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1   |   INTRODUCTION

Over half of patients with advanced epithelial ovarian 
cancer (EOC) recur within 2 years despite surgery, chemo-
therapy, and targeted therapy. It is a heterogeneous dis-
ease consisting of different histological subtypes. Kurman 
and Shih suggested a dualistic model to classify EOC.1 

Type I carcinoma like clear cell carcinoma (CCC) and low-
grade serous carcinoma (LGSC) has stable chromosomes 
with distinct mutated genes such as KRAS, BRAF, PTEN, 
and CTNNB1, while type II carcinoma like high-grade 
serous carcinoma (HGSC), the most common subtype, 
is characterized by unstable chromosomes, copy number 
variation (CNV), and TP53 and BRCA mutations.2–5 In 
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addition, different tumors can have different tumor mi-
croenvironment (TME), which consists of non-neoplastic 
host components including mesenchymal-derived cells, 
tissue stroma, fibroblasts, resident or infiltrating vascular 
structure, and immune cells.6 Such tumor heterogeneity 
highlights the need for personalized medicine.

Traditionally, cell lines, either in two-dimensional (2D) 
or spheroid culture, and animals are the cornerstone pre-
clinical models to study cancer biology and evaluate can-
cer drugs. However, these methods have many limitations. 
In fact, it is not uncommon that drugs that are proven to be 
efficacious in preclinical studies fail to demonstrate a ben-
efit in subsequent clinical trials.7 These “false-positive” re-
sults may not only consume a lot of resources during drug 
development but may also lead to unnecessary side effects 
for the patients. Therefore, a more reliable platform that 
can recapitulate the human tissues is needed.

Recently, patient-derived organoids (PDOs) have be-
come an integral part of cancer research. This is because 
organoids can retain the same genomic features as the 
primary tumor.8 Nevertheless, there are still many pitfalls 
with PDOs. More complex organoid co-culture systems 
incorporating immune and stromal cells have been devel-
oped, providing a novel system to study the interaction be-
tween different cell types and drugs like immunotherapy. 
For example, Wan et al. elucidated the mechanism driving 
the response of BRD1 inhibitor and a bispecific antibody 
against programmed cell death 1 (PD1) and PD-ligand 1 
(PDL1) in HGSC using organoid co-culture system.9 There 
are several types of organoid systems, but some of them 
have not been widely reported in EOC research. In this 
review, we discuss the limitations of traditional assays, as 
well as some practical issues, applications, challenges, and 
future perspectives of PDOs in EOC.

2   |   LIMITATIONS OF 
CONVENTIONAL MODELS

2.1  |  Cell lines

Cell lines are a simple and inexpensive way to study 
cancer cell biology and screen for drugs. However, there 
has been controversy on the putative histology of ovar-
ian cancer cell lines. Indeed, several cell lines that were 
initially considered as HGSC were found to harbor mo-
lecular features of other subtypes instead.10–13 This poses 
difficulty in selecting the appropriate cell lines that can 
represent the histological subtypes of interest. In addition, 
multiple passages of the cell lines may lead to mutations, 
leading to inconsistent results among different passages. 
Another major drawback of traditional 2D culture is that 
the cell lines do not contain TME.14 TME controls the 

plasticity and immunogenicity of the tumor and plays an 
essential role in tumor carcinogenesis, proliferation, and 
metastases.14–17 The lack of TME and tumor architecture 
makes 2D cell line culture difficult to reflect how the cell 
surfaces interact with each other.

Spheroid using cell lines is a three-dimensional (3D) in 
vitro culture model where the multi-cell spheroids are cul-
tured as free-floating aggregates. It is a simplified way to 
simulate the in vivo tumor cell architecture. Due to its nutri-
ent gradient, proliferating cells are mostly concentrated in 
the outer layer, while quiescent cells are found in the middle 
layer, and hypoxic and necrotic cells are found in the inner 
core of the spheroid.18,19 The first EOC spheroid model was 
reported in 1997 to study the resistance of ovarian terato-
carcinoma cell spheroids to complement-mediated killing 
compared to monolayer culture.20 Low-adhesion environ-
ment, supplemented growth factors, extracellular matrix 
(ECM), tissue factors, fibronectin, collagen, and chondroitin 
are all favorable factors for spheroid formation.21,22 An en-
riched population of cancer stem cells with stemness mark-
ers like CD24, CD44, CD117, and CD133 are often found 
in ovarian cancer spheroids.23 Spheroid formation assay is 
widely used to investigate TME, cancer stemness, and drug 
resistance. However, 3D spheroids developed from cell lines 
do not contain other cell populations like immune cells and 
mesenchymal cells, and they cannot represent individual 
patients' genetic variation.

