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Abstract

Background: Neoadjuvant chemotherapy (NAC) is the standard of care in muscle-invasive 

bladder cancer (MIBC). However, treatment is intense, and the overall benefit is small, 

necessitating effective biomarkers to identify patients who will benefit most.

Objective: To characterize cell-free DNA (cfDNA) methylation in patients receiving NAC in 

SWOG S1314, a prospective cooperative group trial, and to correlate the methylation signatures 

with pathologic response at radical cystectomy.

Design, setting, and participants: SWOG S1314 is a prospective cooperative group trial 

for patients with MIBC (cT2-T4aN0M0, ≥5 mm of viable tumor), with a primary objective of 

evaluating the coexpression extrapolation (COXEN) gene expression signature as a predictor of 

NAC response, defined as achieving pT0N0 or ≤pT1N0 at radical cystectomy. For the current 

exploratory analysis, blood samples were collected prospectively from 72 patients in S1314 

before and during NAC, and plasma cfDNA methylation was measured using the Infinium 

MethylationEPIC BeadChip array.

Intervention: No additional interventions besides plasma collection.

Outcome measurements and statistical analysis: Differential methylation between 

pathologic responders (≤pT1N0) and nonresponders was analyzed, and a classifier predictive of 

treatment response was generated using the Random Forest machine learning algorithm.

Results and limitations: Using prechemotherapy plasma cfDNA, we developed a methylation-

based response score (mR-score) predictive of pathologic response. Plasma samples collected after 

the first cycle of NAC yielded mR-scores with similar predictive ability. Furthermore, we used 

cfDNA methylation data to calculate the circulating bladder DNA fraction, which had a modest 

but independent predictive ability for treatment response. In a model combining mR-score and 

circulating bladder DNA fraction, we correctly predicted pathologic response in 79% of patients 

based on their plasma collected at baseline and after one cycle of chemotherapy. Limitations of 

this study included a limited sample size and relatively low circulating bladder DNA levels.

Conclusions: Our study provides the proof of concept that cfDNA methylation can be used to 

generate classifiers of NAC response in bladder cancer patients.

Patient summary: In this exploratory analysis of S1314, we demonstrated that cell-free 

DNA methylation can be profiled to generate biomarker signatures associated with neoadjuvant 

chemotherapy response. With validation in additional cohorts, this minimally invasive approach 
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may be used to predict chemotherapy response in locally advanced bladder cancer and perhaps 

also in metastatic disease.

Keywords

Cell-free DNA; Methylation; Muscle-invasive bladder cancer; Predictive biomarker; Machine 
learning; Neoadjuvant chemotherapy

1. Introduction

For patients with muscle-invasive bladder cancer (MIBC), cisplatin-based neoadjuvant 

chemotherapy (NAC) has been the standard of care [1]. However, this treatment is toxic 

and poorly tolerated in a significant number of MIBC patients. Furthermore, the pathologic 

response rate is approximately 40%, suggesting that many patients may not benefit from 

NAC [2]. In recent years, significant efforts have been directed at elucidating MIBC 

molecular subtypes and testing their association with chemotherapy response. Known factors 

associated with cisplatin chemotherapy response include the p53-like subtype [3,4], DNA 

damage repair insufficiency [5,6], and mutations in ERCC2, ERBB2, and FGFR3 [7–10]. 

Though promising, these biomarker candidates are still undergoing clinical validation and 

have yet to be widely adopted in the clinic. The parent trial of this study, SWOG S1314 

trial, was designed to evaluate the coexpression extrapolation (COXEN) score, a tumor 

tissue gene-expression model aimed at predicting NAC response in MIBC patients [11]. 

COXEN was found to have a statistically significant association with downstaging when 

applied to a pooled group including both treatment arms (gemcitabine and cisplatin [GC] 

and dose-dense methotrexate, vinblastine, adriamycin, and cisplatin [ddMVAC]). However, 

the primary analysis did not confirm a statistically significant correlation between treatment-

specific COXEN scores and NAC response, underscoring the continuing unmet need for a 

biomarker to guide the use of NAC in MIBC patients.

