previously described gene markers [49] in the AUCell package (1.12.0). Isotype annota-

tions were taken from the cellranger output.

Selection of candidate bnAbs from single-cell RNA sequencing data

The variable regions of the paired heavy and light chain sequences were grouped into clusters

based on inferred shared ancestry (clonal families) using partis. This method first groups

together sequences stemming from the same rearrangement event for each chain separately,

using a combination of inferred ancestral sequences and likelihood calculation with hierarchi-

cal agglomeration. It then refines these clusters using heavy/light chain pairing information.

Further details are described in [51]. B cell isotype was determined by aligning sequences to

known constant region genes, and selecting the best match. B cell subtype was determined

from gene expression data by using the AUCell package [136] to categorize each cell’s expres-

sion profile by similarity to a set of reference genes that are highly up or downregulated for

each subtype (gene sets in S4 Table). For the first round of screening intended to find families

that encode bnAbs, we selected the largest clonal families from each donor excluding those in

which the mean somatic hypermutation (measured by nucleotide sequence) was below 2%.

Within the selected families we selected 1–2 sequences that had the lowest Hamming distance

to consensus (i.e. the sequence consisting of the most common amino acid present at each

position), excluding those that were not encoded by plasmablasts. The selected antibodies

were screened for their ability to neutralize DENV1-4 and ZIKV (described below) and those

that neutralized >50% of infection of 3 or more viruses were considered “hits”. We initiated a

second round of screening of antibodies from clonal families that had produced hits in the

first round. Within each family we selected antibodies in ascending order of Hamming dis-

tance to the consensus, again excluding those that were not encoded by plasmablasts.

Expression of recombinant antibodies

Heavy and light chain constructs for recombinant MZ4 IgG1 expression have been described

previously [33] and were provided by Shelly Krebs (Walter Reed Army Institute of Research).

For other antibodies, heavy and light chain variable regions were synthesized (Twist Biosci-

ence, South San Francisco, CA). Variable region sequences for newly identified antibodies

were obtained from our scRNAseq data; those for control antibodies were determined based

on the protein database (PDB) entries 4UT9 (EDE1-C10), 4UTA (EDE1-C8), 4UT6
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(EDE2-B7), 4UTB (EDE2-A11), 7BUD (SIgN-3C), and 3N9G (CR4354) and codon-optimized

for gene synthesis. All variable regions were cloned into the expression vectors provided by

Patrick Wilson (University of Chicago): AbVec-hIgG1 (GenBank accession # FJ475055),

AbVec-hIgKappa (GenBank accession# FJ475056) and AbVec-hIgLambda (GenBank acces-

sion # FJ517647), respectively. The variable regions were synthesized with adaptor sequences

overlapping their respective vectors. The adaptor sequence that was appended to the 5’ end

was the same for all vectors: TAGTAGGAACTGCAACCGGTT. The sequence appended to 3’

ends was specific to each vector: for AbVec heavy: CGGTCGACCAAGGGCCCATCGG, for

AbVec kappa: CGTACGGTGGCTGCACCATC, and for AbVec lambda: GGTCAGCCCAA

GGCCAACCCCACTGTCACTCTGTTCCCACCCTCGAGTGAGGAGCTTCAAGC. Heavy,

kappa, and lambda vectors were linearized by digestion with SalI/AgeI, BsiWI/AgeI, and

XhoI/AgeI, respectively as described [137]. Synthesized fragments and linearized vectors were

ligated using NEBuilder HiFi DNA Assembly Master Mix (Cat# E2612L, New England Bio-

labs, Ipswich, MA) according to the manufacturer’s instructions.

