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In Brief
Optimized internal standard–
triggered parallel reaction
monitoring (OIS-PRM) reduces
cycle times and increases
sensitivity. OIS-PRM was
applied with a custom peptide
library to study protein markers
of NRF2 signaling, HPV infection,
and tumor-infiltrating immune
cells. NRF2 activity was robustly
quantified in cell lines and
HNSCC FFPE tumors. Moreover,
OIS-PRM detected HPV16 E7
and revealed increased T-cell
marker and immune checkpoint
proteins in HPV(+) compared to
HPV(−) tumors.
Highlights
• Optimized data acquisition reduces cycle times for triggered PRM experiments.• PRM robustly quantifies NRF2 activation in cell lines and FFPE oral cavity tumors.• Detection of low-abundant immune checkpoints and HPV16 E7 from oropharyngeal tumors.• HPV(+) oropharyngeal cancers overexpress T-cell markers relative to HPV(−) cancers.
0647
y Elsevier Inc on behalf of American Society for Biochemistry and
ccess article under the CC BY license (http://creativecommons.org/

.100647

mailto:d.goldfarb@wustl.edu
mailto:bmajor@wustl.edu
mailto:bmajor@wustl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.mcpro.2023.100647
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mcpro.2023.100647&domain=pdf


RESEARCH
Targeted Proteomic Quantitation of NRF2
Signaling and Predictive Biomarkers in HNSCC
Nathan T. Wamsley1, Emily M. Wilkerson1 , Li Guan2, Kyle M. LaPak1 ,
Travis P. Schrank3, Brittany J. Holmes4 , Robert W. Sprung5 , Petra Erdmann Gilmore5,
Sophie P. Gerndt6 , Ryan S. Jackson6 , Randal C. Paniello6, Patrik Pipkorn6,
Sidharth V. Puram6, Jason T. Rich6, Reid R. Townsend5, José P. Zevallos6, Paul Zolkind6 ,
Quynh-Thu Le2, Dennis Goldfarb1,7,* , and Michael B. Major1,6,*
The NFE2L2 (NRF2) oncogene and transcription factor
drives a gene expression program that promotes cancer
progression, metabolic reprogramming, immune evasion,
and chemoradiation resistance. Patient stratification by
NRF2 activity may guide treatment decisions to improve
outcome. Here, we developed a mass spectrometry–
based targeted proteomics assay based on internal
standard–triggered parallel reaction monitoring to quantify
69 NRF2 pathway components and targets, as well as 21
proteins of broad clinical significance in head and neck
squamous cell carcinoma (HNSCC). We improved an
existing internal standard–triggered parallel reaction
monitoring acquisition algorithm, called SureQuant, to in-
crease throughput, sensitivity, and precision. Testing the
optimized platform on 27 lung and upper aerodigestive
cancer cell models revealed 35 NRF2 responsive proteins.
In formalin-fixed paraffin-embedded HNSCCs, NRF2
signaling intensity positively correlated with NRF2-
activating mutations and with SOX2 protein expression.
Protein markers of T-cell infiltration correlated positively
with one another and with human papilloma virus infection
status. CDKN2A (p16) protein expression positively
correlated with the human papilloma virus oncogenic E7
protein and confirmed the presence of translationally
active virus. This work establishes a clinically actionable
HNSCC protein biomarker assay capable of quantifying
over 600 peptides from frozen or formalin-fixed paraffin-
embedded archived tissues in under 90 min.

Head and neck squamous cell carcinoma (HNSCC) is the
seventh most common cancer worldwide; in the United States,
66,000 new cases and 15,000 deaths were expected in 2022
(1, 2). Key risk factors include alcohol consumption, tobacco
use, and human papilloma virus (HPV) infection (1). Immuno-
histochemistry (IHC) staining for CDKN2A (p16) serves as a
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proxy for HPV status and is the leading prognostic biomarker in
oropharyngeal squamous cell carcinoma (3). HPV(+) tumors of
the oropharynx are associated with a more favorable prognosis
with a 75 to 80% 5-years survival rate than HPV(−) HNSCC
tumors which portend a 45 to 50% 5-years survival rate (3, 4).
For locoregionally advanced disease, chemoradiation or sur-
gery with radiation (RT) ± chemotherapy has remained the
standard of care treatment for decades, with no meaningful
improvement in overall survival (1, 5). Most recently, the
addition of immune checkpoint inhibitors (ICI) to the thera-
peutic armament for recurrent and metastatic HNSCC has
improved outcomes as ICI elicits durable responses in just
under 20% of these patients (6, 7).
Molecular characterization efforts that identify treatment

responsive, nonresponsive, and recurrent HNSCC have
revealed several key determinants of patient outcome and
have potential to maximize the effective use of these thera-
peutic options. Specifically in HPV(−) HNSCCs, constitutive
activation of the NRF2 oxidative stress response pathway
prognosticates poor overall survival and predicts locoregional
failure following RT (8–14). Mutations that drive constitutive
NRF2 activation occur in 17% of these cancers (15). Despite
the predictive power and high frequency of NRF2 activation in
cancer, clinical assays that leverage NRF2 signaling to stratify
patients for improved therapeutic response remain to be
developed and proven. Another predictive biomarker for
HNSCC therapy, PD-L1 cumulative positivity score, has been
used in the clinic to predict ICI responsiveness but only ach-
ieves a receiver operating characteristic of 0.62 in recurrent/
metastatic HNSCC (16). A T-cell–inflamed gene expression
profile has demonstrated better predictive power than PD-L1
CPS, yet it still leaves room for improvement (16–19). Given
this current landscape of predictive biomarkers for use in
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Targeted Proteomic Quantitation of NRF2 Signaling in HNSCC
HNSCC, we developed a targeted proteomics assay that
quantifies markers for the following: (1) NRF2 signal trans-
duction, (2) HNSCC tumor suppressors and oncogenes, (3)
immuno-oncology signaling, and (4) HPV infection.
Constitutive NRF2 signaling drives RT resistance and

locoregional failure in HPV(−) HNSCC. In normal cells, the
KEAP1/CUL3 E3 ubiquitin ligase complex binds NRF2 and
catalyzes its ubiquitylation for subsequent proteasomal
degradation (20–22). Metabolic, oxidative, and electrophilic
stressors inhibit NRF2 degradation by KEAP1/CUL3, resulting
in NRF2 stabilization, nuclear translocation, and transcrip-
tional activation of target genes that collectively restore cell
health (23). These targets encode enzymes supporting anti-
oxidant pathways, drug metabolizing enzymes, components
of the pentose phosphate pathway, and others (15, 23). We
recently showed that NRF2-activating mutations predict
locoregional failure in locally advanced oral and larynx cancers
(13, 14). However, prior mutation-based studies fail to account
for many NRF2 active cancers that lack a known mutational
driver (15). A robust, fast, and cost-effective NRF2 activity
diagnostic assay has potential to guide patient treatment
decisions, including radiation dose or treatment modality
(24, 25).
Effective biomarkers might also predict successful immune