An analysis of cell-free DNA (cfDNA) can impact cancer treatment decisions in many ways 

[12], including the monitoring of disease relapse [13,14], detection of actionable somatic 

mutations [15], and screening for cancer [16]. In MIBC, the presence of tumor-specific 

mutations in cfDNA has been associated with a high risk of recurrence and response to 

adjuvant therapy [17]. In addition to mutations, cfDNA also contains DNA methylation 

information associated with important epigenetic gene regulation and cellular function 

in normal and malignant tissues [18]. Methylation is tissue specific and can be used to 

interrogate cellular components in tumor tissue as well as cfDNA [19]. Recently, cfDNA 

methylation profiling has demonstrated its potential in early cancer detection [20,21], as well 

as the molecular subtyping of cancer [22].

Plasma cfDNA methylome represents a broad spectrum of cellular states in both host and 

tumor cells, and may therefore correlate with NAC response. To test this, we collected 

patient plasma from MIBC patients in S1314 at two time points: before the initiation of 

NAC and after one cycle of NAC. We characterized cfDNA methylation in these samples 

using the MethylationEPIC microarray, and we examined the correlation between the 
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cfDNA methylome before and during chemotherapy and pathologic response to NAC at 

the time of radical cystectomy.

2. Patients and methods

2.1. Clinical cohort

SWOG S1314 was a phase 2 study with 1:1 randomization between GC and ddMVAC 

chemotherapy conducted by SWOG and other member groups of the National Clinical Trials 

Network [11]. The purpose of the trial was to evaluate whether either the prespecified GC or 

the ddMVAC COXEN score dichotomies were associated with a favorable response to NAC 

at radical cystectomy. Each patient had his/her pathology responses annotated as a complete 

pathologic response (pT0N0; complete response [CR]), downstaging response (≤pT1N0; 

partial response [PR]), or stable or progressive disease (residual muscle-invasive disease; no 

response). For our analysis, we define the responders (Rs) as all the patients with complete 

or downstaging responses (≤pT1N0) and the nonresponders (NRs) as the patients who had 

persistent pT2 or worse disease.

2.2. Sample collection and processing

Patient samples were collected with informed consent in accordance with a protocol 

amendment to S1314 that was reviewed and approved by CTEP Central institutional review 

board (IRB) as well as by each treating institution’s IRB. The collection of the healthy donor 

blood was approved by the IRB of the University of Southern California (IRB no. HS-11–

00054). Cell-free DNA was extracted and subjected to the Infinium MethylationEPIC 

BeadChip array (Illumina, San Diego, CA, USA).

2.3. Data analysis and machine learning

All analyses were performed in R version 4.0.2 (R Foundation for Statistical Computing, 

Vienna, Austria). The methods for methylation array data processing can be found in the 

Supplementary material and Supplementary Figure 1.

After identification of differentially methylated loci (DMLs) between Rs and NRs, we 

utilized a random forest (RF) model to generate a classifier (methylation-based response 

score [mR-score]) with a modified leave-one-out cross-validation procedure (Supplementary 

material and Supplementary Fig. 2). As a sensitivity analysis, we also created a classifier 

using Elastic Net. For the on-treatment mR-score, we used all 72 pretreatment cfDNA 

methylation data to train an RF model using the same model-training parameters but 

without the leave-one-out procedure. The 57 on-treatment cfDNA methylation data were 

then inputted into the trained model to obtain the on-treatment mR-score for each patient.

The relative contributions of different cell types to cfDNA was calculated using non-negative 

least squares linear regression based on tissue-characteristic probes and their methylation 

values in our samples, as described by Moss et al [19].

Please see the Supplementary material for detailed methods for the data analysis.
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3. Results

3.1. Sample collection and patient characteristics

In S1314, 81 patients consented and submitted pre-NAC blood samples. Of those, 73 

patients were evaluable in this analysis, having received cisplatin-based NAC on trial 

followed by cystectomy to determine their pathologic response on trial (Fig. 1 and 

Supplementary Table 1). One sample had poor cfDNA quality on the array and was removed 

from the analysis. The clinicopathologic characteristics were summarized in Table 1. None 

of the characteristics (sex, age, clinical stage, performance status, and cfDNA concentration) 

were significantly associated with pathologic response. The overall patient characteristics 

in patients analyzed in the study are similar to the S1314 primary COXEN analysis cohort 

(Supplementary Table 2).

