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A B S T R A C T   

Family poverty has been associated with altered brain structure, function, and connectivity in youth. However, 
few studies have examined how disadvantage within the broader neighborhood may influence functional brain 
network organization. The present study leveraged a longitudinal community sample of 538 twins living in low- 
income neighborhoods to evaluate the prospective association between exposure to neighborhood poverty 
during childhood (6–10 y) with functional network architecture during adolescence (8–19 y). Using resting-state 
and task-based fMRI, we generated two latent measures that captured intrinsic brain organization across the 
whole-brain and network levels – network segregation and network segregation-integration balance. While age 
was positively associated with network segregation and network balance overall across the sample, these as
sociations were moderated by exposure to neighborhood poverty. Specifically, these positive associations were 
observed only in youth from more, but not less, disadvantaged neighborhoods. Moreover, greater exposure to 
neighborhood poverty predicted reduced network segregation and network balance in early, but not middle or 
late, adolescence. These effects were detected both across the whole-brain system as well as specific functional 
networks, including fronto-parietal, default mode, salience, and subcortical systems. These findings indicate that 
where children live may exert long-reaching effects on the organization and development of the adolescent brain.   

1. Introduction 

Over 15 million children in the United States grow up in poverty 
(Children Incorporated, 2022). Childhood poverty is associated with 
heightened risk for cognitive and socioemotional difficulties, academic 
under-achievement, and poorer physical and mental health (Evans and 
Kim, 2013; McLoyd, 1998). The last decade has witnessed a burgeoning 
literature demonstrating that disadvantage may “get under the skin” by 
influencing brain development (Farah, 2018; Hyde et al., 2020). Until 
recently, neuroimaging research in this area has largely focused on 
household disadvantage, such as family income and education. Never
theless, studies indicate that economic resources within the household 
versus the broader neighborhood uniquely influence development 
(Carroll et al., 2023; Evans, 2004; Hyde et al., 2020; Leventhal and 
Brooks-Gunn, 2000). Since disadvantaged neighborhoods expose youth 
to unique risk factors outside the home (e.g., community violence, 

neurotoxicants) (Hyde et al., 2020), additional research is required to 
delineate the mechanisms underlying risk and resilience following 
neighborhood disadvantage. 

A growing literature has begun to directly relate neighborhood 
disadvantage to brain development, above and beyond household-level 
disadvantage (Hyde et al., 2022; Rakesh and Whittle, 2021). Neigh
borhood disadvantage has been uniquely associated with altered struc
ture and function in cortical and subcortical regions underlying 
cognitive and socioemotional processing (Gard et al., 2021; Mullins 
et al., 2020; Rakesh et al., 2022; Tomlinson et al., 2020; Whittle et al., 
2017). Beyond these regional effects, neighborhood disadvantage may 
further impact functional connectivity patterns among brain systems 
supporting cognitive and affective regulation, including cortico-limbic, 
fronto-parietal, and default mode systems (Ip et al., 2022; Marshall 
et al., 2018; Rakesh et al., 2021a; Rakesh et al., 2021b). 

Although previous studies describing the neurobiological embedding 
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of neighborhood disadvantage focus on connectivity strength, compu
tational approaches such as graph theory capture the broader organi
zation of the brain and its constituent networks (Bassett and Sporns, 
2017). Important properties of network architecture include the degree 
to which the brain organizes into distinct, functionally specialized net
works (network segregation) and the efficiency of information flow 
(network integration) (Sporns, 2013). High segregation and high inte
gration generate a “small-world” system, which efficiently coordinates 
specialized cognitive functions at low wiring and energy costs (Bassett 
and Bullmore, 2006). Neighborhood disadvantage has recently been 
associated with lower integration of a salience emotion network (Gellci 
et al., 2019) and with weaker age-related variation in the segregation of 
whole-brain, somatomotor, ventral attention, and limbic networks 
(Tooley et al., 2020). 

Emergent translational evidence suggests that context modulates not 
only the outcome, but also the pace, of brain development (Tooley et al., 
2021). Life history (Ellis and Del Giudice, 2019) and stress acceleration 
theories (Callaghan and Tottenham, 2016) postulate that adversity ac
celerates neurodevelopment. Though such acceleration may confer 
short-term benefits, it may also abbreviate periods of peak neuro
plasticity, limiting the capacity for subsequent adaptation and 
increasing risk for negative long-term outcomes (Gee, 2021). 
Conversely, other theories posit that in disadvantaged environments, 
fewer resources (e.g., education, nutrition) may delay neuro
development (Johnson et al., 2016). Although such delays may increase 
risk for negative outcomes, they may also prolong plasticity and 
adaptability to varied contexts. Several cross-sectional and longitudinal 
studies report alterations in brain structure, function, and connectivity 
following exposure to adversity and disadvantage, in directions inter
preted as both accelerated (e.g., more negative cortico-limbic coupling; 
Brieant et al., 2021; Gee et al., 2013a; McLaughlin et al., 2019) and 
delayed neurodevelopment (e.g., decelerating gaps between 
brain-predicted versus chronological age; McLaughlin et al., 2019; 
Rakesh et al., 2021c; Rakesh et al., 2021d). 