checkpoint inhibition, a therapy to which fewer than one-in-
five HNSCC patients respond (17, 18, 26). Two widely
studied prognostic indicators are PD-L1 expression and T-
cell–inflamed gene expression profile (GEP) (17, 19). However,
IHC staining for PD-L1 fails to reliably predict ICI response in
the majority of HNSCC patients (16, 18, 27). GEP predicts
outcomes more reliably with much lower false-positivity rates
(16, 18), but both methods have limitations. Immunostaining
assays are confounded by poor correspondence of IHC
scores to molar abundance, covalent protein modifications,
and functional redundancy (e.g. PD-L2), and GEP considers
mRNAs that may correlate poorly with their protein counter-
parts (28–31). Lastly, a growing body of evidence suggests
that an active NRF2 pathway reduces the strength of anti-
tumor immunity (14, 18, 32–36). In the context of an inflamed
tumor microenvironment, NRF2 promotes PD-L1 expression,
the recruitment of immunosuppressive myeloid cells, and M2
macrophage polarization (14, 18, 32–34). A mass spectrom-
etry (MS)-based proteomics tool to quantify both NRF2
signaling and the presence and functions of leukocytes in the
tumor microenvironment might improve prediction of thera-
peutic response and empower future studies of an NRF2-
immune infiltration axis in cancer (18, 32–36).
This work presents an optimized proteomics assay for the

study of biomarkers for NRF2 signaling proteins, HNSCC-
associated cancer drivers, T-cell infiltration, and HPV infec-
tion. The technology is based on a custom implementation of
internal standard–triggered parallel reaction monitoring (IS-
PRM), which leverages stable isotope labeled (SIL) peptides to
direct efficient data acquisition (37). IS-PRM enables relative
2 Mol Cell Proteomics (2023) 22(11) 100647
and absolute quantitation of many hundreds of analytes at low
attomolar abundance from minimal sample input, which is
suitable to quantify many transcription factors, kinases, and
other scarce signaling molecules from tumor biopsies and
archival tissue blocks (37–40). We benchmarked our opti-
mized IS-PRM (OIS-PRM) method against a commercial
implementation called SureQuant to establish its improved
performance (38, 41). We applied OIS-PRM to study NRF2
signaling components and targets in genetically engineered
cell models and a cohort of genotyped lung, esophageal, and
head and neck cancer cell lines. Additionally, in two patient
cohorts of formalin-fixed paraffin embedded (FFPE) HNSCC
tumors, we quantified protein expression for tumor-immune
infiltration, pan-squamous cell carcinoma cancer drivers,
HPV infection, and NRF2-related proteins.
EXPERIMENTAL PROCEDURES

Cell Culture and Lentiviral Transduction

All cell lines were maintained in a humidified incubator at 37 ◦C
with 5% CO2. Cell line identities were validated by short tandem
repeat analysis (LabCorp, Genetica Cell Line Testing), and cultures
were regularly tested for mycoplasma contamination (Lonza).
The UPCI:SCC090 (CRL-3239), UPCI:SCC152 (CRL-3240), and
UPCI:SCC154 (CRL-3241) cell lines were purchased from ATCC and
cultured in Eagle's Minimum Essential Media (Corning) supple-
mented with 10% fetal bovine serum (Sigma), 1% penicillin–
streptomycin (Corning), and 2 mmol/L ʟ-glutamine (GIBCO).
HEK293T cells (CRL-11268) were purchased from ATCC and
cultured in DMEM (Corning) supplemented with 10% fetal bovine
serum and 1% penicillin–streptomycin.

Recombinant lentivirus was produced in HEK293T cells using PEI-
based transfection. Briefly, psPAX2 packaging (Addgene #12260),
VSV-G envelope (Addgene #12259), and UBC-driven NRF2 E79Q
vectors were combined with PEI at a 3:1 ratio (μl PEI: μg DNA). Su-
pernatants containing virus were filtered and added to SCC90,
SCC152, and SCC154 cells. Transduced cells were selected with
50 μg/ml, 50 μg/ml, and 250 μg/ml hygromycin, respectively.

Immunoblotting

Cell lines were grown to 70 to 80% confluence and lysed in RIPA
(10% glycerol, 50 mM Tris–HCl pH 7.4, 150 mM NaCl, 2 mM EDTA,
0.1% SDS, 1% NP40, 0.2% sodium deoxycholate, aqueous) con-
taining protease and phosphatase inhibitors (Thermo Fisher Scientific)
and benzonase (Santa Cruz). Protein concentrations were determined
using the bicinchoninic acid (BCA) Protein Assay Kit, equally loaded
and separated by SDS-PAGE, transferred to a nitrocellulose mem-
brane, blocked in 5% milk, and incubated with primary antibodies
overnight at 4 ◦C. Washed membranes were incubated for 45 min at
room temperature in secondary antibody solution (LI-COR IRDye 680,
800; 1:10,000 in 5% milk), imaged on an Odyssey CLx, and analyzed
using Image Studio Software (https://www.licor.com/bio/image-
studio/). Antibodies were used at the following dilutions: β-actin (Mil-
liporeSigma #A5316, 1:5000), HMOX1 (Abcam #ab13243, 1:1000),
NRF2 (Cell Signaling Technology #20733, 1:1000), and NQO1 (Novus
#NB200-209, 1:1000).

Human Tumor Specimens

FFPE oropharyngeal squamous cell carcinoma specimens were
obtained and used in accordance with the Washington University in St
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Targeted Proteomic Quantitation of NRF2 Signaling in HNSCC
Louis Institutional Review Board (IRB-201102323). Collection and use
of FFPE oral cancer specimens was approved by the Stanford Insti-
tutional Review Board (IRB-10564). The human studies reported in this
manuscript were carried out in accordance with the declaration of
Helsinki. Genotyping of the oral cancer specimens was carried out by
next generation sequencing and Sanger sequencing as reported in
Guan et al (14).

Sample Preparation for MS Analyses

Frozen cell pellets were lysed in an aqueous solution of 100 μl of
8 M urea, 75 mM NaCl, 50 mM Tris (pH 8.0), and 1 mM EDTA with
addition of phosphatase and protease inhibitor cocktails (Halt, catalog
no. 78429; 78420). Lysates were incubated on ice for 30 min with
vortexing once every 5 min. Following high speed clearance protein
was quantified by BCA (Thermo Fisher Scientific, catalog no. 23225).
Samples were normalized to equal mass of protein and volume, and
proteins were sequentially reduced in aqueous 5 mM DTT at 37 ◦C for
1 h and then alkylated in aqueous 50 mM 2-chloroacetamide at room
temperature in the dark for 20 min. Samples were then diluted to 3 M
urea with aqueous 50 mM Tris–HCl (pH 8.0) to prepare for digestion at
30 ◦C for 2 to 4 h with 20 mAU of lysyl endopeptidase (Wako
Chemicals, 12902541) per 1 mg of protein. After further dilution to
<2 M urea, trypsin (Promega, PR-V5113) was added at a 1:49 (wt/wt)
enzyme-to-substrate ratio for overnight digestion at 37 ◦C. Following
digestion, samples were brought to 1% formic acid (FA) by volume,
high speed cleared at 21,000g at room temperature, and then desalted
using 50-mg tC18 SepPak cartridges (Waters Technologies,
WAT054960). Clean peptide was frozen, dried by vacuum centrifu-
gation, and then reconstituted in a mass spectrometry–compatible
loading buffer. Final peptide quantitation was determined via BCA
but using a peptide digest standard (Thermo Fisher Scientific, catalog
no. 23295).