IgA1 heavy chains were generated by cloning the variable regions of selected antibodies

into the expression vector pFUSEss-CHIg-hA1 (Cat# pfusess-hcha1, Invivogen, San Diego,

CA). Variable regions of the antibody coding sequences were PCR amplified using the IgG1

heavy chain expression plasmid as a template and custom primers that appended an EcoRI site

and an NheI site at the 5’ and 3’ ends respectively. Primer sequences were as follows: for

F25.S02 GTACACGAATTCGCAGGTGCAGCTGGTGC (forward) and GACTCTGCTAGC

TGAGGAGACGGTGACC (reverse); for EDE1-C10 GTACACGAATTCGGAGGTCCAACT

TGTTG (forward) and GACTCTGCTAGCAGAGCTTACGGTTACG (reverse); and for

SIgN-3C GTACACGAATTCGGAAGTACAACTGGTGC (forward) and GACTCTGCT

AGCTGAACTAACAGTTACCAG (reverse). The PCR amplicons and the vector were

digested with EcoRI and NheI and the resulting fragments were ligated using T7 DNA ligase

(Cat# M0318, New England Biolabs).

All AbVec antibody expression plasmids (IgG1-heavy, kappa, and lambda) were confirmed by

Sanger sequencing (Fred Hutch Genomics Core) using the primer “AbVec sense”: GCTTCG

TTAGAACGCGGCTAC. IgA1 expression plasmids were confirmed by whole plasmid nanopore

sequencing (Plasmidsaurus, Eugene, OR). To produce IgG1 and monomeric IgA1, heavy and

light chain expression vectors were co-transfected into cultures of ExpiCHO-S cells at 0.8 ng/mL

total DNA concentration at 1:1 mass ratio using OptiPro serum free medium (Cat#12309, Gibco)

and Expifectamine CHO Transfection Kit (Cat# A29130, Gibco) according to the manufacturer’s

instructions. To produce IgA1 dimers, plasmids encoding heavy, light, and joining chain (Cat#

pUNO4-hJCHAIN, InvivoGen) were co-transfected at 0.8 ng/mL total DNA concentration at

1:1:1 mass ratio using the same medium and transfection reagents. Supernatant containing

secreted antibodies was collected 8 days post transfection, centrifuged at 3220 x g for 10 minutes

and filtered through a 0.45 μm Steriflip filter (Cat# SE1M003M00, Millipore-Sigma).

Purification of antibodies

Recombinant IgG1 produced in transfected ExpiCHO-S cells was purified using MabSelect

Sure LX protein A agarose beads (Cat# 17-5474-01, Cytiva Life Sciences, Marlborough, MA)

according to the manufacturer’s instructions. Recombinant IgA1 produced in ExpiCHO-S

cells as described above was purified using protein M agarose beads (Cat# gel-pdm-2, Invivo-

Gen US) according to the manufacturer’s instructions. IgA1 multimers were separated from

monomers via size exclusion chromatography on a HiLoad 16/600 Superdex 200 pg column

using 70 mL PBS as the eluate. A monomeric IgA1 antibody (Cat# 31148, ThermoFisher) was

used as a standard for SDS-PAGE and as a negative control for ADE assays as indicated.
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The hybridoma D1-4G2-4-15, which expresses the antibody 4G2, was obtained from

ATCC (Cat# HB-112). The hybridoma was expanded and IgG was purified from culture

supernatant by the Fred Hutchinson Cancer Center Antibody Technology Core. The purified

antibody was conjugated to APC using the Lighting-Link APC-conjugation kit (Cat#

ab201807, Abcam) according to the manufacturer’s instructions and used to detect intracellu-

lar E protein in assays using fully infectious DENV. Unconjugated, purified 4G2 antibody was

used in ELISA experiments.

ELISA to quantify antibodies

96 well absorbent plates (Cat# 3361, Corning Inc.) were coated overnight with 50 μL/well of

25 mg/mL goat antibody raised against human IgG, IgA, and IgM (Cat# I1761 Sigma-Aldrich).

The next day wells were washed with 200 μL wash buffer (0.1% Tween-20 in PBS) and blocked

with 200 μL of 3% nonfat milk in PBS for 1 hour. Wells were washed once in wash buffer and

50 μL of sample was added to each well. Samples were incubated for 2 hours at room tempera-

ture on a rocker. After incubation, wells were washed 3 times in wash buffer, followed by addi-

tion of 50 μL of peroxidase-conjugated goat anti-human IgG secondary antibody (Cat# A0170,

ThermoFisher) diluted 1:50,000. The secondary antibody was incubated for 1 hour at room

temperature on a rocker. Wells were washed 3 times in wash buffer, received 50 μL of TMB

(Cat# 34028, ThermoFisher), and were incubated at room temperature until a color change

was apparent. The reaction was stopped with 50 μL of 1N HCl and absorbance at 450 nm was

read on SpectraMax i3x plate reader (Molecular Devices). The IgG1 concentrations of

unknown samples were measured by comparison to wells containing known concentrations of

purified CR4354 IgG1.