To understand how disadvantage modulates network maturation, 
“normative” patterns of age-related variation in functional network ar
chitecture must first be considered. Cross-sectional studies suggest 
higher network segregation with age, although these patterns differ by 
network and cognitive context (Grayson and Fair, 2017; Gu et al., 2015; 
Keller et al., 2022; Tooley et al., 2022; Wig, 2017). Nonetheless, these 
findings rely on small samples or specific cohorts, report conflicting 
conclusions on whether network segregation continues to refine across 
adolescence, and have not examined age-related variation in 
small-worldness throughout adolescence. 

When considering contextual influences on age-related variation in 
network topology, one cross-sectional study simulating network devel
opment reported delayed peaks in network segregation in disadvantaged 
youth (7–13 y) (Siugzdaite et al., 2022). Conversely, another 
cross-sectional study found weaker positive associations between age 
(8–22 y) and network segregation following neighborhood disadvan
tage, a pattern interpreted as accelerated development (Tooley et al., 
2020). Therefore, this limited literature does not paint a clear picture of 
how neighborhood disadvantage moderates associations between age 
and network topology. Moreover, current work has exclusively focused 
on cortical network segregation; thus, the overall and age-related effects 
of neighborhood disadvantage on other important topological properties 
(e.g., small-worldness, subcortical architecture) remain unknown. 

Thus, the present study characterized how exposure to neighborhood 
disadvantage was associated with functional network architecture in a 
longitudinal population-based sample of twin youth recruited from 
neighborhoods with above-average poverty levels, resulting in strong 
representation of lower-income families that have been historically 
excluded from neuroimaging research. As youth begin to spend more 
time in the neighborhood during childhood, while brain organization 
rapidly remodels during adolescence to specialize to contextual de
mands (Grayson and Fair, 2017), we examined prospective associations 

between neighborhood poverty during childhood and network topology 
during adolescence. We interrogated network topology across the entire 
brain and specific networks implicated in adversity and psychopathol
ogy, including fronto-parietal, default mode, salience, and subcortical 
systems (Hyde et al., 2022; Menon, 2011). To increase reliability and 
capture the interrelatedness of different topological properties, we 
extracted two latent variables indexing network segregation and 
network segregation-integration balance. First, we probed the relation
ship between neighborhood poverty and network topology. Given 
findings suggesting reduced segregation following disadvantage across 
the lifespan (Chan et al., 2018; Rakesh et al., 2021a), we hypothesized 
that greater neighborhood disadvantage would predict reduced network 
segregation and network balance. Second, we examined the 
cross-sectional association between age and network topology, expect
ing positive associations between age with network segregation and 
balance. Lastly, we tested whether neighborhood poverty moderated 
cross-sectional links between age and network topology. As studies 
suggest both accelerated and delayed neurodevelopment following 
disadvantage, we did not specify directional hypotheses for this aim. 

2. Materials and methods 

2.1. Participants 

As described in Suarez et al. (2022), participants were part of the 
Michigan Twins Neurogenetics Study (MTwiNS), recruited from the 
Twin Study of Behavioral and Emotional Development – Child 
(TBED-C), a project within the broader Michigan State Twin Registry 
(Burt and Klump, 2013). Using birth records, the TBED-C identified twin 
families living within 120 miles of East Lansing, MI, including urban (e. 
g., Detroit, Flint, Lansing), suburban, and rural areas. The study 
included both a population-based sample (528 twin families) with 
children aged 6–10 years, and an “at-risk” sample (502 twin families) 
from the same geographic region, but only recruited from neighbor
hoods with above-median levels of poverty (>10.5 % of families in the 
neighborhood living below the poverty line, the median at study onset; 
Burt and Klump, 2019). In an ongoing follow-up neuroimaging study, 
MTwiNS recruited families from the “at-risk” sample, as well as those in 
the population-based sample that would have met criteria for the at-risk 
sample (i.e., living in neighborhoods with above-median levels of 
poverty). Although TBED-C and MTwiNS recruited twins to parse ge
netic versus environmental influences on brain development, risk, and 
resilience, twins are broadly representative of singletons in the popu
lation (Willemsen et al., 2021); thus, this dataset is useful for interro
gating context-dependent brain organization at the population level 
without leveraging the genetically informed design. 

We have assessed 708 twins from 354 families for MTwiNS. Of these, 
559 twins met fMRI eligibility criteria (see Table S1). To facilitate model 
estimation and convergence, participants with missing data on any 
variable (i.e., neighborhood poverty, family income) were excluded 
from all analyses (n = 21). Therefore, the current sample included 538 
twins from 306 families (53.9 % boys; 79.7 % White, 11.0 % Black, 9.3 
% other racial/ethnic group membership). Youth were between 8 and 
19 y, although 95.9 % of the sample was between 10 and 18 y (M =
14.74 y, SD = 2.05 y). At the time of data collection, the mean neigh
borhood poverty level for families in this study was 20 % (i.e., 20 % of 
families’ neighbors were living below the poverty line), ranging from 
0 % to 93 %. Participants’ guardians provided informed consent and 
participants provided assent in compliance with Institutional Review 
Board policies and APA ethical standards in the treatment of human 
participants. 

2.2. Neighborhood poverty 

We quantified neighborhood poverty by geocoding family addresses 
during the childhood TBED-C wave (6–10 y) and calculating the 
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proportion of residents living below the poverty line within the family’s 
census tract, the variable used to recruit participants (Tomlinson et al., 
2020). The distribution of neighborhood poverty values is shown in 
Fig. S1. 