Proteins were extracted from FFPE tissues and then digested as
follows using a protocol based on Coscia et al. and Kohale et al. (42,
43). Surgical resections of HPV-subtyped oropharyngeal squamous
cell carcinomas were obtained as 50-micron FFPE curls. Specimens
were deparaffinized in 1.7 ml Eppendorf tubes with two sequential
washes in 500 μl Xylenes at 56 ◦C and then rehydrated by washes in
once each of 100, 95, 80, and 50% (v/v) ethanol in water. A lysis
buffer of 2,2,2-trifluoroethanol and aqueous 300 mM Tris–HCL (pH
8.0) at 50% (v/v) was added to each sample. Curls were then ground
~30 s each with a micro-pestle, snap frozen in liquid nitrogen, and
then heated to 95 ◦C for 30 min. Subsequent probe sonication with a
Model 120 Sonic Dismembrator (Thermo Fisher Scientific) at 70%
amplitude in 10 cycles of 2 s on and 8 s off was followed by a second
heating step at 95 ◦C for 90 min with occasional vortexing. Samples
were then high speed cleared at 21,000g at room temperature,
reduced, and alkylated as with the frozen cell pellets. Prior to
digestion, each aliquot was concentrated by vacuum centrifugation
to ~50 μl and then brought to 500 μl with a 5% (v/v) 2,2,2-
trifluoroethanol aqueous digestion buffer. Next, sequential lysyl
endopeptidase and tryptic digestions were carried out as with the cell
pellets assuming a 500 μg protein yield per sample. Samples were
desalted by SDB-RPS spin columns (Affinisep, Spin-RPS-M.T1.96).
Equilibration was with 200 μl acetonitrile (ACN) followed by 200 μl
0.5% FA in water. Samples were loaded in 1% TFA and then washed
with 200 μl 0.2% FA in water and then by aqueous 200 μl 40% ACN in
0.5% FA. Peptides were eluted with a solution of 5% ammonium
hydroxide, 15% water, and 80% ACN.

Liquid Chromatography

Tryptic peptides were separated by reverse phase nano-HPLC
using an Ultimate 3000 RSLCnano System (Thermo Fisher
Scientific) coupled to a 25 cm × 75 um i.d. EASY-Spray HPLC col-
umn (Thermo Fisher Scientific) packed with 2 um C18 particles and
heated to 40 ◦C. For peptide separation and elution, solvent A was
0.1% FA in water and solvent B was 0.1% FA in ACN. Samples were
loaded by a user defined program for a 1 μl full-loop injection. For the
cell line IS-PRM injections, the gradient was 2%B at 5 min, 4.3%B at
5.3 min, 8.0%B at 10.25 min, 10%B at 20 min, 16.5%B at 41 min,
19.2%B at 45.5 min, 22%B at 50.75 min, 54.4%B at 28 min, and
76.0%B at 56 min. Data-dependent acquisition (DDA) experiments
were carried over a 118 min gradient: 2%B at 5 min, 19%B at
112 min, 38%B at 121 min, and 76%B at 123 min. For the FFPE IS-
PRM injections, the gradient was 4%B at 1 min, 15.4%B at 31 min,
24.5%B at 46 min, and 98%B at 48 min. Each method included a
wash step with three ramps between 2% and 98% solvent B fol-
lowed by 24 min of re-equilibration at 2%B and 300 nl/min flow.
During the gradients, the flow was 250 nl/min. For the cell line and
FFPE tissue digests, 1 μg and 1.5 μg of endogenous peptide,
respectively, were injected per run.

Development and Analytical Validation of Targeted MS Assays

The targeted proteomic assays reported in this manuscript are Tier 2
level, which refers to analyses that use isotope-labeled internal stan-
dards for each analyte with the purpose of measuring relative protein
abundances for nonclinical uses as described in Carr et al. (44).

Selection and Storage of SIL Internal Standard Peptides–For the
HNSCCpeptide library, SIL peptideswere obtained in crude purity from
Vivitide. These were reconstituted, combined to a nominal abundance
of 300 nM/μl per peptide, aliquoted, and dried by vacuumcentrifugation
for storage. For each selected protein (see Results), three or more
peptide representatives were chosen from the ProteomeTools data-
base (45). When possible, we selected peptides between 7 and 16
amino acids in length and in order of decreasing priority, those not
containing methionine, cysteine, or known phosphosites in the Phos-
phoSitePlus database (46). Under those constraints, we selected the
most proteotypic peptides based on identifications in the Proteo-
micsDB database (47). The initial library included 288 peptides. Syn-
thetic peptides missing the expected peak in their MALDI spectra or
failing detection by at least five transitions in LC-MS/MS survey ana-
lyseswere excluded fromsubsequent analyses, which left 236 peptides
remaining. The supplementary material includes a catalog of these
peptides. The Kinome SIL peptide library included 705 high-purity un-
modified SIL peptides that were detectable in survey analyses.

MS Characterization of SIL Peptides–All MS data used in this
manuscript were generated using an Orbitrap Eclipse Tribrid mass
spectrometer (Thermo Fisher Scientific). Survey runs to characterize
SIL peptides were carried out in a directed DDA mode with the in-
jection of 150 fmol/peptide nominal abundance on-column as with all
subsequent IS-PRM runs. Resolution is stated at 200 m/z. MS1 scan
parameters were as follows: scan range, 300 to 1500 m/z; automatic
gain control (AGC), 1.2e6; maximum injection time (maxIT), 50 ms;
and orbitrap resolution, 120K. Up to 70 precursors from the inclusion
list were subjected to MS2 scans in each cycle with a mass tolerance
of 10 ppm. The quadrupole isolation width was set to 1 Th and higher
energy collisional dissociation (HCD) fragmentation to an normalized
collision energy of 35%. Orbitrap MS2 scans employed a scan range
of 150 to 1700 m/z, AGC target at 5e5, maxIT of 10 ms, and an
orbitrap resolution at 7.5k. In all subsequent methods, identification
and quantitation of each SIL peptide was based on the six most
abundant transitions in the survey analysis but excluding precursor,
y1, y2, and b1 ions.