3.2. Use of mR-score as a predictive biomarker for NAC response

As the MethylationEPIC array has been used in the past predominantly for tumor tissue 

analysis, we conducted a lead-in analysis validating the feasibility of using this platform 

for cfDNA analysis and selected 20 ng cfDNA as the loading amount to be used 

across all samples (Supplementary material and Supplementary Fig. 3). Next, we used 

the MethylationEPIC array to characterize patient samples. When comparing methylation 

between Rs (including CR and PR) and NRs, 23 799 DMLs were identified with a p value 

cutoff of 0.05. However, none of the individual DMLs were significant after a multiple test 

correction using the Benjamini-Hochberg procedure, indicating that no single DML had a 

strong predictive value to distinguish between Rs and NRs.

As individual DMLs exhibited a modest association with treatment response, we applied 

machine learning algorithms to create a composite biomarker from a large number of 

DMLs. As DMLs less methylated in NRs were more frequently located on CpG islands 

and clustered into differentially methylated regions (DMRs) (Supplementary Fig. 3), we 

selected DMLs less methylated in NRs within the DMRs as the starting point for our 

machine learning. Using the top 500 less methylated in NR (lmNR) DMLs, we found that 

the t-distributed stochastic neighbor embedding (tSNE) plot clustered Rs away from NRs 

(Fig. 2A).

We subsequently utilized a resampling procedure to calculate an mR-score for each sample. 

This mR-score is trained by comparing the methylation signature between Rs and NRs, 

and is designed to predict the probability of NRs. Therefore, a high mR-score is associated 

with an NR, whereas a low mR-score is associated with an R. Specifically, for each patient, 

we first created ten randomly selected 62-sample training sets not containing the patient of 

interest. The DMLs were selected within the training set and used to train an RF model. 

Each trained model provided a prediction score, and the mR-score for each patient was 

determined as the median of the predicted score by the ten trained models. Using the RF 

model, we achieved a biomarker with a receiver operating characteristic (ROC) area under 

the curve (AUC) of 0.636 (95% confidence interval [CI] 0.498–0.773). We also observed 

a progressive correlation, wherein the median mR-scores were lowest in CR, higher in PR, 
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and highest in NR (Fig. 2B). When used to predict CR, the mR-score had a similar AUC of 

0.656 (95% CI 0.509–0.803).

As patients were randomized to receive one of two cisplatin-containing regimens in S1314, 

we investigated the predictive ability of an mR-score across the treatment arms. Although 

the limited patient number precluded any meaningful statistical analysis, we observed 

similar predictive abilities to both chemotherapy regimens (Fig. 2C).

We also used Elastic Net [23], another well-known machine learning algorithm, to build 

a classifier and obtained similar results (AUC 0.639, 95% CI 0.503–0.774). A strong 

correlation was observed between the mR-scores and the Elastic Net–based prediction 

scores (Spearman correlation coefficient 0.77, p = 2.2e-16; Fig. 2D).

3.3. On-treatment mR-scores correlated with response

We investigated whether the RF model trained on pretreatment samples could be used to 

analyze and assign mR-scores to plasma cfDNA samples collected on C2D1, after receiving 

the first cycle of NAC. This was not meant as an independent validation cohort, but rather 

to determine whether the models developed using the baseline cfDNA methylation could 

be equally effective for predicting response using samples collected later in the treatment 

course. Of the 72 patients in our sample cohort, 57 had plasma collected after the first cycle 

of chemotherapy. Again, none of the baseline clinical and laboratory characteristics of these 

57 patients were significantly associated with pathologic response (Supplementary Table 3).

The cfDNA methylation data from the 57 on-treatment samples were analyzed and assigned 

mR-scores using the RF model that had been trained on the 72 pretreatment samples. The 

performance of the on-treatment mR-score was slightly better, with an AUC of 0.720 (95% 

CI 0.582–0.857).

There was also a significant correlation between the pretreatment and on-treatment mR-

scores (Spearman correlation coefficient 0.39, p = 0.003; Fig. 3A). Similarly, we observed 

similar predictive abilities to both chemotherapy regimens using the on-treatment mR-score 

(Fig. 3B).