2.3. MRI acquisition and processing 

2.3.1. Pseudo-rest compilation 
During the adolescent MTwiNS wave (8–19 y), participants 

completed one 7-minute resting-state scan (eyes open, black fixation 
cross) and three task-based scans, including a reward task (Peckins et al., 
2022), a socioemotional face processing task (Suarez et al., 2022), and a 
cognitive control task (Tomlinson et al., 2020). The reliability of func
tional connectivity data increases with greater scan length and concat
enation of multiple shorter scans across contexts (Birn et al., 2013; Cho 
et al., 2021). Thus, consistent with previous work (Fair et al., 2007; 
Kraus et al., 2021), we concatenated participants’ resting-state and 
task-based scans (with task effects regressed out) to generate approxi
mately 20 min of “pseudo-rest” scan data per participant. 

2.3.2. Neuroimaging procedures 
As described in Suarez et al. (2022), each participant was scanned 

with one of two research-dedicated GE Discovery MR750 3T scanners 
located at the University of Michigan Functional MRI Laboratory. To 
take advantage of improvements in MRI data acquisition and harmonize 
our protocol with the Adolescent Brain Cognitive Development Study 
(Casey et al., 2018), we altered our acquisition protocol after the first 
140 families. For the first 140 families (280 twins), blood oxygenation 
level-dependent (BOLD) functional images were acquired via an 8-chan
nel head coil and a reverse spiral sequence (TR/TE = 2000/30 ms, flip 
angle = 90◦, FOV = 22 cm), which covered 43 interleaved oblique slices 
of 3 mm thickness. High-resolution T1-weighted SPGR images (156, 1 
mm-thick slices) were aligned with the AC-PC plane, and later used 
during normalization of the functional images. For the remaining 214 
families (428 twins), BOLD functional images were acquired with a 
32-channel head coil and a gradient-echo sequence with multiband 
acquisition (TR/TE = 800/30 ms, flip angle = 52◦, FOV = 21.6 cm), 
which covered 742 interleaved axial slices of 2.4 mm thickness. 
High-resolution T1-weighted SPGR images (208, 1 mm-thick slices) 
were aligned with the AC-PC plane and used during normalization of the 
functional images. For both acquisition sequences, BOLD functional 
images encompassed the entire cerebrum and most of the cerebellum to 
maximize coverage of limbic structures. Functional data was pre
processed and analyzed using Statistical Parametric Mapping version 12 
(SPM12; Wellcome Trust Centre, London, United Kingdom) via standard 
procedures (see Supplementary Information for details about MRI data 
collection and processing and for associations between acquisition 
sequence and network topology). 

2.3.3. Motion and denoising correction strategy 
A conservative, multistep procedure was used to correct for motion 

artifacts combining multiple correction strategies (Parkes et al., 2018). 
First, data from each scanner session were motion-scrubbed to identify 
and remove motion artifacts from the fMRI time series, using a mean 
framewise displacement cut-off value of 0.5 mm (Power et al., 2012). 
Scanner sessions where > 20 % of the session was identified as motion 
artifact were excluded from subsequent analyses. Participants who did 
not have at least two independent usable scanner sessions due to motion 
artifact after scrubbing were removed from the sample. Secondly, 
ICA-AROMA was applied at the subject-level to remove motion-related 
artifacts (Pruim et al., 2015a; Pruim et al., 2015b), prior to the con
struction of subject-level connectivity matrices and networks. 

2.4. Graph theoretical analysis 

2.4.1. Node identification 
We parcellated the brain into 286 cortical regions of interest (ROIs) 

from a commonly used functional atlas (Gordon et al., 2016) and 
augmented this cortical atlas with 54 subcortical ROIs from a separate 
functional atlas (Tian et al., 2020). Cortical ROIs unassigned to a specific 
network were not included due to insufficient coverage. Connectivity 
analyses were run on the preprocessed resting-state data and resi
dualized task-based fMRI data using CONN toolbox’s ROI-to-ROI con
nectivity analysis procedure (see Supplementary Information for full 
details). 

2.4.2. Graph construction 
All graph theoretical analyses were conducted using the Brain Con

nectivity Toolbox (2019.03.03) in Matlab (version 2022a; Rubinov and 
Sporns, 2010). Consistent with other graph theoretical investigations, 
we set all negative connections within each whole-brain connectivity 
matrix to zero and then Fisher r-to-z transformed each matrix (Hallquist 
and Hillary, 2018; Rubinov and Sporns, 2010). We retained all con
nections without additional thresholding given controversies around 
gold-standard thresholding approaches and the cognitive relevance of 
weak connections (Civier et al., 2019; Hallquist and Hillary, 2018; 
Santarnecchi et al., 2014). We used these matrices to construct 
weighted, undirected whole-brain graphs. Specifically, the strength of 
each connection was retained rather than binarized because, compared 
to unweighted graphs, weighted graphs have closer resemblance to 
biological systems and generate more robust metrics of network topol
ogy (Good et al., 2010; Hallquist and Hillary, 2018; Santarnecchi et al., 
2014). 