SureQuant Algorithm–SureQuant (Thermo Fisher Scientific) uses
SIL internal standard peptides to direct acquisition of MS2 scans
targeting the unlabeled, endogenous counterparts (41). In each cycle,
Mol Cell Proteomics (2023) 22(11) 100647 3



Targeted Proteomic Quantitation of NRF2 Signaling in HNSCC
the SureQuant algorithm looks for peaks in a high-resolution MS1
scan that match one or more precursors in the SIL library to within a
given mass-to-charge tolerance. Upon detection of a SIL precursor
exceeding an intensity threshold, SureQuant requests a “watch” MS2
scan targeting that precursor. If in the watch scan five or more tran-
sitions, selected from the survey runs, match their expected m/z to
within specification, then SureQuant requests a “quant” MS2 scan
targeting the endogenous precursor. The MS1 precursor mass toler-
ance was set to ± 5 ppm, and the MS2 transition tolerance set to ±
20 ppm. In downstream analyses, SIL peptide peak areas were
calculated from their watch scans and endogenous peak areas from
their quant scans. A retention time window for each precursor was set
to ± 4 min of the survey run retention time. The maximum cycle-time
was restricted to 3 s.

OIS-PRM Algorithm–We used the Thermo Scientific Tribrid in-
strument application programming interface (IAPI) to implement an
OIS-PRM algorithm that differs from SureQuant in the following ways.

(1) OIS-PRM prohibits future quant scans for a precursor if after a
minimum number of quant scans, one of the following three
conditions holds.
(i) The summed intensity of selected fragment ions for an SIL
precursor is recorded for each scan. That intensity may fall
below a user-defined percentage of the maximum observed
for a given precursor during the current injection.

(ii) The time since the first quant scan for a precursor may
exceed an expected peak width threshold.

(iii) A watch scan can fail to identify an SIL precursor with at
least a minimum number of transitions. If this happens,
there are two outcomes. First, if at least a minimum number
of quant scans have been recorded for the precursor, then
that precursor is excluded from future quant scans.
Otherwise, the algorithm resets the running count of quant
scans and future quant scans are not excluded.

(2) OIS-PRM enforces scan-order within each cycle by requesting
scans at two points during each cycle in the following way.
First, after the return of the MS1 scan, the IAPI requests any
watch scans determined from the MS1 scan. Second, after
completion of all outstanding watch scan requests, the IAPI
tests whether each watch scan was successful. Success de-
notes a watch scan where at least a minimum number of the
expected transitions are present. Then, the IAPI queues a watch
and quant scan pair for each successful watch scan. Following
a successful watch scan for a given precursor, the next MS1
scan may not trigger a watch scan for that precursor. Within a
batch of requests, scans are always submitted in the following
order of decreasing priority: first quant MS2 for a given pre-
cursor, quant MS2, MS1, watch MS2 triggered by a prior watch
MS2, and watch MS2 triggered by an MS1. In each cycle, an
MS1 is followed by all watch MS2 scans, which are followed by
all quant MS2 scans. As a corollary of this scheme, there is a
zero-cycle delay between the first MS1 detection of an SIL
peptide and the first watch and quant scans for that precursor.
supplemental Fig. S4 presents a schematic of the IS-PRM al-
gorithm. While the instrument is waiting for scan requests from
the IAPI, it repeatedly records default “no-op” scans (see “OIS-
PRM Analyses”).

We ran OIS-PRM with the following parameters: minimum quant
scans per peak of 10, expected peak width of 50 s, peak closeout
intensity threshold at 15% of apex intensity, minimum number of
transitions at 4, transition tolerance at ± 20 ppm, precursor tolerance
at ± 5 ppm. The IAPI did not enforce an MS1 intensity threshold and
instead required only detection of the two most abundant isotopes to
4 Mol Cell Proteomics (2023) 22(11) 100647
trigger a watch scan. Default method scans take the lowest priority
and only occur when the instrument is waiting for scan requests from
the IAPI. The default method consisted of repeating linear ion trap
MS1 scans. The OIS-PRM method is further detailed in supplemental
Fig. S5.

IS-PRM Data Acquisition Parameters–For all OIS-PRM and Sure-
Quant runs, Orbitrap MS1 scans used an AGC target of 1.2e6, reso-
lution of 120k, and a maximum injection time of 50 ms. Fragmentation
was carried out via HCD with a normalized collision energy of 30%
and a precursor isolation width of 1 Th. All MS2 watch scans were
carried out with an AGC target of 5e5, maxIT of 11 ms, and orbitrap
resolution of 7.5k. Likewise, for the OIS-PRM experiment using
kinome peptides, we specified an AGC target of 5e5, a maxIT of
160 ms, and an orbitrap resolution at 60k for all MS2 quant scans. For
NRF2 panel experiments, these settings were 5e5, 246 ms, and 120K,
respectively. For FFPE-derived samples, custom maxITs as high as
738 ms were specified for a handful of low abundance endogenous
precursors as specified in the supplemental data. Linear ion trap MS1
no-op scans from the OIS-PRM method had an AGC target set to
standard and scan speed set to turbo.

Peak Area Ratio Estimation–For both the standard SureQuant and
OIS-PRM methods, text files were generated from an active IAPI
instance recording all centroided MS2 scans with retention time and
precursor m/z annotations. Custom python scripts were used to
estimate peak area ratios (PARs) from these data as follows. Tran-
sition intensities were extracted with a width of 80 ppm for watch
scan MS2s and 20 ppm for quant scan MS2s. If multiple peaks fell
within a single extraction window, the one nearest the center of the
window was used. Spectral contrast angles were used to identify and
exclude noisy or interfered transitions in two ways. First, for each
transition, two vectors of intensities from the light and heavy peptides
were compiled over the integration bounds, and if the angle between
those vectors exceeded π

8 radians, that transition was excluded from
further analysis. Second, the three transitions with the highest sum-
med peak area such that the spectral contrast angle between the SIL
and endogenous peak areas did not exceed π

16 radians were used for
quantification. This is illustrated in supplemental Fig. S7, and Gallien
et al. have previously reported use of spectral contrast angles to
detect interfered transitions for IS-PRM applications (37). The inte-
gration boundary was taken to be the longest streak of consecutive
cycles that each contained both a watch and quant scan for the
precursor. The longest streak could be broken by at most three
consecutive cycles missing either or both of the watch and quant
scans. The supplemental data report all chromatograms for each
precursor and the subsets of transitions used for quantitation.

Normalization–We performed global extraction from PRM as pro-
posed by Chambers et al. to normalize observed PARs based on the
intensities of commonly identified peptides that are co-isolated with
the targeted peptides (48). Raw files were converted to an open format
(.mzML) using the ProteoWizard MSConvert tool (49). A python script
removed linear ion trap no-op scans from the IAPI method.mzML files,
and the trimmed files were then searched using the MetaMorpheus
software (https://github.com/smith-chem-wisc/MetaMorpheus) with
match between runs (50). “Deconvolute precursors” was enabled for
the identification of co-isolated precursors. Background peptides
commonly identified between all runs were then used to calculate the
median normalization factors as described by Chambers et al. (48).
Peptides corresponding to targeted proteins were excluded from the
analysis before normalization.