Production of single-round infectious reporter virus particles

Reporter virus particles of DENV1, DENV2, ZIKV, and WNV were produced by co-transfec-

tion of HEK-293T/17 cells with (i) a plasmid expressing a WNV subgenomic replicon encoding

GFP in place of structural genes [138], and (ii) a plasmid encoding C-prM-E structural genes

from the following viruses: DENV1 Western Pacific-74 (WP-74) [139], DENV1 16007 [140],

DENV2 16681 [139], DKE-121 [71], WNV NY99 [138], and ZIKV H/PF/2013 [141]. Briefly, 8

x 10^5 HEK-293T/17 cells were plated in each well of a 6-well plate, The following day each

well was co-transfected with 1 μg of replicon-encoding plasmid and 3 μg of C-prM-E-encoding

plasmid using Lipofectamine 3000 (Cat# L3000-015; ThermoFisher Scientific) according to the

manufacturer’s instructions. Four hours post-transfection, media was replaced with low-glucose

DMEM (Cat# 12320–032; ThermoFisher Scientific) containing 7% FBS and 100 U/mL penicil-

lin-streptomycin (i.e. low-glucose DMEM complete) and cells were transferred to 30˚C in 5%

CO2. Virus-containing supernatant was harvested twice per day at days 3 through 8 post-trans-

fection and centrifuged at 700 x g for 5 min. The clarified supernatant was passed through a

0.45 μm Steriflip filter (Cat# SE1M003M00, Millipore-Sigma, St. Louis, MO), pooled, aliquoted,

and stored at -80˚C. Reporter virus particles with increased efficiency of prM cleavage were pro-

duced as above by co-transfecting plasmids encoding the replicon, structural genes, and human

furin (provided by Ted Pierson, NIH) at a 1:3:1 mass ratio.

Reporter virus particles of DENV3 strain CH53489 (Cat# RVP-301; Integral Molecular,

Philadelphia, PA) and DENV4 strain TVP376 (Cat# RVP-401; Integral Molecular) were

obtained commercially and were produced by co-transfection of the DENV3 or DENV4

CprME plasmid with the DENV2 strain 16681 replicon as previously described [142].

For the RVP binding ELISA described below ELISA (Fig 4A and 4B) and ADE experiments

in U937 cells (Fig 7), DENV2 16681 reporter virus particles were concentrated 100X by
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ultracentrifugation through 20% sucrose at 166,880 x g for 4 hr at 4˚C, resuspended in 1/100

volume of HNE buffer (5 mM HEPES, 150 mM NaCl, 0.1 mM EDTA, pH 7.4), and stored at

-80˚C.

Infectious titers of reporter viruses were determined by infection of Raji-DCSIGNR cells

using 2-fold serial dilutions of virus stocks. At 2 days post-infection, cells were fixed in 2%

paraformaldehyde (Cat# 15714S; Electron Microscopy Sciences, Hatfield, PA), and %GFP pos-

itive cells quantified by flow cytometry (Intellicyt iQue Screener PLUS, Sartorius AG, Got-

tingen, Germany).

Generation of E protein variants

Construction of DENV2 16681 reporter virus variants in which E protein sites were substi-

tuted with corresponding ZIKV H/PF/2013 amino acid residues individually or in combina-

tion have been previously described [39]. Here, we used similar methods to generate

individual alanine mutations. Specifically, the DENV2 16681 CprME expression construct

[139] was used as a template for Q5 site-directed mutagenesis (Cat# E0554S; New England

Biolabs, Ipswich, MA) and primers generated by NEBaseChanger (New England Biolabs, Ips-

wich, MA). The entire plasmid was sequenced (Plasmidsaurus, Eugene, OR) to confirm the

presence of the desired mutation(s) only.