2.4.3. Network statistics 
Following whole-brain graph construction, we extracted measures of 

functional network architecture at: (a) the whole-brain level (i.e., across 
all 340 ROIs in the graph) and (b) the level of individual networks (i.e., 
averaging across the ROIs of each network within the whole-brain 
graph). Given their functional similarities, we integrated fronto- 
parietal and cingulo-opercular nodes into one network (hereafter 
referred to as the “fronto-parietal network” for simplicity), and salience 
and ventral attention nodes into one network (hereafter referred to as 
“salience network” for simplicity). This method maximized the number 
of ROIs within networks of interest to boost the reliability of our 
network-level metrics. Integrating these networks allowed us to main
tain consistency with the network structure of other common atlases 
(Glasser et al., 2016; Yeo et al., 2011) and studies of neighborhood 
disadvantage (Tooley et al., 2020) to facilitate comparisons with alter
nate parcellation schemes and empirical studies. Lastly, subcortical ROIs 
were labeled as the “subcortical network/system” for parsimony. 
Overall, this approach generated 340 ROIs organized a priori into 11 
large-scale networks. 

At the whole-brain level, we characterized measures of network 
segregation (system segregation, modularity), network integration 
(global efficiency), and small-worldness (small-world propensity). First, 
system segregation and modularity probe the extent to which the brain 
organizes into distinct networks, involving stronger within- and weaker 
between-network connectivity (Bullmore and Bassett, 2011; Chan et al., 
2014). System segregation characterizes macro-scale segregation by 
comparing the relative strength of within-network versus 
between-network connectivity, using the network affiliations defined a 
priori from the atlases (Chan et al., 2014). Modularity measures 
meso-scale segregation by comparing the observed within-network 
connectivity against that estimated from a network partition that max
imizes modularity and is therefore independent from the 
parcellation-defined network affiliations (Newman, 2006). We exam
ined both system segregation and modularity because we were inter
ested in network segregation globally across the brain, captured by 
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distinct spatial scales. Third, global efficiency quantifies how efficiently 
information flows across the brain, computed as the average inverse 
shortest path length across all brain nodes (Latora and Marchiori, 2001). 
Finally, small-world propensity is a recently developed metric optimized 
for weighted graphs that compares the relative segregation and inte
gration observed against respective lattice and random networks (Bas
sett and Bullmore, 2017; Muldoon et al., 2016). Higher values on these 
metrics reflect greater network segregation, integration, and 
small-worldness, respectively. 

For network-level analyses, we derived a measure of network 
segregation (participation coefficient), focusing on four networks that 
have been implicated in disadvantage and mental health: the fronto- 
parietal, default mode, and salience networks, and the subcortical sys
tem (Hyde et al., 2022; Menon, 2011), although see Table S4 for 
exploratory analyses with the remaining seven networks in the system. 
We calculated participation coefficient for each brain region and aver
aged across all regions within each network to describe network-level 
topology. Participation coefficient compares how strongly a node com
municates with nodes from the same or different networks, defined from 
the applied atlases (Guimerà and Nunes Amaral, 2005). We focused 
specifically on this network-level metric of functional organization over 
others given our interest in the relative segregation versus integration of 
networks at a more global, rather than local, scale. Higher participation 
coefficient values reflect greater between-network integration, whereas 
lower values reflect greater segregation. 

2.5. Dimensionality reduction 

To account for shared variance, and reduce the dimensionality, 
across descriptors of both whole-brain and network-level topology, we 
conducted a principal component analysis using the psych package in R 
(Revelle, 2015; see Table S3 for analyses with individual metrics). A 
Kaiser-Meyer-Olkin test indicated that ~80 % of the variance in each 
graph metric could be explained by other graph metrics, corroborating 
the utility of dimensionality reduction. 

To establish the number of components to extract, we applied the 
n_components function in the parameters package in R (Lüdecke et al., 
2020). The most optimal solution extracted two components and was 
supported by eight methods, including parallel analysis, Velicer’s min
imum average partial criteria, optimal coordinates, Kaiser’s criterion, 
Bentler’s criterion, very simple structure complexity 1, and the scree 

plot (based on both standard errors and variance explained; see Fig. S2). 
We next repeated the principal component analysis with an oblimin 
rotation and extracted two components (see Fig. 1). The first principal 
component was labeled “network segregation” (variance explained = 50 
%). The second principal component was labeled “network balance” to 
capture the mutual balance between segregation and integration (vari
ance explained = 22 %). We extracted standardized component scores, 
with higher scores representing greater network segregation and 
network balance, respectively. 

2.6. Analyses 

To evaluate the association of functional brain network architecture 
with neighborhood poverty (Aim 1) and age (Aim 2), we estimated 
multiple regression models in Mplus (version 1.8.8). We used maximum 
likelihood estimation with robust standard errors to address potential 
violations of distributional assumptions. Network segregation and 
network balance were simultaneously entered as outcome variables in 
the model to account for their covariance and decrease the number of 
tested models. To probe whether neighborhood poverty moderated the 
association between age and functional network architecture (Aim 3), 
we repeated our models after adding an interaction term between 
neighborhood poverty and age (mean-centered). 

To account for the nesting of twins within families, we use the 
TYPE = COMPLEX command to cluster twins by household, consistent 
with other phenotypic and neuroimaging twin studies (South et al., 
2017; Suarez et al., 2022). According to simulations, this approach 
corrects for statistical data dependencies to produce unbiased model 
estimates (Rebollo et al., 2006). 