Peptide Imputation and Summarization to Protein–PARs for each
peptide corresponding to a given protein were summarized to protein-
level abundances by taking their geometric mean. We assumed that
peptides derived from the same protein were correlated in abundance.

https://github.com/smith-chem-wisc/MetaMorpheus
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Accordingly, we used a k-nearest neighbors imputer as implemented
scikit-learn to impute missing peptide values given the nonmissing
values for peptides corresponding to the same protein (51). For a
given experiment, a peptide was excluded from analysis if it was
missing from greater than one-half of samples from which at least one
other peptide from the same protein was quantified. When all peptides
were missing for a given protein and injection, the protein was
considered missing.

Label-Free MS Analyses

For DDA experiments for the A549 cell line and HPV positive tu-
mors, MS1 scans were carried out with a resolution of 120k, an AGC
target of 1.2e6, and scan range of 375 to 1500 m/z. Dynamic exclusion
was for 60 s. Fragmentation was performed for charge states between
2 and 7 inclusive. The HCD-normalized collision energy was set to
32%. For MS2 scans in the linear ion trap, the quadrupole isolation
window was set to 0.7 Th, the maximum IT to 50 ms, and the AGC to
standard. The cycle time was set to 3 s.

Database Searching and Peptide Identification

For label-free analysis of the A549 cell line and HPV-positive
tumors, the.raw files were searched using MaxQuant version
2.0.3.0 against the UniProt human proteome (Swiss-Prot + Trembl)
in addition to the default MaxQuant contaminants with an false
discovery rate of 1% (52). The precursor search tolerance was
4.5 ppm and the fragment search tolerance was 0.5 Da. For the cell
lines and FFPE tissues respectively, these were downloaded on
September 16, 2021 and February 18, 2023 and contained 78,120
and 79,038 sequences. Methionine oxidation and N-terminal acet-
ylation were searched as variable modifications. Cysteine carbami-
domethylation was fixed. Lysine methylation and both N-terminal
and lysine formylation have been reported as formalin fixation arti-
facts and were included as variable modifications for the FFPE-
derived samples (53, 54). Quantification was by MaxLFQ and
without match between runs (55).

Experimental Design and Statistical Rationale

Throughout, correlations were assessed by Spearman’s rank
correlation, and Mann-Whitney U tests were used to compare
continuous variables sampled from two populations. We applied
hierarchical Bayesian analyses to model the expression of NRF2
target proteins for the 21 cell lines and then for the NRF2-
genotyped oral cavity tumors as described in the supplemental
methods.

Oral squamous cell carcinoma–derived cell lines, SCC90, SCC152,
and SCC154, stably expressing NRF2 E79Q and their parental cell
lines were each cultured in separate 10 cm plates and harvested on
the same day. This was done twice, once for Western blot and a
second time for IS-PRM. Cell lines were cultured each in biological
duplicate and the mean value for each protein across both replicates
used in the final analyses. The NRF2 status of the cell lines was
determined by hierarchical clustering using Euclidian distance and
with the Ward method.

Finally, NRF2 scores represent the position of each tumor along the
first principal component of the data. For the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) data, the principal component analysis
(PCA) was performed on the 13 NRF2 target proteins from the pilot SIL
peptide array and shown. For the analysis of oropharyngeal and oral
squamous cell carcinomas, the PCA analyses were performed on the
NRF2 target proteins that were differently expressed between the
NRF2 active and inactive cell lines as shown.
RESULTS

Benchmarking an Optimized IS-PRM Method

Two targeted proteomics methods, IS-PRM and its com-
mercial implementation called SureQuant, achieve sensitive
and reproducible quantification of peptides by monitoring
spiked-in SIL peptides to direct efficient data acquisition.
These internal standard peptides co-elute with their endoge-
nous counterparts so that IS-PRM uses the each SIL peptide
to trigger time-intensive and quantitative “quant” scans tar-
geting the corresponding endogenous peptide. Specifically,
quant scans of the endogenous peptide are triggered by fast
“watch” scans which detect and identify the highly abundant
SIL peptide. Because of this efficient use of instrument time,
IS-PRM enables quantification of more proteins in a single
analysis than a standard PRM method (Fig. 1A) (37). However,
through our research with SureQuant, we observed that inef-
ficient scan scheduling on Tribrid mass spectrometers resulted
in excess Orbitrap idle time (Fig. 1B). Using the Thermo Sci-
entific Tribrid IAPI, we implemented an OIS-PRM method that
postpones quant scans until the completion of all SIL-
detection watch scans (Fig. 1B). Additionally, we hypothe-
sized that avoiding quant scans during the long tail of a peptide
elution profile would free up instrument time without compro-
mising quantitative accuracy; therefore, we added thresholds
for minimum relative intensity and maximum elution time
(Fig. 1C). Last, we reordered quant scans to prioritize newly
detected peptides and capture the start of their elution profiles.
To evaluate OIS-PRM performance, we ran six injections of

an A549 lung cancer cell line digest and alternated between
SureQuant and OIS-PRM (Fig. 1D). The SIL library included
704 kinase-associated peptides representing 302 kinases.
These were analyzed over a 50 min liquid chromatography
gradient. OIS-PRM reduced the median cycle time from 3.1s
to 1.8s (Fig. 1E); efficient scan ordering contributed 360 ms
per cycle to this difference (Fig. 1F). With maximum time and
intensity thresholds, the number of SIL peptides with at least
seven points across the peak improved from 173 to 252 and
median CV from 4.6 to 3.2 percent for OIS-PRM compared to
SureQuant (Fig. 1G). Overall, OIS-PRM and SureQuant
quantified 264 and 259 peptides, respectively, with CVs less
than 20%. OIS-PRM sampled more points per peak, missed
fewer peak fronts, and oversampled from peak tails less often
(supplemental Fig. S1, H and I). Finally, we compared OIS-
PRM to a standard DDA method, frequently used in our lab-
oratory, which quantifies peptides based on the intensity of
MS1 peaks. Over three replicate injections, the OIS-PRM
method quantified 172 out of 302 kinases with a CV less
than 20% (supplemental Fig. S1). Although DDA identified
4680 protein groups on average, only 47 kinases were quan-
tified with a CV under 20%. Therefore, the DDA method could
not quantify even half as many kinases as OIS-PRM despite
that the untargeted method used a gradient length of 118 min,
nearly double that of the OIS-PRM method.
Mol Cell Proteomics (2023) 22(11) 100647 5
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Targeted Proteomic Quantitation of NRF2 Signaling in HNSCC
Development of an Internal Standard Peptide Array for
HNSCC