3.4. A combined risk-stratification model to predict NAC response using circulating 
bladder DNA fraction and mR-score

It has repeatedly been demonstrated that elevated circulating tumor DNA (ctDNA) correlates 

with poor prognosis in many cancer types [13]. Circulating tumor DNA levels are usually 

estimated using deep sequencing, wherein the allele frequency of detected somatic mutations 

is used to represent the proportion of ctDNA present in the total cfDNA (the rest of the 

cfDNA is derived from normal host tissues) [24]. However, no cfDNA mutational profiles 

were available for the purpose of calculating this estimate. As an alternative, novel methods 

have recently been reported for estimating the relative prevalence of tissue origin of cfDNA 

based on tissue-specific methylation patterns [19]. We hypothesized that using this approach, 

the fraction of circulating bladder DNA may be calculated and may serve as a surrogate 

for bladder ctDNA. When comparing the circulating bladder DNA percentages in samples 

from CR, PR, and NR, progressively higher circulating bladder DNA percentages were 

Lu et al. Page 6

Eur Urol Oncol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed (Fig. 4A), and healthy donor samples did not have a meaningful level of circulating 

bladder DNA. As a biomarker for NAC response, the circulating bladder DNA yielded 

an AUC of 0.600 (95% CI 0.463–736). When used to predict CR, circulating bladder 

DNA yielded a similar AUC of 0.616 (95% CI 0.488–0.745). Of the Rs, 84% (31/37) had 

circulating bladder DNA <1.11% as compared with 51% (18/35) of NRs, suggesting that 

low circulating bladder DNA had high sensitivity for identifying NAC Rs.

We observed that there was no linear correlation between circulating bladder DNA fractions 

and pretreatment mR-scores (Spearman correlation coefficient 0.073; Fig. 4B). Given that 

these two candidate biomarkers were independent of one another, we proposed and tested 

a risk-stratification model that combined the pretreatment circulating bladder DNA fraction 

and mR-score, followed by the on-treatment mR-score to stratify the intermediate-risk 

patients. As a proof-of-concept, we chose Youden’s index as the cutoff for these three 

measures, and patients were assigned to risk groups based on their test values relative to 

these cutoffs (Fig. 4C–E). In this cohort, the proposed model had an overall predictive 

accuracy of 79% (45/57 patients with pretreatment and on-treatment cfDNA were classified 

correctly).

4. Discussion

In patients with MIBC, cisplatin-based NAC offers a modest clinical benefit but is attended 

by treatment toxicity. To date, no clinically validated predictive biomarker has widely been 

adopted to predict NAC response. Consequently, many patients are exposed to the toxicities 

of NAC with little or no benefit while delaying potentially curative surgery. Hence, there 

is a continuing critical unmet need for biomarkers that identify patients most likely to 

benefit [25]. Here, we report an exploratory analysis of the SWOG S1314 trial using 

cfDNA methylation as a biomarker to predict response to NAC in MIBC patients. Seeking a 

streamlined assay for analysis of large-sample cohorts, we used the MethylationEPIC array 

to analyze cfDNA methylation from the 72-patient cohort with available plasma cfDNA 

in S1314. To our knowledge, this is the first report using the MethylationEPIC array to 

profile cfDNA methylation, with a majority of the MethylationEPIC array probes measured 

at high quality in all our patients. Compared with previous reports using bisulfite sequencing 

[26] or methylation immunoprecipitation sequencing [21], our approach offers the benefits 

of time efficiency, cost effectiveness, and a mature data analysis workflow, allowing for a 

high-throughput analysis of clinical samples with high reproducibility [27].

As there was no single methylation site with significant predictive value for the NAC 

response, we utilized Random Forest machine learning to combine multiple DMLs into one 

biomarker, the methylation-based resistance score (mR-score, which predicts NAC response 

with an ROC AUC of 63.6%). Although CR is a well-recognized endpoint prognostic of 

overall survival [28,29], here we chose to analyze CR and PR together as a classifier 

for NAC Rs versus NRs because studies demonstrated that a downstaging PR to NAC 

also confers survival benefits [30–32]. Perhaps more importantly, as NAC is the standard 

of care for cisplatin-eligible patients supported by level I evidence, we believe that it is 

more important to distinguish those who definitely will not derive any response or benefit 

(NRs) from all other patients (PR + CR). Encouragingly, plasma cfDNA collected after the 
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first cycle of chemotherapy yielded a similarly predictive mR-score as the one calculated 

from prechemotherapy plasma, reflecting a robust and reproducible ability to predict NAC 

response versus nonresponse both before and during chemotherapy treatment. Furthermore, 

we analyzed the estimated pretreatment fraction of circulating bladder DNA as a surrogate 

for ctDNA and showed that it is an independent biomarker with high sensitivity for the 

identification of chemotherapy Rs. When using circulating bladder DNA and mR-scores 

together in a combined risk-stratification model, these accurately predicted response to 

NAC in 79% of the patients in the S1314 cohort. For patients predicted not to respond 

to NAC, upfront surgery or clinical trials may be offered in lieu of toxic and ineffective 

chemotherapy. In the current proof-of-concept model using the 57-patient cohort, this 

approach would avert treatment with ineffective NAC in ten patients at baseline and in 

another seven patients after the first cycle, at a cost of withholding beneficial NAC from 

three patients.