All models controlled for sex, race, family income, parental educa
tion, scanner sequence (multiband versus spiral), head motion (mean 
framewise displacement), and mean functional connectivity. We 
controlled for race (0 = Minoritized, 1 = Non-Hispanic White), a so
cially constructed category, to account for differences in exposure to 
structural and personal racism, discrimination, and unequal experiences 
of poverty, stress, and opportunity among people of color (Pager and 
Shepherd, 2008; Roberts and Rizzo, 2021), consistent with other work 
(Suarez et al., 2022). Because most racial/ethnic groups were small 
(Asian = 4, Black = 59, Latino = 6, Native American = 3, Other = 31, 
Pacific Islander = 6), and because each group faces an array of structural 
and personal racism, we binarized this race/ethnicity variable (even 

Fig. 1. Definition of functional brain network architecture. A) Brain networks of interest. Networks were parcellated using Gordon (cortical) and Tian (subcortical) 
functional atlases, and visualized using BrainNetViewer (Xia et al., 2013). B) Principal components of functional brain network architecture. Only loadings stronger 
than .30 are depicted. Loadings on the first component were reverse-scored to represent network segregation rather than network integration, consistent with other 
studies of neighborhood disadvantage (Tooley et al., 2020). Modularity, system segregation, global efficiency, and small-world propensity are whole-brain measures 
calculated across all 340 ROIs in the graph. Participation coefficient is a network-level measure calculated by averaging across ROIs within each network of interest 
in the whole-brain graph. PC = participation coefficient. 
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though greater representation of these groups would have been ideal to 
represent the diversity of adversity exposures among them). Further, 
controlling for mean functional connectivity ensured that our findings 
reflect variation in network topology rather than overall connectivity 
strength (Hallquist and Hillary, 2018; van Wijk et al., 2010). To disen
tangle whether the effects of neighborhood poverty were specific to 
neighborhood resources, we additionally controlled for concurrent 
family income and parental education during the neuroimaging wave in 
adolescence (8–19 y). Family income was measured as primary 
caregiver-reported ranges of monthly household gross income, 

including additional sources outside of employment such as government 
assistance and child support. Parental education was quantified as the 
highest level of education completed by the primary caregiver. 
Compared to participants excluded from this study (e.g., inability to 
scan, missing data), included participants did not differ in terms of sex, 
race, family income, parental education, and neighborhood poverty (all 
p’s > .136) but were significantly older by an average of six months 
(p = .006). 

Previous studies suggest that neurochemical changes induced by 
puberty drive structural and functional neurodevelopment, perhaps to a 

Fig. 2. Greater exposure to neighborhood poverty during childhood is associated with reduced functional network segregation during adolescence. A) Neighborhood 
poverty is negatively associated with the principal component of network segregation. Network segregation is residualized against age, sex, race, head motion, scan 
type, mean functional connectivity, family income, and parental education. B-C) Individual graphs from a participant with the lowest (0 %; Panel B) and highest (93 
%; Panel C) levels of neighborhood poverty in the sample. These graphs provide a qualitative illustration of the association between neighborhood poverty and 
network segregation across the sample. Each color represents a brain network, each colored line represents a within-network connection, and each gray line rep
resents a between-network connection. For visualization purposes, only connections stronger than .30 are depicted (isolate nodes at the top right corner represent 
nodes without connections stronger than .30). Nodes with stronger connectivity are closer together. Overall, functional networks are more segregated (i.e., distance is 
shorter among nodes within networks and greater among nodes between networks) at low (Panel B) compared to high (Panel C) levels of neighborhood poverty. 
Spring graphs generated in Cytoscape (Shannon et al., 2003). 
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greater extent than chronological age (Blakemore et al., 2010; 
Gracia-Tabuenca et al., 2021). We therefore conducted supplementary 
analyses after replacing the main and interactive effects of age with 
puberty (continuous Pubertal Development Scale scores), age after 
regressing out puberty, and puberty after regressing out age. We found 
that age-related variation in network topology as a function of neigh
borhood poverty was more closely tied to chronological age rather than 
pubertal maturation (see Table S5). 

3. Results 

3.1. Preliminary analyses 

We explored associations among variables of interest using zero- 
order correlations (see Table S2). Notably, neighborhood poverty was 
significantly, though modestly, negatively correlated with family in
come (r = –.34) and parental education (r = –.20), as expected. 

Fig. 3. Older age is associated with greater functional network segregation and network balance across adolescence. A-B) Age is positively associated with the 
principal components of network segregation (Panel A) and network balance (Panel B). Principal components are residualized against neighborhood poverty, sex, 
race, head motion, scan type, mean functional connectivity, family income, and parental education. C-D) Individual graphs from the youngest (8.75 y; Panel C) and 
oldest (19.75 y; Panel D) participant in the sample. These graphs provide a qualitative illustration of the association between age and network segregation across the 
sample. Each color represents a brain network, each colored line represents a within-network connection, and each gray line represents a between-network 
connection. For visualization purposes, only connections stronger than .30 are depicted (isolate nodes at the top right corner represent nodes without connec
tions stronger than .30). Nodes with stronger connectivity are closer together. Overall, functional networks are more segregated (i.e., distance is shorter among nodes 
within networks and greater among nodes between networks) in older (Panel D) compared to younger (Panel C) youth. Spring graphs generated in Cytoscape 
(Shannon et al., 2003). 
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3.2. How does neighborhood poverty during childhood relate to functional 
brain network organization during adolescence? 