Aberrant NRF2 activity prognosticates resistance to radia-
tion and chemotherapy in cancers of the lung and upper
airway. Therefore, to empower the clinical potential of
OIS-PRM, we developed an NRF2 and HNSCC-specific SIL
peptide catalog. This resource includes 227 peptides that
represent 90 proteins: 68 NRF2-interacting proteins or tran-
scriptional targets; 10 immuno-oncology markers that include
immune checkpoint proteins, cytokines, T-cell surface
6 Mol Cell Proteomics (2023) 22(11) 100647
markers, and immuno-oncology markers; 8 known SCC tumor
suppressors and oncogenes; HPV E6 and E7, GAPDH, and
DHFR. To develop the NRF2-activity SIL panel, we began with
23 well-established NRF2 targets and NRF2-interacting pro-
teins (supplemental Table S1). For expansion, we proteoge-
nomically analyzed the CPTAC LUAD, LUSC, and HPV(−)
HNSCC cohorts, which frequently contain NRF2 pathway–
activating mutations (supplemental Fig. S2) (56–58). We sor-
ted the tumors by the abundance of the 13 NRF2 target pro-
teins that were expressed in all of the tumors (Fig. 2A).
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Targeted Proteomic Quantitation of NRF2 Signaling in HNSCC
Principal component analysis compressed these data into a
single “NRF2 activity score” that captured 60% of the data
variance (Fig. 2B). Overall, NRF2/KEAP1-mutated tumors re-
ported higher NRF2 activity scores than tumors lacking mu-
tations (Fig. 2C and supplemental Fig. S3). However, many
tumors with mutations showed low expression of NRF2 target
genes and conversely, many KEAP1 and NRF2 WT tumors
overexpressed NRF2 targets. As such, assays that classify
NRF2 activity in tumors based on genotype alone will suffer
from high false positive and false negative rates (Fig. 2C).
We therefore used the CPTAC data to identify additional

proteins useful for monitoring the NRF2 pathway. A LASSO
regression was trained on >6000 proteins not among the initial
13 NRF2 targets to predict the NRF2 activity scores across the
CPTAC cohorts (Fig. 2D). We found that a mere 30 proteins
with non-zero coefficients in the model could accurately pre-
dict the NRF2 scores (Fig. 2E). Literature evidence for most
proteins with non-negligible coefficients supported their sta-
tus as NRF2 targets. We included 17 of these in the final SIL
peptide array as described in the supplemental methods and
tables (supplemental Tables S1 and S2). Finally, we inspected
the mRNA to protein correlations within our NRF2 panel using
the Cancer Cell Line Encyclopedia (31). While most NRF2
transcriptional targets encode proteins that correlated well
with their respective mRNA, key regulatory proteins NRF2,
KEAP1, MAFG, CUL3, and TRIM16 correlated poorly (Fig. 2F).
Similarly, many immune checkpoint proteins correlated poorly
with their mRNA abundances, which agree with recent reports
(29–31, 59).
Validation of the NRF2 Pathway in Cell Lines

To assess whether our IS-PRM assay could quantify NRF2
pathway activation, we engineered HPV(+) HNSCC cell lines
SCC90, SCC152, and SCC154 to stably express NRF2E79Q, a
common cancer-associated activating NRF2 mutation
(Fig. 3A) (60). Stable expression of NRF2E79Q protein in each
cell line induced the expression of NRF2 and two of its ca-
nonical targets, NQO1 and HMOX1 (Fig. 3B). OIS-PRM ana-
lyses of the six cell lines revealed that NRF2 activation
Mol Cell Proteomics (2023) 22(11) 100647 7
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induced protein expression of NRF2 target genes over
parental controls (Fig. 3C).
For additional testing, we applied OIS-PRM method to a

collection of 21 cell lines with known NRF2/KEAP1 geno-
type and activity status (Fig. 4A). Hierarchical clustering
placed all cell lines with NRF2 or KEAP1 mutations in the
same cluster (Fig. 4B). In agreement with the CPTAC co-
horts (Fig. 2A), several cell lines lacking a causative muta-
tion overexpressed NRF2 targets. We modeled expression
of NRF2 target proteins using a hierarchical Bayesian
analysis and found that the cluster of cell lines containing
all NRF2/KEAP1 mutations overexpressed well-validated
NRF2 targets, such as NQO1, GCLC, and SLC7A11(XCT),
compared to the NRF2 inactive cluster. The abundance of
NRF2 itself, however, did not perfectly discriminate be-
tween the active and inactive cell lines. The posterior den-
sity of the logarithmic fold change parameter for GAPDH
concentrated around zero and suggested good data
normalization.

OIS-PRM Analysis of HNSCCs

After establishing OIS-PRM in cultured cell models, we next
tested it across two sets of archived FFPE HNSCC tumors: (1)
10 HPV(+) and 20 HPV(−) oropharyngeal squamous cell car-
cinomas collected as 50 μm curls (Fig. 5) and (2) punch bi-
opsies from 19 HPV(−) oral squamous cell carcinomas
including 11 NRF2 WT tumors and 8 tumors with NRF2E79Q or
NRF2E79K activating mutations (Fig. 6). After testing and
8 Mol Cell Proteomics (2023) 22(11) 100647
optimizing a protocol for protein extraction from FFPE, we
evaluated protein quality by DDA-MS on 10 HPV(+) oropha-
ryngeal squamous cell carcinomas FFPE curls (Fig. 5, A and
B). On average, each 50 μm curl yielded 300 μg of protein and
18,200 peptides mapping to 3600 protein groups (Fig. 5B).
These yields and overall peptide characteristics were similar to
those of prior FFPE proteomic studies (42, 43, 61, 62).
OIS-PRM analysis of the 30 FFPE curls from HPV(+) and

HPV(−) oropharyngeal squamous cell carcinomas revealed
expected and novel protein correlations. As with the CPTAC
cohort, the first principal component served as an NRF2
score, and it explained fifty percent of the variance (Fig. 5C).
This NRF2 score positively correlated with SOX2 protein
abundance (Spearman r = 0.49, p-value = 0.006, Fig. 5D).
Unexpectedly, we also observed that the second principal
component NRF2 score perfectly separated the HPV(+) from
the HPV(−) tumors. One of the thirty tumors substantially
overexpressed NRF2 targets relative to the others. Indeed,
this tumor expressed six of the NRF2 targets (CES1, CYP4F1,
GSTM3, ARK1C1/3/4, AKR1C2, SRXN1, and PTGR1) more
than 16-fold above their respective mean expressions for the
entire cohort and 24 proteins more than 4-fold above their
means (Fig. 5, C and E).
In the same OIS-PRM experiment, we quantified immuno-