2.2  |  Mice

Animals are used as a surrogate for human tissues and 
animal studies are required before any products can be 
tested in human beings. Different animal species such as 
primates, mice, rats, and zebrafish have been used. Con-
ventional mice models involve inoculation of tumor cell 
lines and are the most common model as they are rela-
tively simple and inexpensive. Cell lines can also be genet-
ically engineered to study tumorigenesis and drug effects. 
However, if human cell lines are used, the mice must be 
immunodeficient thus limiting immune-oncological re-
search. Murine cell lines can be inoculated in immune-
competent mice to study immune-oncology. However, 
these cell lines are not always available, and the mice tis-
sues cannot truly reflect the human immune system. In 
EOC, the most common commercially available murine 
cell line is ID8, which was derived from ovarian surface 
epithelium (OSE) and had wild-type Trp53.24

Patient-derived xenograft (PDX) is another mouse 
model that involves xenotransplantation of patient-
derived biopsy or body fluid into immunodeficient mice. 
This method can preserve the TME of human tumors to a 
certain extent.25 Nevertheless, the development of PDX is 
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time-consuming, labor-intensive, and expensive. The de-
velopment of PDX models is also subject to the availability 
of patients' tumors. The engraftment of the PDX depends 
on multiple factors, such as the sites and biology of the 
tumors, previous chemotherapy and surgical treatment, 
and acquisition methods of the tumors.26 For example, 
there was a challenge in generating low-grade malignant 
tumors27 while high-grade tumors tended to have a bet-
ter uptake rate in mice.28 As immunocompromised mice 
are used, immune-oncological research is still limited. 
Furthermore, the difference in the genetic compositions 
of the recipient mice from the hosts may elicit different 
responses from human beings.27,29

Genetically engineered mouse models (GEMM) and hu-
manized mice can be generated for immune-related research 
in oncology. The former involves gene editing to stimulate 
tumorigenesis which can be done in immune-competent 
mice.30 Cho's group had developed Ovgp1-iCreERT2 mice, 
where inhibiting BRCA1, Trp53, Rb1, and Nf1, or inhibiting 
BRCA1, Trp53, and PTEN, in the oviduct led to serous tubal 
intraepithelial carcinomas (STICs) and/or HGSC.30 They 
further demonstrated that there was reduced tumor burden 
in GEMM treated with antibiotics for 12 months compared 
to the control due to an alteration of the microbiome.31 Hu-
manized mice are generated by engrafting human hemato-
poietic stem cells (HSC) in the mice recipients.32 HSCs are 
most commonly derived from either fetal tissue or cord blood 
and can develop a functional human-like immune system 
in mice.33 Gitto et al. transferred patient-matched tumor-
infiltrating lymphocytes (TILs) to PDX models derived from 
three HGSC patients and found that the tumor burden was 
reduced after anti-PD1 treatment.34 However, GEMM and 
humanized mice cannot provide a fast and high throughput 
drug screening due to their cost and tedious generation and 
maintenance procedures. Besides, the physio-biology and 
immune composition in mice cannot fully resemble those 
in humans.35,36

3   |   OVERVIEW OF ORGANOID 
CULTURE

Organoid is another 3D culture model composed of cell 
aggregates derived from embryonic stem cells, adult stem 
cells, induced pluripotent stem cells (iPSCs), and/or differ-
entiated cells from human or animal tissues.37,38 EOC or-
ganoids are tissue-derived organoids and the starting cell 
populations commonly include tissue-resident stem cells, 
progenitor/differentiated cells, or tumor cells.39 Unlike 
stem cell spheroids generated by commercial stem cell lines 
or murine-derived stem cells that preserve the stemness 
properties and differentiation capacities of stem cell lines 
only,40–43 organoids preserve some characteristics and func-
tions of the tissues of origin as these are composed of more 
populations of cells other than stem cells and can recapit-
ulate the genomic landscape of the primary tumor or the 
tissue of origin.8 Both spheroids and organoids are 3D cell 
aggregates. However, organoids require a scaffolding extra-
cellular environment for self-assembly, self-organization, 
and stem cell differentiation to form a complex structure, 
and therefore organoids are more physiologically relevant 
and the tumor structure and TME are better recapitulated 
compared to spheroids.44 The differences between these 
two models are summarized in Table 1.