E protein and reporter virus particle binding ELISA

Nunc 384-Well Clear Polystyrene Plates (Cat# 164688 ThermoFisher) were coated with 20 μL/

well of recombinant E monomers (Cat#DENV2-ENV, Native Antigen Co, Kidlington, United

Kingdom) at 3 μg/mL or 20 μL/well of antibody 4G2 at 50 μg/mL overnight. The next day

plates were washed once with 50 μL wash buffer (0.05% Tween-20 in PBS) and blocked with

50 μL of blocking buffer (3% nonfat milk, Cat# 20–241 Apex Bioresearch products, in PBS) at

37˚C for 45 min. Blocking buffer was aspirated from wells that had received 4G2 and replaced

with 20 μL of 100X concentrated reporter virus particles diluted 1:1 in blocking buffer. Wells

that had received E monomers were left in blocking buffer and plates were incubated at 37˚C

for 45 min. Wells were washed 3 times with 50 μL of wash buffer, received 30 μL of primary

antibody at 100 μg/mL, and were incubated at 37˚C for 45 min. Wells were washed 6 times

with 50 μL wash buffer, received 30 μL of mouse anti-human antibody (Cat# 05–4220, Ther-

moFisher) at 1 μg/mL, and were incubated at 37˚C for 45 min. Finally, wells were washed 6

times with 50 μL wash buffer, received 30 μL of TMB (Cat# 34028 ThermoFisher), and were

incubated at room temperature until a color change was apparent. The reaction was stopped

with 15 μL of 1N HCl and absorbance at 450 nm was read on SpectraMax i3x plate reader

(Molecular Devices, San Jose, CA)

Binding screen against alanine library

We screened binding of antibodies F25.S02 and F05.S03 to a DENV2 16681 library where each

prM/E polyprotein residue was mutated to alanine (or alanine residues to serine) [81]. In total,

559 sequence confirmed DENV2 mutants (99.6% coverage of the prM/E protein) were arrayed

into 384-well plates (one mutation per well). The optimal screening condition was determined

using an independent immunofluorescence titration curve against wild-type prM/E expressed

in HEK293T cells to ensure that signals were within the linear range of detection and that sig-

nal exceeded background by at least 5-fold. F25.S02 and F05.S03 bound sufficiently well for

screening only when the prM/E expression plasmid was co-transfected with a furin expression

plasmid to enhance cleavage of prM. Thus, for antibody screening, plasmids encoding the

DENV protein variants were individually co-transfected with furin expression plasmid into
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HEK-293T cells and expressed for 22 hr before incubation with purified IgG1 antibodies (0.1–

2.0 μg/mL) diluted in 10% normal goat serum (NGS) (Sigma-Aldrich, St. Louis, MO) in PBS

plus calcium and magnesium (PBS++).

Antibodies were detected using 3.75 μg/mL Alexa Fluor 488-conjugated secondary anti-

body (Jackson ImmunoResearch Laboratories) in 10% NGS. Cells were washed three times

with PBS++ followed by 2 washes in PBS, then fixed in 4% paraformaldehyde (Electron

Microscopy Sciences), washed in PBS, and resuspended in Cellstripper (Cat# 25-056-CI, Corn-

ing Inc, Corning, NY) plus 0.1% BSA (Sigma-Aldrich). Mean cellular fluorescence was

detected by flow cytometry (Intellicyt iQue Screener PLUS, Sartorius AG).

Antibody reactivity against each mutant was calculated relative to reactivity with wild-type

prM/E, by subtracting the signal from mock-transfected controls and normalizing to the signal

from wild-type protein-transfected controls. The entire library data for each antibody was

compared to control antibodies. Mutations were identified as critical to the antibody epitope if

they did not support reactivity of the test antibody, but supported reactivity of other control

antibodies. This counter-screen strategy facilitates the exclusion of DENV prM/E protein

mutants that impact folding or expression.