oncology biomarkers and cancer drivers (Fig. 6, A and B).
The abundances of T-cell–associated proteins, CD8α, FOXP3,
PD-L2, PD-1, CD4, and CCL5, correlated with one another
across the cohort (Fig. 6C). Notably, PD-1 had a near-perfect
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rank correlation with the cytotoxic T-cell maker, CD8α, and
with the exception of FOXP3, these rank correlations were as
strong or stronger than for the typical protein and its mRNA in
the CCLE (31). Using a principal component analysis, we
derived a T-cell infiltration score and found that HPV(+) tumors
displayed significantly higher T-cell infiltration than HPV(−)
tumors (Fig. 6D). PD-L1 and PD-L2 were detected in 16% and
80% of the tumors, respectively. Nearly all tumors expressed
the transcriptional factor and immune checkpoint, NR2F6, at
detectable levels (63, 64).
Protein expression of p16 is a commonly used surrogate

for HPV infection; direct MS-based detection of endogenous
experiment described in (A). Protein abundances were averaged for eac
archically clustered. On the right-hand-side, the thick black bands conta
between the active and inactive clusters. The narrow gray bands contain
in expression between an NRF2 active over an NRF2 inactive cell line. H
labeled.
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HPV has not previously been established. OIS-PRM detected
the E6 and E7 proteins in the HPV(+) oral squamous cell
carcinoma cell lines, SCC90, SCC152, and SCC154 (Fig. 3C).
Across the oropharyngeal squamous cell carcinomas tumor
cohort, we detected E7 in five of the 10 HPV(+) tumors and in
none of the HPV(−) tumors (Fig. 6A). As expected, p16
expression separated HPV(+) from HPV(−) tumors (Fig. 6E).
HPV(+) tumors also significantly overexpressed TP73
compared to HPV(−) tumors, which agrees with a previous
report (Fig. 6F) (65).
In addition to the HPV(+) and HPV(−) oropharyngeal squa-

mous cell carcinomas, we also tested OIS-PRM on FFPE
h replicate and then data were row-normalized by Z-scores and hier-
in 95% of the posterior density of the mean logarithmic fold change
95% of the posterior predictive density for the logarithmic fold change
NSCC, head and neck squamous cell carcinoma; SIL, stable isotope
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tumor punches from a cohort of 19 HPV(−) oral squamous cell
carcinomas that were genotyped for NRF2 (Fig. 7A). These
included eight NRF2E79Q or NRF2E79K activating/mutant tu-
mors and 11 NRF2 WT tumors. Of the eight NRF2 mutant
tumors, six strongly expressed NRF2 target genes. Several
NRF2-target proteins were expressed at greater than 4-fold in
NRF2 mutant than WT tumors, including NQO1, AKR1C2,
GSTM3, GSTM4, and ALDH3A1 (Fig. 7, B and C). We further
examined T-cell markers and found that their expression did
not correlate with NRF2 activity (Fig. 7D). Nevertheless, cor-
relations between T-cell markers and immune checkpoint
proteins were often strongly positive just as with the oropha-
ryngeal cohort (Fig. 7E). Finally, similar to the HPV cohort of
oropharyngeal squamous cell carcinomas, SOX2 abundance
and NRF2 activity trended to a positive correlation (Fig. 7F).
This correlation supports a prior report showing that NRF2
activation associates with SOX2 amplification in squamous
cell carcinomas (33).
DISCUSSION

This work presents an optimized targeted proteomics
method called OIS-PRM and an SIL peptide library that may
be valuable for basic, pre-clinical, and clinical research. Within
the clinical arena, biomarker assays are needed in HNSCC to
predict patient response to RT. Radiation functions as the
core of therapy in locally advanced HNSCC either as definitive
treatment with chemotherapy or following surgery and despite
significant improvements in radiotherapy, patients with
advanced disease still face poor outcomes. We and others
recently reported that NRF2-activating genotypes predict poor
response to RT, as quantified by locoregional failure following
RT-based therapy (13, 14). The resulting assertion, which re-
mains to be clinically implemented, is that HPV(−) HNSCC that
are NRF2-inactive should receive standard of care radiation.
Conversely, patients with NRF2-active tumors should
consider alternative modalities to RT when appropriate or
more aggressive therapeutic regimens. In addition to the pri-
mary treatment setting, recurrent HPV(+) tumors frequently
harbor mutant/active NRF2 alleles (66); therefore, patients with
recurrent HPV(+) cancer should undergo screening for NRF2
signaling if RT is to be considered as part of their treatment
when other appropriate treatment options exist. For basic and
translational cancer research, OIS-PRM provides a powerful
multiplexed protein quantitation assay that if implemented as
a shared resource would be cost effective and empowering.
For example, though the FDA has not approved NRF2 in-
hibitors, future clinical trials for any such drugs could use OIS-
PRM as a mechanistic biomarker and to stratify patients for
trial consideration.
Mol Cell Proteomics (2023) 22(11) 100647 11
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Targeted Proteomic Quantitation of NRF2 Signaling in HNSCC
In addition to the value of NRF2-centered biomarkers, OIS-
PRM–enabled protein-level quantitation of T-cell infiltration,
and immune checkpoint proteins may be a useful adjunct to
predict patient response to anti-PD1 therapies. Current pre-
dictive biomarkers for anti-PD1 therapy response include
antibody staining for PD-L1, tumor mutational burden, and an
mRNA expression–based IFN-gamma signature (16, 18, 19).
OIS-PRM with an optimized SIL peptide library may provide
some ancillary benefit to these methods, but at present, the
strong colinearity between most of the immuno-oncology
markers studied in this work would limit the predictive po-
tential of our assay. Future expansion of our SIL peptide
catalog will include additional immune checkpoint proteins,
cytokines, chemokines, and markers for subtypes of innate
immune cells that suppress antitumor immunity.
Patients with HPV(+) oropharyngeal squamous cell carci-

noma tend to have good oncologic outcomes overall and this
has spurred an interest in de-intensifying adjuvant and defin-
itive radiation dosing for these patients. To date, no standard
of care de-intensification regimen has emerged, in part
because many studies have shown a reduction in locoregional
12 Mol Cell Proteomics (2023) 22(11) 100647
and distant control with de-intensified radiation (67). Part of
the problem may be that aside from clinical and pathologic
staging, imaging, and smoking history, exceedingly few trials
utilize tumor biology to stratify those patients at increased risk
of recurrence (68). One study reported significantly reduced
expression of T-cell markers in HPV(+) tumors that would
eventually recur, compared to those that did not recur (69).
Our OIS-PRM data reveal a small fraction of HPV(+) tumors
that have low T-cell infiltration, comparable to that of typical
HPV(−) tumors. Therefore, a rapid assay capable of reporting
an NRF2 signaling score as well as a T-cell infiltration score
may be a meaningful biomarker to predict radiation resistance
and better stratify patients for de-intensification of clinical
trials.
However, our results and analysis of publicly available