Organoid model was first reported by Sato et al. in 2009 
which murine intestinal Lgr5+ stem cells were used to 
generate organoids with growth factors like WNT, Noggin, 
R-spondin, and EGF.45 Since then, organoids from various 
tumor types have been established, including prostate, 
gastric, pancreatic, and ovarian cancers. Various growth 
factors and hormones are supplemented in the culture 
medium to promote self-renewal and cell differentiation, 
and their composition is different for different cancers 
(Table 2).8,9,46–57

There are two main methods of organoid culture 
(Figure  1). The first method utilizes submerged ECM 

T A B L E  1   Differences between spheroids and organoids.

Spheroids Organoids

Source of cells Cell lines or other primary cells Human or animal tissues

Cell populations Tumor cells with and without stem cell 
properties

Tumor cells, embryonic stem cells, adult stem cells 
or induced pluripotent stem cells, and other cell 
populations like immune and mesenchymal cells though 
these can be lost during the culture

Structural organization Can be poor as these can be cultured 
with or without ECM and growth 
factors

Tumor or organ structures are partially resembled due to 
the use of ECM and growth factors

TME of the tissue origin Poorly resembled Partially resembled

Genomic landscape of the 
tissue origin

Poorly recapitulated as lack of other cell 
populations

Partially recapitulated as other cell populations are included

Abbreviations: ECM, extracellular matrix; TME, tumor microenvironment.
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(see Section 4.2) like matrigel where the tissue is disso-
ciated and the cell suspension is embedded in basement 
membrane extract within a dome or flat gel covered by 
enriched culture medium.14,58,59 Using this method, im-
mune and other stromal cells may be depleted over time,45 
which may partly be due to the use of a medium that 
lacks the growth factors specific to these cells. Matrigel 
gel also tends to enrich epithelial cells more than other 
cell populations.45 However, a recent article showed that 
immune cells and stromal cells were retained even in 
long-term PDO culture using cryopreserved tumors as 
detected by single-cell RNA sequencing (scRNA-seq).60

Another method is microfluidic 3D culture or the 
air–liquid interface (ALI) culture, in which the native 
TIME is preserved without the need for subsequent re-
constitution of immune or stromal cells.14,61 In micro-
fluidic 3D culture, organoids from digested tissues are 
mixed with collagen forming a spheroid that preserves 
the TIME components,14,62 and are then injected into 
a microfluidic culture device which often contains a 
central gel channel flanked by two media channels on 
both sides.61,63,64 Microfluidic chambers contain inter-
connected multi- and microchannels. It provides a dy-
namic vascular flow in the chamber system, allowing 

F I G U R E  1   Generation of patient-
derived organoids. The organoid culture 
system contains digested tumor cells 
that are embedded either in matrigel 
in submerged culture, or in collagen 
in air-liquid interface culture, or in 
collagen with medium at both flanks in 
a microfluidic culture device (Scale bars 
50 μM).
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the delivery of chemicals and nutrients to those micro-
fluidic cultures and interaction between different cells 
such as epithelial cells and stromal cells.65 It partially 
mimics the dynamic metabolic physiology and pro-
cesses in the body.

In ALI culture, tissues are minced into small frag-
ments thus preserving the architecture and cell diversity 
of the tumor.61 The organoids in collagen gel are grown 
in an inner transwell dish where its basal surface is in 
contact with the culture medium in the outside dish, 
while its apical part is exposed to the air allowing ac-
cess to the oxygen supply.14,66,67 Neal et al. utilized the 
ALI approach and showed that native CAFs and tumor-
infiltrating T-cell repertoire could be retained allowing 
PD1/PDL1 blockade.67