Neutralization and antibody-dependent enhancement assays using single-

round infectious reporter virus particles

All neutralization and ADE assays using the following strains were performed with reporter

virus particles: DENV1 West-Pac 74, DENV1 16007, DENV2 16681, DENV3 CH53489,

DENV4 TVP376, DKE-121, ZIKV H/PF/2013, WNV NY99. For experiments with DENV

reporter viruses, except for Fig 3, which tested the entire panel of strains listed above in addi-

tion to fully infectious viruses described in the next section, neutralization assays were per-

formed using a condensed panel of commonly used strains of reporter viruses representing

each serotype (DENV1 West-Pac 74, DENV2 16681, DENV3 CH54389, DENV4 TVP376).

Depending on the assay, stocks of reporter virus particles diluted to 5–10% final infectivity

were incubated with either heat-inactivated serum (56˚C for 30 min), 1/10 diluted ExpiCHO-S

cell supernatant containing recombinant IgG1, or 5-fold serial dilutions of purified monoclo-

nal antibodies for 1 hr at room temperature before addition of 2e5 Raji-DCSIGNR cells (neu-

tralization assays), K562 cells (ADE assays), or U937 cells (ADE assays). After incubation for 2

days at 37˚C, cells were fixed in 2% paraformaldehyde and GFP positive cells were quantified

by flow cytometry (Intellicyt iQue Screener Plus, Sartorius AG). For experiments using single

dilutions of serum or ExpiCHO-S cell supernatant, infection was normalized to conditions

without serum/supernatant and expressed as % infection of the untreated condition. For

experiments using serial dilutions of serum or of purified monoclonal antibodies, infection

was normalized to conditions without serum/antibody and analyzed by non-linear regression

with a variable slope and the bottom and top of the curves constrained to 0% and 100%,

respectively (Graph-PadPrism v8, GraphPad Software Inc). Results from experiments using

serially diluted serum were reported as the reciprocal dilution at which 50% of infection was

neutralized (NT50). Results from experiments using serially diluted purified antibodies were

reported as the concentration at which 50% of infection was neutralized (IC50).

Production and neutralization of fully infectious virus

DENV1 UIS 998 (isolated in 2007, Cat# NR-49713), DENV2 US/BID-V594/2006 (isolated in

2006, Cat# NR-43280), DENV3/US/BID- V1043/2006 (isolated in 2006, Cat# NR-43282),

DENV4 strain UIS497 (isolated in 2004, Cat# NR-49724) were obtained from BEI Resources

(Manassas, VA). Viral stocks were expanded by infecting 70% confluent C6/36 cells and virus-
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containing supernatant was collected and pooled at days 3 to 8 post infection. DENV4 H241

(isolated 1956, Cat# TVP17463) was obtained from the World Reference Center for Emerging

Viruses and Arboviruses (WRCEVA) at the University of Texas Medical Branch (Galveston,

TX). The seed stock was expanded by infecting 90% confluent Vero cells and virus-containing

supernatant was collected 7 days post infection. All virus-containing supernatants were centri-

fuged at 500 x g for 5 min, filtered through a 0.45 μm Steriflip filter (Cat# SE1M003M00, Milli-

pore-Sigma), and stored at -80˚C. Viral stocks were titered by infecting 2e5 Raji-DCSIGNR

cells with 2-fold serial dilutions. Two days post infection cells were fixed and permeabilized

using BD cytofix/cytoperm (Cat# 554717, BD Biosciences) according to the manufacturer’s

instructions before incubation with APC-conjugated 4G2 (an antibody specific for E protein)

for 30 minutes at 4˚C. Cells were washed twice in cytoperm/wash buffer and APC+ positive

cells were quantified by flow cytometry.

For dose response neutralization assays using fully infectious virus, stocks were diluted to

achieve 5–10% infection in Raji-DCSIGNR cells were incubated with 5-fold serial dilutions of

antibodies for 1 hour, then combined with 2e5 Raji-DCSIGNR cells and incubated at 37˚C 5%

CO2, before being stained for E protein as described above. IC50 values were calculated as

described above for neutralization assays using reporter virus particles.

Determining Fc receptor expression

K562 cells and U937 cells were washed in FACS wash (FW, 2% FBS in PBS) and resuspended

in 50 μL of staining or isotype control antibody and incubated at 4˚C for 30 min. For FcγRII

we stained with anti-CD32-FITC (Cat# 60012.FI, StemCell) and corresponding mouse IgG2b-

FITC isotype control (Cat# 11-4732-81, ThermoFisher Scientific). For FcαRI we stained with

anti-CD89/-PE (cat# 555686, BD Biosciences) and corresponding mouse IgG1-PE isotype con-

trol (cat# 12-4714-42, ThermoFisher Scientific). Cells were washed twice in FW and analyzed

by flow cytometry.