The cfDNA methylation-based biomarker strategies offer several advantages: First, DNA 

methylation is unique as an analyte in that it is slow to degrade but also functional, reflecting 

dynamic shifts in transcription patterns. Second, cfDNA provides methylation patterns 

and transcriptional regulation from tumor and normal cells throughout body, potentially 

reflecting not only tumor biology, but also host-tumor (eg, immune cell) interactions. The 

comprehensive information obtained in the cfDNA methylome may be complementary to 

tumor-specific information obtained in the standard pathology analysis and tumor tissue 

profiling. Third, cfDNA sampling is minimally invasive, enabling serial sample collection 

throughout treatment. In our study, we demonstrated that the mR-score obtained after the 

first cycle of chemotherapy treatment can be used to supplement the information obtained 

before chemotherapy to further risk-stratify patients receiving NAC. This on-treatment mR-

score may prove to be especially helpful in patients not tolerating NAC and considering 

proceeding straight to surgery.

There are limitations associated with this study cohort. As an exploratory proof-of-principle 

cohort of limited size, its findings will require validation in additional large prospective 

cohorts. In addition, MIBC patients undergoing surgical resection have relatively limited 

disease burden compared with patients with metastatic disease, and therefore more limited 

tumor-specific methylation data are obtainable from the plasma cfDNA. Compared with 

reports of ctDNA fraction as high as 80% in patients with metastatic bladder cancer [33], we 

observed a relatively low circulating bladder DNA fraction of 0–3%. Furthermore, our study 

may be confounded by the transurethral resection of bladder tumor (TURBT)-bonus effect, 

wherein the diagnostic TURBT itself may have eradicated the tumor, especially in patients 

with cT2 disease (88% of patients in our study). While the TURBT-bonus effect may be 

reflected in the amount of ctDNA, our models were trained not on ctDNA methylation 

features but on all cfDNA methylation, of which bladder-derived DNA comprised a 

small portion (0–3%). Consequently, the mR-score was not driven by residual disease, as 

evidenced by its lack of correlation with circulating bladder DNA (Fig. 4B). Rather, the mR-

score reflected collective host-tumor methylation profiles and therefore was less susceptible 

to the potential effect of TURBT-bonus on baseline ctDNA amounts. Indeed, it is likely 

that the majority of the DMLs we observed were associated with host factors including the 

immune system (peripheral blood leukocytes). Ultimately, this may prove to be a strength 
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of the cfDNA-based approach, because the leukocyte contribution to cfDNA methylation 

profiles may help predict the response to immunotherapy, a newly established standard of 

care in metastatic urothelial carcinoma [34]. Indeed, this total plasma methylome approach 

can be developed further and validated in conjunction with other predictive biomarkers in 

the setting of metastatic disease, where it would potentially reflect both tumor and host 

methylation states associated with response to chemotherapy or immunotherapy.

5. Conclusions

We report a new approach using cfDNA methylation and machine learning to generate an 

mR-score—the probability of nonresponse to NAC in patients with MIBC. In a proposed 

risk-stratification model, we combine the mR-score with methylation-based quantitation of 

circulating bladder DNA to correctly predict NAC response in nearly 80% of analyzable 

patients in S1314, a prospective multicenter cooperative group trial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 –. 
Sample collection and patient characteristics. (A) Study and sample collection schema. (B) 

Consort diagram.

cfDNA = cell-free DNA; CYST = cystectomy; ddMVAC = dose-dense methotrexate, 

vinblastine, adriamycin, and cisplatin; GC = gemcitabine and cisplatin; USC = University of 

Southern California.
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Fig. 2 –. 
The mR-score as a predictive biomarker for NAC response. (A) A tSNE plot clustered 

responders (Rs) and nonresponders (NRs) based on the top 500 lmNR loci. Healthy donors 

were clustered with R. (B) The mR-scores in different response groups. There was no 

statistically significant difference among the groups. (C) The mR-scores in patients receiving 

different NAC regimens. (D) Scatter diagram and correlation between mR-scores and the 

Elastic Net scores. Spearman correlation coefficient R = 0.77 (p = 2.2e-16).