Microfluidic and ALI cultures are not as popular as 
the submerged technique because they require special 
devices. Researchers need to transfer the organoids from 
other tissue culture chambers to the microfluidic cham-
bers before starting the experiments. This process will lead 
to the loss of organoids.65 Besides, the microfluidic cham-
bers are not customized for POD culture, and they cannot 
accommodate organoids larger than 400 μM; otherwise, 
the organoids may merge inside the chamber.65 And as 
these culture techniques are not very common, the opti-
mization of growth factors is also time-consuming and 
challenging.61 Lastly, the immune cells may still lose over 
time in these culture systems and they cannot reflect the 
recruitment of circulating immune cells into the tumors.14

4   |   PATIENT-DERIVED 
ORGANOIDS IN EPITHELIAL 
OVARIAN CANCER

4.1  |  Generation of PDOs in EOC

There has been a substantial increase in the use of PDOs 
in EOC research in recent years. PDOs from different 
EOC subtypes have been reported, and the donor tissues 
can be derived from either the tumors in the ovaries, fallo-
pian tubes, or peritoneum, or metastatic sites like omen-
tum, lymph nodes, bowel, peritoneal or pleural fluid. In 
general, the tumors are cut mechanically and then di-
gested enzymatically to become single cells. The digested 
cells are grown in a culture medium supplemented with 
different growth factors for the establishment of the or-
ganoids. Short-term and long-term cultures have been 
reported, and EOC organoids can be expanded up to 30 
passages or more than 1 year.8,49,52 The overall success 
rate of PDOs in EOC was 55%–100%.12,54,64,68 And this 
depends on various factors including the use of growth 
factors and ECM.

4.1.1  |  Media and growth factors

Some low-grade tumors like LGSC and borderline ovarian 
tumor (BOT) can be cultured in media with altered com-
position from those used to culture normal tissues.8,54,60 In 
high-grade tumors, the choice of media and growth factors 
is more complex, and the composition is not standardized 
and varied in different papers (Table  1). Both commer-
cially available media and self-prepared media had been 
used, though there were not too many commercially avail-
able media for EOC. Compared to commercially available 
media, self-prepared media allows flexibility to tailor the 
composition of the growth factors that are critical to the 
formation of the organoids. Using cryopreserved speci-
mens in HGSC, Senkowski et al. demonstrated that the 
condition of the media affected the growth of organoids 
and the response to drugs like carboplatin and paclitaxel.60

Growth factors such as fibroblast growth factor-10 
(FGF10), neuregulin1 (NRG1), nicotinamide, p38 mitogen-
activated protein kinase inhibitor (SB203580), and trans-
forming growth factor-beta (TGF-β) inhibitor (A83-01 
could stimulate the organoid development.49,53,54,69 FGF-4 
promotes the tumorigenicity of cancer stem cells, and in-
cluding FGF-4 in the medium could enhance organoid 
formation after passaging.60 R-spondin, bone morpho-
genetic (BMP) inhibitor Noggin, and epidermal growth 
factor (EGF) are also required for the stem cells to un-
dergo self-renewal and differentiation into different cell 
lineages,45 though some groups reported that the use of 
Noggin and EGF might reduce organoid formation.60 
Short-term (2–3 weeks or within 1–2 passages)49 and long-
term (4 weeks to 3 months, or more than 6 passages)52,60,70 
cultures of mouse and human organoids were reported. It 
is not surprising that the media used are different. Some 
reported that Rho/ROCK inhibitor (Y-27632) was essen-
tial in the initiation of organoid formation and it could 
inhibit the growth of organoids derived from healthy fal-
lopian tubes.49,52 But this could be omitted in subsequent 
passages.49 Wnt pathway activation was shown to induce 
growth arrest in HGSC organoids, and so long-term cul-
ture of EOC organoids should be carried out in a low Wnt 
environment.52,60 Several groups also showed that the ad-
dition of beta-estradiol could promote organoid formation 
and growth over passaging in HGSC.8,52,53,60

4.1.2  |  ECM

ECM is a fibrous network of macromolecules that mainly 
contains laminin, collagen IV, heparan sulfate proteogly-
cans, and entactin/nidogen. It has been used to mimic the 
dynamic nature of TME to provide a scaffolding support to 
promote organoid formation, and regulate tumor growth 
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and homeostasis through its structural support and asso-
ciated signaling pathways.71,72 In PDOs, a variety of ECM 
biomaterials have been used to mimic the dynamic nature 
of TME, including natural hydrogel which can be protein-
based (e.g., Matrigel and Collagen) or polysaccharide-
based (e.g., alginate alginate-chitosan and agarose), 
synthetic hydrogel (e.g., polyethylene glycol (PEG), poly-
glutamic acid (PLGA)and gelatin methacryloyl (GelMA)), 
decellularized ECM, omental mesothelial models and 3D 
bioprinting.73,74