CPTAC proteomics data suggest that neither genotype nor
the expression of any single protein can accurately predict
NRF2 pathway activity. Genotype-phenotype annotations for
cancer-derived mutations remain sparse—particularly for tu-
mor suppressor genes—and thus mutation-based classifiers
often suffer high false discovery rates. Accordingly, it is
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difficult to predict the functional effects of KEAP1 mutation on
NRF2 transcriptional activity (15). We found that protein
expression NRF2 targets efficiently separated NRF2-active
from NRF2-inactive tumors (Fig. 2, A–C), but not all of these
targets are equally diagnostic for NRF2 activity. We therefore
modeled the expression of each NRF2 target in our SIL pep-
tide library in both cell lines and oral cavity tumors to quantify
the extent and consistency to which NRF2 signaling drove the
expression of each target (Figs. 4B and 7B). Notably, HMOX1
ranked poorly among all NRF2 targets in the panel despite its
widespread use as a favored NRF2-activity marker (70).
RNA biomarkers and protein biomarkers independently offer

great value for personalized medicine. With the rapid techno-
logical and computational advancements in MS, protein-based
assays are approaching the comprehensiveness of genomic
assays. Many features of proteins make them superior to
mRNA-based biomarker assays, not the least of which are the
complicated mechanisms governing the abundance of mRNA
to its protein product (59, 71). We found that for NRF2 target
genes, the protein-to-mRNA correlations are moderate to
strong, such that transcript abundances do well to distinguish
between the NRF2 active and inactive cases (Fig. 2F) (31).
However, for other proteins in our catalog such as NRF2,
KEAP1, PD-L1, PD-L2, and various immune checkpoint pro-
teins and cytokines, correlations between the mRNA and
respective proteins are weak or lacking in validation (29, 31, 72).
Our OIS-PRM analysis of HNSCC tumor samples revealed

varied NRF2 activity. From a small cohort of 30 HNSCC
oropharynx tumors, we identified a single HPV(−) tumor with
exceptionally high abundance of NRF2 target proteins (Fig. 5).
In addition, several HPV(−) tumors demonstrated moderately
elevated NRF2 scores, perhaps owing to nongenomic mech-
anisms of pathway activation such as competitive KEAP1 in-
hibition or NRF2 copy number amplifications (15). Whether
this intermediate NRF2 activation impacts responsiveness to
RT remains to be seen, but future analysis of appropriately
sized training and validation cohorts could reveal a threshold
of clinical relevance. Subsequent analysis of a separate cohort
of NRF2-genotyped oral cavity tumors further confirmed that
targeted proteomics can identify NRF2 active tumors and
quantify immune checkpoint proteins and cancer drivers
(Fig. 7). However, two of the eight tumors harboring NRF2
E79Q or E79K alleles did not overexpress NRF2 targets at the
protein level. We hypothesize that spatial heterogeneity within
each tumor between the genotyped punch and the indepen-
dent punch taken for proteomics could explain this
discrepancy.
Our data also present several unexpected observations

pertaining to NRF2-driven immune-suppression, a correlation
between the NRF2 and SOX2 oncogenes, and NRF2 activation
in an HPV(+) background. First, given recent publications, we
expected NRF2 activation to inversely correlate with T-cell
infiltration (18, 33, 34). Our data do not support this hypothesis.
However, the literature strongly shows that NRF2 activity
correlates with resistance to anti-PD1 drugs, drives expression
of PD-L1, and supports polarization of tumor-infiltrating leu-
kocytes towards immunosuppressive functions (14, 18, 32, 36).
Therefore, it is possible that NRF2 mediates immune sup-
pression by modulating the infiltration and function of innate
immune cells rather than the abundance of T-cells at the pri-
mary tumor site. Indeed, we recently observed in mice that
NRF2 activation within allogenic-grafted HNSCC tumors
polarized infiltrating monocytes from an M1 towards an M2
phenotype and correlated with increased abundance of
myeloid-derived suppressor cells (14). Likewise, over-
expression of an NRF2 target, GPX2, in a different mouse
model of oral cancer results in M2 skewing and an increase in
myeloid-derived suppressors but with a reduction in T-cell
infiltration (14, 34). Notably, the sample size in our study is
limited, thus weakening statistically meaningful observations
with respect to T-cell infiltration. Secondly, Harkonen et al.
recently observed positive correlation between SOX2 copy
number and NRF2 transcriptional signature (33). We also
observed co-expression between the SOX2 and NRF2 onco-
genes and believe this association merits further investigation.
Finally, we observed that the second principal component of
the NRF2 proteins separated HPV(+) from HPV(−) tumors,
suggesting that NRF2 differently activates its target genes in
an HPV(+) compared to an HPV(−) background.
In addition, several discussion points on the development of

OIS-PRM are warranted. OIS-PRM differs from SureQuant and
current state-of-the art methods primarily in that it efficiently
orders scans within each scan cycle and monitors peptide
elution in real-time to avoid acquiring uninformative scans
during long peak tails. Prior art recommends rapid data
acquisition to ensure capture of 6 to 10 data points for each
peptide analyte (41, 73). However, this heuristic rule might
apply differently depending on whether quantification relies on
raw peak areas or on ratios with internal standards. In theory, a
single measurement should reflect the relative abundances of
an SIL peptide and its endogenous counterpart, with additional
scans minimizing the effects of noise and variability. TMT-
labeling experiments operate on this principle and quantify
peptides by the relative abundances of reporter ions in as few
as one MSn scan. Accordingly, while OIS-PRM increased the
number of peptides quantified with at least seven points and
decreased median CVs, it failed to quantify more peptides with
a CV of less than 20%. When using internal standards, how-
ever, dense chromatogram sampling enables alignment of SIL
and endogenous chromatographic profiles. Poor correspon-
dence of light and heavy counterparts reveals interfered or
noisy transitions unsuitable for quantification, with the absence
of aligned transitions serving as a pseudo limit of detection.
Therefore, this work and others describe spectral contrast
angle metrics to measure similarity between light and heavy
peptides (37, 74). We propose that a 1-cycle delay between
MS1 detection and the subsequent watch scan could explain
why the SureQuant method frequently missed peak fronts
Mol Cell Proteomics (2023) 22(11) 100647 13
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(Fig. 1I). Because of these aforementioned advantages, OIS-
PRM will enable the use of even larger SIL peptide arrays of
up to 700 peptides and thereby empower proteomic interro-
gation of tumor biology and personalized medicine.
Finally, we opted to use a custom analysis pipeline to pro-

cess PRM data in order to optimize data analysis specifically
for triggered PRM experiments. Doing so had several advan-
tages; for example, our reported pipeline used different anal-
ysis parameters for watch and quant scans as these scan
types differ in their acquisition parameters. In addition, we
calculated spectral contrast angles between the SIL and
endogenous peptides within each injection rather than be-
tween the endogenous peptide and a library reference spec-
trum from a prior experiment. Lastly, access to the raw data
allowed for fine control over data visualization. We generated
chromatogram mirror plots for easy visual alignment between
the SIL and endogenous chromatograms and then combined
all chromatograms into a single portable document format file
for each RAW file.
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