CR = patients with pathologic T0 response; DDMVAC + CYST = dose-dense methotrexate, 

vinblastine, adriamycin, and cisplatin followed by cystectomy; GC + CYST = gemcitabine-

cisplatin followed by cystectomy; lmNR = less methylated in NR; mR-score = methylation-

based response score; NAC = neoadjuvant chemotherapy; NR = patients without a 

pathologic response; PR = patients with downstaged partial response; tSNE = t-distributed 

stochastic neighbor embedding.
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Fig. 3 –. 
On-treatment mR-scores correlated with response. (A) Weak correlation between on-

treatment and pretreatment mR-scores. Spearman correlation coefficient R = 0.39 (p = 

0.003). (B) On-treatment mR-scores in patients receiving different NAC regimens.

DDMVAC + CYST = dose-dense methotrexate, vinblastine, adriamycin, and cisplatin 

followed by cystectomy; GC + CYST = gemcitabine-cisplatin followed by cystectomy; 

mR-score = methylation-based response score; NAC = neoadjuvant chemotherapy; NR = 

nonresponder; R = responder.
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Fig. 4 –. 
A proposed risk-stratification model to predict NAC response using circulating bladder DNA 

fraction and mR-score. (A) Circulating bladder DNA (%) in patients in different response 

groups. There was no statistically significant difference among the groups. (B) Correlation 

between mR-scores and circulating bladder DNA (%) obtained before chemotherapy. 

Spearman correlation coefficient R = 0.073 (p = 0.5). (C) Using mR-score and circulating 

bladder DNA fraction to risk-stratify patients before chemotherapy. Tentative cutoffs were 

selected at the Youden’s index for demonstration purpose only, and further biomarker 
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development is needed before the final cutoffs are selected. Patients with high mR-scores 

or high circulating bladder DNA were given 1 point each. The high-risk group was defined 

as patients with a high pretreatment mR-score (>0.496) and high circulating bladder DNA 

fraction (>1.11%), the low-risk group was defined as patients with a low pretreatment 

mR-score and low circulating bladder DNA fraction, and the intermediate-risk group was 

defined as the patients not in the high- or low-risk groups. (D) Intermediate-risk group 

patients were further risk stratified into intermediate-high (Int-high) and intermediate-low 

(Int-low) groups using their on-treatment mR-scores. The Int-high risk group was defined as 

the intermediate-risk group patients with a high on-treatment mR-score (>0.433); the Int-low 

risk group was defined as the intermediate-risk group patients with a low on-treatment 

mR-score. (E) Proposed approach that may utilize cfDNA methylation for patient risk 

stratification. Out of 57 patients, 45 were correctly classified in our cohort using this 

approach; model performance will require further validation in independent cohorts.

cfDNA = cell-free DNA; CR = patients with pathologic T0 response; mR-score = 

methylation-based response score; NAC = neoadjuvant chemotherapy; NR = patients 

without pathologic response; PR = patients with downstaged partial response; R = 

responders including patients with pathologic T0 response and downstaged partial response.
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Table 1 –

Patient characteristics for pretreatment cfDNA analysis

Total patients (N = 72) Responder (R) (N = 37) Nonresponder (NR) (N = 35) p value

Sex (male/female) 32/5 30/5 >0.9

Age, median (first to third quartile) 62.7 (55.7–68.9) 65.9 (62.0–69.4) 0.2

Clinical stage (T2/T3 or T4a) 34/3 29/6 0.3

ECOG performance status (0/1) 28/9 26/9 >0.9

Treatment arms (ddMVAC + CYST/GC + CYST) 22/15 15/20 0.2

cfDNA concentration (ng/7.5 ml), median (first to third quartile) 85.3 (62.5–147.9) 113.4 (75.0–141.0) 0.3

cfDNA = cell-free DNA; CYST = cystectomy; ddMVAC = dose-dense methotrexate, vinblastine, adriamycin, and cisplatin; ECOG = Eastern 
Cooperative Oncology Group; GC = gemcitabine and cisplatin.
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