Matrigel originated from the secretion of Engelbreth–
Holm–Swarm mouse sarcoma cells, is the most commonly 
used scaffold for PDOs.75 It is commercially available, has 
high biocompatibility, and is easy to use.73 It mimics base-
ment membrane, and can increase tumor cell stemness 
and facilitate organoid expansion.69,76,77 However, its qual-
ity may be affected by batch-to-batch variation. There is 
also a concern about its immunogenic effects on human 
PDOs due to its murine origin.78 In addition, although 
Matrigel contains more than 1800 ECM proteins, it still 
may not contain all the elements required for the develop-
ment of PDOsl.74,79

Collagen is the most abundant fibrous protein in mam-
malian ECM and it can facilitate tumor differentiation, 
invasion, and metastasis.80 Among all types of collagen, 
collagen-I is the most common fibrillar type used in cell 
culture. It is derived from animals like porcine tendon, 
skin, and bovine lens capsules, and the quality of natural 
biopolymers may vary from batch to batch.

Polysaccharide hydrogels like alginates and alginate-
chitosan require additional proteins like adhesion peptide 
Arg-Gly-Asp (RGD) which can facilitate cell and promote 
the organoid forming efficiency and differentiation.80–82 
Besides, their chemical functionality and mechanical 
properties are stable, because their degradation and re-
modeling rates are independent of cell-secreted proteo-
lytic enzymes.74,80,83

Synthetic polymeric matrices have low batch-to-batch 
variation.73 Some of their mechanical properties, such as 
stiffness, functionality, and pore size, can be adjustable. 
However, they have low mechanical strength, and they re-
quire biofunctionalization by the addition of cell-binding 
peptides to facilitate the growth and differentiation of 
PDOs.73,84–88

Decellularized ECM is isolated from the inhabiting 
cells. Its quality depends on the donors. However, it has 
high biocompatibility and can preserve the native ECM 
and growth factors.73 Decellularization from porcine 
ovary for the creation of a bioengineered ovary had been 
reported89 but the experience in EOC was limited.

Composite hydrogels utilize both proteins and polysac-
charides and have an additional benefit on the mechan-
ical properties and adhesion support.90 PDOs had been 

successfully generated from pancreas, intestine, lung, 
heart, breast, and brain using non-matrigel methods but 
the experience in EOC was relatively scarce.81,85,91–97

4.2  |  Characterization of PDOs in EOC

PDOs from different histological subtypes of EOC have 
been characterized.8,51,54,55 Kopper et al. reported 56 long-
term PDOs from 32 patients with HGSC, CCC, LGSC, en-
dometrioid carcinoma (END), serous borderline tumor 
(SBT), malignant Brenner tumor (MB), and mucinous 
carcinoma (MC).8 After digesting the tumors by Rho/
ROCK pathway inhibitor and collagenase, PDOs were 
generated by submerged approach using Cultrex growth 
factor reduced Basement Membrane Extract (BME) type 
2 (Trevigen, 3533-010-02), which is a natural ECM hy-
drogel that polymerizes at 37°C to form a reconstituted 
basement membrane consisting of laminin, collagen IV, 
entactin, and heparan sulfate proteoglycans.8 The PDOs 
were passaged every 1.5–4 weeks for a total of 3–32 times. 
The PDOs recapitulated the histological features of the 
original tumors using hematoxylin and eosin (H&E) and 
immunohistochemical (IHC) staining such as cytokeratin 
7, paired-box gene 8 (PAX8), and p53.8,49,55,56,98 In particu-
lar, MC, LGSC, END, and CCC organoids formed dense 
organoids with multiple lumens inside, while BOT orga-
noids had a cystic appearance. Both cystic and dense mor-
phologies with different degrees of circularity and cellular 
cohesiveness were demonstrated in HGSC organoids.8 
The development of organoids and the recapitulation of 
the surface markers using some examples from our group 
were illustrated in Figures 2 and 3 respectively. The gen-
eration and maintenance of these PDOs are described in 
Supplementary Information.