Supporting information

S1 Fig. Serum neutralizing activity against flaviviruses. Serum samples from 38 cohort par-

ticipants with the indicated age and DENV and/or ZIKV acute exposures collected at the time

point(s) shown were diluted either 1:240 (expt1) or 1:300 (expt2) and tested for their ability to

neutralize the indicated reporter viruses in two independent experiments. Bottom rows indi-

cate control antibodies, which include human convalescent sera to DENV (BEI Resources

NR-50232) or ZIKV (BEI Resources NR-50752) and monoclonal antibodies (mAb) E60 [143],

ZV-67 [144], CR4354 [54], and EDE1-C10 [28]. The percent neutralizing activity shown

under each virus column is normalized to infection in the absence of antibody. Heatmap col-

ors represent neutralizing activity of at least 50% as indicated in the key under the table. We

selected corresponding PBMC samples from the donors and time points highlighted in blue

under the ‘Days post-fever’ column for single-cell RNA sequencing to isolate monoclonal anti-

bodies.

(TIF)

S2 Fig. Neutralization profiles of IgG1 transfection supernatants from rounds 1 and 2 of

screening. Transfection supernatant containing (A) control antibodies, EDE1-C10 [28,31]

and CR4354 [54] or antibodies from donors (B) 001, (C) 012, (D) 002, and (E-G) 014 indi-

cated in each row was tested for neutralization against DENV1 WP-74, DENV2 16681,

DENV3 CH54389, DENV4 TVP376, ZIKV H/PF/2013, and WNV NY99 reporter viruses. The

second column displays the concentration of IgG1 detected in each crude supernatant as
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determined by ELISA, displayed as a blue heatmap according to the key. The supernatant com-

posed 1/10 of the volume of each neutralization assay, so the final concentration of antibody

present in each assay was 1/10 the value displayed. The red heatmap displays the percent neu-

tralization of each virus normalized to infection in the absence of antibody, as indicated in the

key (only values>25% are highlighted in each panel). Antibodies were named based on the

source of the antibody in the format DXX.FYY.SZZ, where XX is the donor number, YY is the

clonal family within the donor ranked by decreasing size, and ZZ is assigned by the chronolog-

ical order in which antibodies from the family were produced. Antibodies whose names are

left aligned were screened in round 1, which was intended to screen many different families.

Antibodies that were considered hits due to the breadth and/or potency of their neutralization

in round 1 are shown in bold font. For round 2 we selected additional antibodies, shown

indented and italicized, from the clonal families of hits identified in round 1.

(TIF)

S3 Fig. Effect of virion maturation state on bnAb activity. (A) The indicated antibodies

were tested against DENV2 16681 (blue) or ZIKV H/PF/2013 (black) reporter virus particles

prepared either under standard conditions (solid circles and lines) or in the presence of excess

furin (open circles and dashed lines). Data were obtained from two independent experiments,

each performed in duplicate wells. Data points and error bars represent the mean infection

and standard deviation of the four total replicates, respectively. (B) The table displays the

mean IC50 values at which the indicated antibodies neutralized the indicated forms of DENV2

and ZIKV in dose response neutralization curves as shown in (A).

(TIF)

S4 Fig. Effect of antibody valency on neutralizing activity. We tested monovalent Fab (open

circles and dashed lines) or bivalent IgG1 (solid circles and lines) versions of antibodies (A)

F25.S02, (B) F09.S05, (C) F05.S03, (D) EDE1-C10, and (E) SIgN-3C against DENV2 16681

(black) or ZIKV H/PF/2013 (blue) reporter virus particles. Dose-response neutralization

curves shown are from two independent experiments, each performed in duplicate wells. Data

points and error bars represent the mean infection and standard deviation of the four total rep-

licates, respectively.