After adjusting for demographic factors, neuroimaging covariates, 
and household-level disadvantage, we found that neighborhood poverty 
was significantly negatively associated with the principal component of 
network segregation (b* = –0.10, p = .035, 95 % CI [–0.19, –0.01];  
Fig. 2), which captures segregation across the whole brain (system 
segregation, modularity) and individual networks (participation coeffi
cient of the four networks examined). Neighborhood poverty was not 
significantly associated with the principal component of network bal
ance (b* = –0.02, p = .245, 95 % CI [–0.06, 0.02]), which represents 
global efficiency and small-world propensity across the whole brain. 
Furthermore, family income and education were unrelated to either 
network segregation or network balance (all p’s > .381), indicating the 
unique effects of neighborhood resources on functional network 
architecture. 

We further conducted supplemental analyses with the individual 
graph metrics that make up the principal components of network to
pology (see Table S3). We found that neighborhood poverty significantly 
predicted reduced segregation at the whole-brain level (system segre
gation, modularity), but was not associated with the remaining prop
erties examined (global efficiency, small-world propensity, participation 
coefficient of the four networks of interest). 

3.3. How does functional brain network organization vary across 
adolescence? 

We found that age was significantly positively associated with both 
network segregation (b* = 0.12, p = .010, 95 % CI [0.03, 0.20]) and 
network balance (b* = 0.08, p < .001, 95 % CI [0.04, 0.12]) across 
adolescence (see Fig. 3). Supplemental analyses with individual graph 
metrics (see Table S3) demonstrated that the observed pattern with 
network segregation was evident at the level of meso-scale segregation 
(modularity) and the level of individual networks (participation co
efficients of the fronto-parietal network and subcortical system). The 
pattern with network balance was only found for the small-world pro
pensity indicator of this latent factor. Age was unrelated to other 

measures of network topology (system segregation, global efficiency, 
participation coefficient of salience and default mode networks). 

3.4. Does neighborhood poverty during childhood moderate age-related 
variation in functional brain network organization across adolescence? 

Neighborhood poverty was found to significantly moderate the as
sociation between age and network segregation (b* = 0.13, p = .006, 95 
% CI [0.04, 0.22]; see Fig. 4). Simple slopes analyses revealed that age 
was positively associated with network segregation at high (+1 SD; 
p < .001) and mean (p = .015), but not low (–1 SD; p = .775), levels of 
neighborhood poverty. We subsequently conducted region of signifi
cance analyses to identify the exact neighborhood poverty levels at 
which the relationship between age and network organization was sig
nificant (Preacher et al., 2006). We found that the association between 
age and network segregation was significant when neighborhood 
poverty was above average (percentage of neighbors living below the 
poverty line >18 %; n = 233). Lastly, we switched the predictor and 
moderator variables to calculate the age range when neighborhood 
poverty was significantly associated with network architecture. We 
found that neighborhood poverty was associated with network segre
gation only in younger youth (<14.40 y; n = 187). 

We also observed a significant interaction effect between neighbor
hood poverty and age for network balance (b* = 0.05, p = .008, 95 % CI 
[0.01, 0.08]; see Fig. 4), such that age was positively associated with 
network balance at high (p < .001) and mean (p < .001), but not low 
(p = .268), levels of neighborhood poverty. Specifically, the association 
between age and network balance was significant when neighborhood 
poverty was above low-average (percentage of residents living below the 
poverty line >10 %; n = 397). Additionally, neighborhood poverty was 
only associated with network balance in younger (<13.43 y; n = 126) 
youth, with some indication of an association among older (>19.45 y; 
n = 2) youth. However, as only two participants in the sample were 
older than 19.45 y, the latter results should be interpreted with caution. 

Supplemental analyses interrogating individual graph metrics (see 
Table S3) revealed that the interaction pattern found with network 
segregation was evident for all indicators of this latent factor, including 
macro-scale (system segregation) and meso-scale (modularity) whole- 

Fig. 4. Neighborhood poverty during childhood moderates the association between age and functional brain network architecture across adolescence. A-B) Age is 
positively associated with the principal component of network segregation (Panel A) and network balance (Panel B) at high and mean, but not low, levels of 
neighborhood poverty. Interaction effects are significant within regions shaded in gray, such that greater neighborhood poverty levels mainly predict lower network 
segregation and network balance in younger, but not older, youth. Plots were generated using the interactions package in R. For visualization purposes, only values of 
network segregation and network balance within two SD’s from the mean are depicted to illustrate the observed effects more clearly (Network Segregation: n = 9 
above two SD’s from mean, n = 20 below two SD’s from mean; Network Balance: n = 14 above two SD’s from mean, n = 5 below two SD’s from mean). See Fig. S3 for 
the full, non-truncated figure. 
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brain segregation, and segregation of the four main networks of interest 
(participation coefficient of fronto-parietal, salience, default mode, and 
subcortical systems). In contrast, the interaction pattern found with 
network balance was only observed for the small-world propensity in
dicator of this latent factor (but not for global efficiency). 

3.5. How do neighborhood poverty and age relate to the topology of 
alternate networks? 

To parse the specificity versus globality of associations between 
neighborhood poverty and age with the topology of large-scale func
tional networks, we conducted exploratory analyses with the partici
pation coefficient of the remaining seven networks that were not the 
focus of this study (see Table S4). We found that greater neighborhood 
poverty predicted significantly higher participation coefficient of audi
tory, somatomotor hand, and somatomotor mouth networks. Age was 
positively related to the participation coefficient of the auditory network 
and negatively related to the participation coefficient of the dorsal 
attention and visual networks. Finally, neighborhood poverty only 
moderated the association between age and the participation coefficient 
of dorsal attention and somatomotor mouth networks. 