Whole genome sequencing (WGS)/whole exome se-
quencing (WES) and genome-wide CNV analyses of the 
parental tumors and their PDOs showed that the genomic 
landscape, including somatic mutations, copy number 
variation (CNV), single nucleotide variants (SNVs), and 
structural variants (SVs), can be preserved in the PDOs in 
both early and late passages.8,49,51,54,60 For example, Kop-
per et al. sequenced 40 PDOs from 22 patients as well as 
their blood and parental tumors.8 WGS showed that the 
cancer cell content was higher in the PDOs compared to 
the parental tumors (88.1 ± 23% vs 45.1 ± 9.2%), while 
CNV and mutation remained similar between the PDOs 
and the corresponding tumors even after prolonged pas-
saging. Using WES, Hill et al. demonstrated that a me-
dian of 98.2% of mutations found in the parental tumors 
could be retained in the EOC PDOs, and reciprocally, a 
median of 98.8% of mutations found in the PDOs could 
also be identified in the parental tumors.49 There was no 
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acquisition of new somatic mutations during the short-
term culture for seven to 10 days. Senkowski et al. also 
showed that the genomic, transcriptomic, and IHC land-
scapes were reserved in long-term PDOs after at least 
10 passages compared to the tumor tissues.60 Although 
new subpopulations emerged after several months of 
culture, these cells retained the patient-specific tran-
scriptional features of the original tumor at single-cell 
level. In another report, Hong et al. detected a mixed 
population of epithelial tumor cells, stromal cells, au-
tologous tumor-infiltrating lymphoid cells, and tumor-
infiltrating lymphoid cells in colorectal cancer PDOs 
using flow cytometry and confocal imaging, including 
CD3+ T cells, macrophage, endothelial cells, CD4+ T 
cells, CD8+ T cells, NK cells, and monocyte lineage.62 
These PDOs were sensitive to immunotherapy like an-
ti-PD1 and anti-PDL1.

Taken together, PDOs can circumvent some major 
problems with traditional assays. They can replicate the 
histological and genomic features in human tumors and 
can provide a reliable translational platform for cancer 
research.

5   |   TIPS AND TRICKS FOR PDO 
GENERATION

Despite the advances in organoid technology, how good 
organoids can be generated from the parental tumor and 
how they can be maintained can be a big challenge. The 
proliferation and survival rate of organoids is affected by 
several factors, including the quality of the parental qual-
ity, the starting cell numbers, the presence of stroma or 
immune cells, and the supplement of growth factors in the 
culture medium.

Tissue selection and preparation are the first step of the 
successful generation of PDOs. It is not unusual for EOC 
to have necrotic areas when the tumors grow faster than 
neovascularization. Therefore, tumor tissues should be 
sampled by experienced clinicians or researchers where 
necrotic tissues and areas that are covered by mucus 
should be avoided. It is ideal that the tissues are exam-
ined by a pathologist to confirm the tumor content and 
the quality of the cells. Tumors should be processed in a 
timely manner, typically within 1–2 h. The tissues should 
be cut as small as possible. Prolonged enzyme digestion, 

F I G U R E  2   Development of patient-
derived ovarian cancer organoids. 
PDOs could be derived from different 
histological subtypes of EOC, and an 
expansion in size was already evident 
5 days (Day 5) after establishment (Day 0) 
(Scale bars 100 μM).
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forceful centrifugation, and prolonged exposure to low 
temperatures should be avoided. It is also advisable to lyse 
the red cells with red cell lysis buffer 2–3 times to ensure 
the clarity of PDOs.

Medium should be freshly prepared with a cocktail 
of growth factors. In general, the medium should not be 
kept for over a week. As mentioned above, there is no 
consensus on the best combination of the growth fac-
tors, and cross-reference to the up-to-date literature is 
needed. R-spondin, a modulator of the Wnt pathway and 

a stimulator of adult stem cell proliferation, could either 
be purchased and added into the basal medium, or pre-
pared using a conditioned medium culturing 293T-HA-
RspoI-Fc cell lines in DMEM medium containing 10% 
fetal bovine serum (FBS) and 1% penicillin–streptomycin 
(P/S), sequentially with and without zeocin, followed by 
advanced DMEM with FBS fand P/S.99 If the latter is 
used, it is necessary to ensure that the cell line is authen-
ticated and is free of mycoplasma. If Matrigel is used, it 
is essential to gently mix it beforehand. Multiple freezes 

F I G U R E  3   The histological analysis of PDOs using H&E and immunofluorescent staining markers such as (A) Napsin A in clear cell 
carcinoma and (B) p53 in high-grade serous carcinoma recapitulated those in the parental tumors. H&E, hematoxylin and eosin; PAX8, 
paired-box gene 8 (H&E images, scale bars 50 μM; immunofluorescence images, scale bars 20 μM).
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and thaws should be avoided to avoid denaturation of the 
proteins.