(TIF)

S5 Fig. Purity of IgA1 antibody preparations. Graphs on the left display absorbance profiles

(at 280 nm) of eluates from size-exclusion chromatography (SEC), which was used to separate

monomeric and polymeric IgA1. Images on the right display SDS-PAGE gels to assess purity

of preparations. Eluates from SEC were collected in 2 mL fractions and the fractions indicated

were collected, pooled, and concentrated to obtain purified monomers and polymers.

SDS-PAGE was run on non-reduced (left half) and reduced (right half) samples of each type of

antibody. Each half of a gel has one well containing a commercially purchased IgA1 isotype

control (IgA Std). Each half also has wells containing two types of IgA1 monomers. The first

was produced as monomers, i.e in the absence of a J chain expression plasmid (Mono). The

second were produced in a transfection that included a J chain expression plasmid and they

were separated from polymers via SEC (S-Mono). Both types of monomers appeared similar

by SDS-PAGE, but for simplicity all experiments were performed using the monomers pro-

duced in the absence of J chain.

(TIF)

S6 Fig. ADE profile of bnAbs in K562 cells. (A) Serial dilutions of IgG1 antibodies indicated

in the key were complexed with DENV1 WP-74, DENV2 16681, DENV3 CH53489, DENV4

TVP376, and ZIKV H/PF/2013 reporter virus particles prior to infection of K562 cells, which
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express FcγRIIa but not FcαRI. Dose-response ADE profiles of antibodies that do or do not

neutralize ZIKV in addition to DENV1-4 are shown in top and bottom panels, respectively.

Data points and error bars indicate the mean and range of infection in duplicate wells, respec-

tively. Graphs shown are representative of 4–5 independent experiments. (B) IgG1 and mono-

meric IgA1 forms of F25.S02 (top row), EDE1-C10 (middle row) or SIgN-3C (bottom row)

were tested either individually or mixed at the indicated ratios by mass before serial dilution

and pre-incubation with DENV1 WP-74 (left) or DENV4 TVP376 (right) reporter virus parti-

cles. Virus-antibody complexes were then used to infect K562 cells. Addition of isotype control

IgA1 to IgG1 forms of each bnAb was included as controls. The experiment was performed in

three biological replicates, each in duplicate wells. The data points and the error bars represent

the means and the range of the duplicate wells, respectively, of one representative experiment.

(TIF)

S7 Fig. Fc receptor expression profile of K562 and U937 cells. Histograms display the fluo-

rescence intensity of K562 (top row) or U937 (bottom row) cells stained for the indicated Fc

receptors. Histograms are normalized to the modal cell count. The isotype control was conju-

gated to the same fluorophore and used at the same concentration as anti-FcγRIIa or anti-

FcαRI antibody on the same population of cells.

(TIF)

S1 Table. Heatmaps of IC50 values against DENV1-4 and ZIKV reporter virus particles for

previously published bnAbs, novel category 1 bnAbs (neutralize DENV1-4 and ZIKV), and

novel category 2 bnAbs (neutralize DENV1-4 but not ZIKV). For each virus, the value

reported is the arithmetic mean IC50 from at least three independent experiments performed

in duplicate. *Geometric mean IC50 for all neutralized viruses, i.e. values>10,000 ng/ml (the

highest antibody concentration tested) were omitted. All antibodies were isolated from donor

014 except for F15.S01, which was isolated from donor 012.

(TIF)

S2 Table. Genetic characteristics of broadly neutralizing antibodies whose IC50 values are

displayed in S1 Table. Bold = chosen for detailed characterization; blue = non-IgG isotype; ?

= insufficient sequence coverage of constant gene to determine the antibody’s isotype;

pb = plasmablast.

(TIF)

S3 Table. Antibody binding reactivity to DENV2 16681 E protein alanine scanning muta-

genesis library. Mean percentage and range of binding reactivity to alanine mutant relative to

wild type DENV2 from at least two independent experiments.

(TIF)

S4 Table. Expression of reference genes used to determine B cell subset.

(TIF)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

used to generate Figs 1A, 2A, 2B, 3A-3D, 4A, 4B, 5A–5E, 6A, 6B, 7A–7C, S1–S4, S6A and

S6B and S1 Table.

(XLSX)
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