3.6. Does the timing of exposure to neighborhood poverty matter? 

Although we focus on neighborhood poverty during childhood 
(6–10 y), we conducted supplemental analyses with neighborhood 
poverty during adolescence (8–19 y) to characterize potential timing- 
related specificity in associations with functional network architec
ture. We observed very similar associations between network topology 
with neighborhood poverty, age, and their interaction for the two 
developmental periods (see Supplementary Information). 

4. Discussion 

This study evaluated the prospective associations between neigh
borhood poverty during childhood and functional brain network orga
nization during adolescence in youth residing in neighborhoods with 
above-average poverty levels. Using latent factors that clustered inter
related measures of brain organization across the whole-brain and 
network level, we found that greater exposure to neighborhood poverty 
predicted reduced network segregation, but not segregation-integration 
balance. Nevertheless, this association was not uniform across adoles
cence. Though measures of network segregation and network balance 
were higher in older youth, neighborhood poverty moderated these ef
fects, such that age was positively related to network segregation and 
balance at high and mean, but not low, levels of neighborhood poverty. 
Importantly, given our sampling frame, average levels of neighborhood 
poverty in our sample still represent relatively concentrated disadvan
tage. Lastly, neighborhood poverty predicted reduced network segre
gation and network balance in early, but not middle or late, adolescence. 

The present study builds upon a growing literature identifying 
environmental adversities outside the household as critical influences on 
the developing brain. Neighborhood disadvantage has been previously 
associated with differential patterns of functional activation and topol
ogy in specific brain regions, as well as functional connectivity patterns 
across specific brain networks, which underlie cognitive and socio
emotional functioning (Gellci et al., 2019; Hyde et al., 2022; Sripada 
et al., 2021). Our results extend this literature by showing that exposure 
to neighborhood poverty in childhood is associated with reduced func
tional segregation across the brain during adolescence. These findings 
are consistent with other research linking disadvantage to weaker 
within-network connectivity, a marker of reduced segregation (Brody 
et al., 2019; Rakesh et al., 2021a; Sripada et al., 2014). Segregated 
systems consist of clearly demarcated networks, creating a neural 
infrastructure for networks to perform more differentiated computations 
that support specialized cognitive functions. While youth from 

disadvantaged neighborhoods exhibited a less segregated functional 
architecture, neighborhood poverty was overall not associated with the 
balance between segregation and integration (i.e., small-worldness) 
across the entire sample. Notably, our results were observed while sta
tistically controlling for family income and parental education, indi
cating that limited socioeconomic resources within the broader 
neighborhood may uniquely influence functional brain network 
organization. 

Beyond environmental influences on network topology, we further 
assessed how network segregation and network balance varied with age 
across adolescence cross-sectionally to inform future longitudinal work 
explicitly characterizing network development. The current study is the 
first to our knowledge to directly examine age-related variation in small- 
worldness across adolescence. We found that age was positively asso
ciated with network balance, suggesting a potentially late develop
mental emergence of an “optimized” small-world architecture. Age was 
also positively associated with network segregation, both across the 
brain (i.e., modularity) and in networks underlying cognitive control 
and emotion processing (i.e., participation coefficient of fronto-parietal 
and subcortical systems) (Delgado, 2007; Dosenbach et al., 2008; 
LeDoux, 2003). Supplemental analyses further suggested that age was 
positively related to the segregation of dorsal attention and visual net
works, and negatively related to the segregation of the auditory 
network. These results converge with studies reporting overall 
age-related decreases in between-network connectivity and increases in 
within-network connectivity and segregation across adolescence, 
particularly among association networks (Keller et al., 2022). Such to
pological refinements may undergird developmental changes in 
top-down regulatory behavior and bottom-up emotional reactivity 
characteristic of adolescence (Bassett and Bullmore, 2006; Casey et al., 
2019; Luna et al., 2015; Wig, 2017). 

Though our overall age-related findings are consistent with some 
studies, other research suggests that functional network segregation and 
small-worldness across the entire brain may be predominantly estab
lished prior to adolescence (Fair et al., 2009; Marek et al., 2015). 
Discrepant findings about adolescent network remodeling may stem 
from socioeconomic differences across samples. Given our sampling 
frame, our findings more specifically represent youth from 
lower-income neighborhoods. Indeed, we found that the association 
between age and network topology was moderated by neighborhood 
poverty levels in childhood, such that network segregation and balance 
were positively associated with age, but only among youth from more 
disadvantaged neighborhoods. Supplemental analyses indicated that 
these results were specific to chronological age rather than pubertal 
physiology. Exploratory analyses further suggested that neighborhood 
poverty during childhood and adolescence showed similar associations 
with functional network architecture overall and as a function of age. 
However, this finding should be interpreted cautiously since neighbor
hood poverty was highly stable across waves, consistent with prior work 
(Vanderbilt-Adriance and Shaw, 2008), challenging our ability to pre
cisely parse timing-dependent effects. 