The medium in the PDO culture should be replen-
ished every 2–3 days.99 Care must be paid not to aspirate 
the PDOs. The PDOs should be inspected on a daily basis. 
When the confluency reaches about 70%, passaging should 
be considered. Mechanical disruption by gentle pipetting 
or enzyme splitting using TrypLE can be used. PDOs can 
be conveniently cryopreserved using commercially avail-
able stocking solution. For prolonged culture, it is essen-
tial to ensure that the specimens are free of bacterial and 
mycoplasma contamination.

6   |   APPLICATIONS

PDOs are used to facilitate the understanding of cancer 
biology by engineering the genomes of the PDOs. The 
easy generation and perpetuation of PDOs also allow 
high throughput drug screening and the development of 
biobanks for future research.

6.1  |  Deciphering cancer biology

PDOs can facilitate the understanding of tumorigenesis. 
For example, Zhang et al. generated organoids derived 
from fallopian tube epithelium (FTE) of wild-type and 
GEMM mice and then inoculated back to nu/nu mice, 
and showed that certain gene mutations like TP53 and 
Lgr5 could cause HGSC.100 They also compared the orga-
noids derived from FTE and ovarian surface epithelium 
(OSE) using RNA sequencin, and demonstrated that 
the p53-signaling pathway was enriched in FTE-derived 
tumors, while DNA repair pathways were enriched in 
OSE-derived tumors. Similarly, Lõhmussaar et al. created 
mouse FTE and OSE organoids with knockout of Trp53, 
BRCA1, PTEN, and NF1, either alone or in combination, 
using CRISPR-Cas9 to study the tumorigenesis of HGSC, 
and found that those organoids derived from the oviducts 
grew faster than those derived from the OSE.101

On the other hand, the Wnt/β-catenin signaling path-
way is well known for its role in cancer stemness, tumor 
progression, and therapeutic resistance.102 Hoffmann 
et al. found that a low-Wnt environment could upregulate 
the stemness genes, thus providing a favorable environ-
ment for the expansion of HGSC PDOs with or without 
the knockdown of tumor suppressor genes p53, PTEN, 
and RB.52 Sun et al. explored the mechanisms of cispla-
tin resistance by RNA sequencing and quantitative PCR 
of PDOs derived from 4 cisplatin-sensitive and 6 resis-
tant ovarian cancer tissues.103 The authors demonstrated 
that some genes involved in senescence like TP53, p16, 

and p21, were suppressed, while some genes involved 
in glycolysis like HK2, GLUT1, and LDHA, were upreg-
ulated in cisplatin-resistant PDOs compared to sensitive 
PDOs. Cisplatin-resistant PDOs also had a higher Auro-
ra-A immunofluorescent intensity in the resistant PDOs, 
and further assays suggested that the Aurora-A/SOX8/
FOXK1 signaling pathway was associated with the cispla-
tin resistance.

PDOs can also help to understand the tumor evolu-
tion and heterogeneity. For example, Mo et al. compared 
paired colorectal (CRC) and liver metastasis (LM) PDOs 
in patients with colorectal cancer with liver metastasis 
(CRLM).104 It was shown that both CRC and LM PDOs 
shared the early common driver mutations like TP53 and 
APC genes. However, some CRC and LM PDOs later accu-
mulated different unique mutation patterns. scRNA-seq 
analyses in two patients revealed that there were different 
proportions of stem-like cells among CRC and LM PDOs 
and different patients, highlighting the presence of inter- 
and intra-patient heterogeneity. Lastly, the morphology of 
CRC and LM PDOs was different in some patients in their 
cohort.