Given disagreements about normative and context-dependent tra
jectories of functional network maturation, our findings are challenging 
to interpret. As overall network topology may largely develop before 
adolescence, continual age-related variation in network segregation and 
balance in adolescents from disadvantaged neighborhoods could indi
cate a slightly protracted pace of functional network development. 
While longitudinal designs are required to explicate this hypothesis, this 
interpretation is consistent with other cross-sectional and longitudinal 
studies suggesting delayed structural and functional brain development 
following adversity and disadvantage (Hair et al., 2015; Hanson et al., 
2013; Keding et al., 2021; Rakesh et al., 2021c; Rakesh et al., 2021d; Rao 
et al., 2010; Siugzdaite et al., 2022; Whittle et al., 2017). Multiple 
hardships present within under-resourced environments may delay 
neurodevelopment, such as lower access to high-quality nutrition and 
educational resources (Johnson et al., 2016). However, in our data, 
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network segregation and balance were statistically similar by 
mid-adolescence irrespective of neighborhood resources, potentially 
reflecting a neurodevelopmental “catch-up” in disadvantaged youth. 
Alternatively, differential associations between age and network topol
ogy following neighborhood disadvantage may reflect a developmental 
trajectory that is entirely unique to current environmental demands, as 
opposed to one that is accelerated or delayed relative to the “norm” 
(Rakesh et al., 2023). 

Contrary to our interpretation of delayed functional network matu
ration in disadvantaged youth, another recent study found the opposite 
pattern of potentially accelerated development of functional network 
segregation following exposure to neighborhood disadvantage (Tooley 
et al., 2020). These conflicting conclusions epitomize ongoing debates 
regarding whether adversity and disadvantage may accelerate or delay 
neurodevelopment (Callaghan and Tottenham, 2016; Ellis and Del 
Giudice, 2019; Johnson et al., 2016; Rakesh et al., 2023; Roubinov et al., 
2021; Tooley et al., 2021). While demographic, methodological, and 
conceptual differences across studies may underlie these discrepancies, 
delineating the boundary conditions under which neighborhood poverty 
differentially modulates neuroplasticity constitutes an important goal 
for future research. 

In supplemental analyses with individual networks, we found that in 
youth from more, but not less, disadvantaged neighborhoods, age was 
negatively associated with the integration of fronto-parietal, default 
mode, salience, and subcortical systems. Our findings are consistent 
with studies that consistently link neighborhood resources to the 
structure, function, and connectivity of higher-order cortical networks 
(Hyde et al., 2022; Rakesh et al., 2021a) supporting the dynamic regu
lation, engagement, and disengagement of cognitive and attentional 
processes that underlie goal-directed behavior (Menon, 2011). These 
results also converge with extensive evidence that links adversity 
exposure to structural and functional alterations in subcortical regions 
underlying emotion processing (Hyde et al., 2022). As functional 
network architecture demonstrates greater segregation with age, 
particularly for association and subcortical systems (Fareri et al., 2015; 
Gee et al., 2013b; Keller et al., 2022), the observed pattern of findings in 
this study may indicate disadvantage-related delays in the develop
mental decoupling of functional networks underlying cognitive and 
socioemotional processing and regulation, although future longitudinal 
work is needed to explicitly test this hypothesis. Exploratory analyses 
with the remaining seven networks in the system suggested that these 
findings were mostly specific to higher-order association networks (with 
the exception of the somatomotor mouth network). 

Though the current study has several strengths including a large, 
well-sampled cohort of families living in low-income neighborhoods and 
rigorous processing and analytic techniques to characterize functional 
network architecture, some limitations warrant consideration. First, 
while our study was prospective, the brain data was cross-sectional 
throughout adolescence. Relatedly, given our wide age range (8–19 y), 
our sample may differ in multiple ways other than poverty and age (e.g., 
cohort effects), though we sought to mitigate this limitation through 
multiple statistical covariates. However, longitudinal research is 
necessary to truly characterize normative and context-dependent tra
jectories of functional brain network development. Second, since most 
neuroimaging studies involve limited socioeconomic, ethnoracial, and 
geographic diversity, care is needed when considering which neuro
developmental trajectories are “normative” and interpreting the mean
ing of “deviations” from such trajectories. Despite our strong sampling 
frame, this sample does not have high representation of wealthy 
neighborhoods and thus our results may not generalize across the entire 
population. Moreover, though representative, given our single-site 
design within a single Midwestern state, the ethnoracial diversity of 
the sample is relatively low, indicating the need to replicate our results 
among cohorts with greater ethnoracial diversity and across multiple 
regions worldwide. Finally, additional research should identify the 
proximal mechanisms through which neighborhood disadvantage 

reconfigures network topology to inform priorities for policy reform. 
Candidate “active ingredients” include toxicants (e.g., particulate mat
ter, lead), stressors (e.g., community violence, low neighborhood social 
cohesion), and less stimulating learning contexts (e.g., school quality, 
resource access) (Hyde et al., 2020; Leventhal and Brooks-Gunn, 2000). 

The present study provides evidence that growing up in disadvan
taged neighborhoods is associated with differences in the functional 
architecture of large-scale brain networks. We found that neighborhood 
poverty moderated the association between age and network segrega
tion and segregation-integration balance. These results could be sug
gestive of slightly delayed network development in early adolescence, 
followed by a developmental catch-up by mid-adolescence. These results 
indicate that where children live early in life might have long-reaching 
effects on the organization and development of the adolescent brain. 
Importantly, neighborhood resources are governed by policies and sys
tems that concentrate poverty to specific locations, particularly in 
marginalized communities (Riley, 2018; Slopen and Heard-Garris, 
2021). Taken together, this study suggests that policy and structural 
interventions aimed at systems, rather than families, may be particularly 
meaningful for promoting positive neurobehavioral development in 
youth. 
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