6.2  |  Personalized medicine: Drug 
screening and new drug development

There is a trend of adopting personalized medicine to 
treat advanced and recurrent cancer patients. Short-term 
cultures of PDOs assist the development of personalized 
medicine in several ways. First, compared to conven-
tional cell lines, PDOs can retain more patients' tumor 
characteristics and so the results derived from PDOs 
are more representative and reliable for future clinical 
use.9,49,55,56,105,106 Second, many advanced and recurrent 
EOC patients present with ascites or pleural effusion re-
quiring tapping for symptomatic relief. The body fluid 
is easily available and can provide fresh tumor cells for 
organoid culture. The tapping procedure is relatively 
non-invasive and inexpensive. PDOs derived from these 
samples can provide direct information on the effects after 
drug treatment using functional assays like adenosine 
triphosphate (ATP) cell viability assay and transcriptome 
analysis. Third, the PDOs obtained from different sites at 
the time of operation can be tested with drugs to study in-
ter- and intra-tumor heterogeneity. In Mo′s article, there 
was no difference in the responses to 5-fluorouracil, iri-
notecan, and oxaliplatin in CRC and LM PDOs in CRLM 
patients.104 Fourth, PDOs can be manipulated genetically 
to investigate drug response and the underlying mecha-
nisms.51,55,107,108 Finally, the drug screening by PDOs can 
be performed in a high throughput manner using 96- or 
even 384-well plates. It is less tedious and less expensive 
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compared to PDXs. PDOs have been utilized for drug 
screening in EOC, such as carboplatin, paclitaxel, gemcit-
abine, topotecan, poly (ADP-ribose) polymerase inhibitor, 
and immunotherapy.9,49,55,56,68,103 However, these were 
limited to small case series without proper sample size cal-
culation. Several clinical trials are ongoing to evaluate the 
efficacy of PDOs in predicting drug response and survival 
in EOC (NCT04555473, NCT05290961, NCT05175326, 
NCT04768270, and NCT05537844).

The most common strategy in personalized medicine 
is to obtain a fresh tumor biopsy or to use archived tis-
sue samples, extract the DNA, and perform gene profiling 
by next-generation sequencing (NGS) to identify if there 
are any druggable mutations or phenotypes like homol-
ogous recombination deficiency (HRD) and tumor muta-
tion burden. However, these tests do not have a functional 
assay to demonstrate the response. Hill et al. demon-
strated that the response to PARPi in patients with EOC 
might not be accurately predicted by BRCA or HR status.49 
Instead, the functional assays in PDOs like cell viability 
assay and DNA fiber assay might better correlate with the 
clinical response to PARPi. Therefore, the different fea-
tures of NGS and PDOs (Table 3) provide different infor-
mation and there is a potential to combine both platforms 
together to predict drug response. Gorski et al. developed 
PDOs from two patients with neoadjuvant chemotherapy 
and four chemotherapy-naïve patients with HGSC.109 The 
PDOs were tested with carboplatin, and the response was 
correlated with the clinical response.

7   |   FUTURE PERSPECTIVES

7.1  |  Genetic engineering models

Various genetic engineering methods such as RNAi and 
CRISPR/Cas system have been used in organoids through 
electroporation, lipofection, or viral approaches.110 Zhang 
et al. employed CRISPR-Cas9 techniques to edit multiple 
genes in organoids derived from mice FTE, and tested the 

drug response with different gene alterations.111 In par-
ticular, they found that Trp53−/−;CCNE1OE;Akt2OE;KrasOE 
organoids were more sensitive to gemcitabine than the 
other models, while Trp53−/−;PTEN−/−;Nf1−/− cells were 
more sensitive to paclitaxel. These findings were con-
firmed by mice and human PDO models. Wang et al. also 
knocked out FBN1 by CRISPR/Cas9 and lentivirus in 
EOC, and found that there was an enrichment of the gly-
colysis and angiogenesis pathways, and cisplatin sensitiv-
ity was improved compared to control.112

7.2  |  Biobanking

Living organoid biobanks are established by cryo-
preserving PDOs from tumors and normal tissues in liquid 
nitrogen tank for future research.113 They can allow the 
study of cancer biology in different cell types. Organoid 
biobanking creates an opportunity for genetic engineering 
and can help the development of personalized anti-tumor 
targeted therapy. Besides, it has been shown that genomic 
profiles can remain stable in long-term living organoid 
culture.27 Hence, genomic analyses can be used to com-
pare the cancer biology in PDOs from different patients 
in the biobanks or to study the tumor evolution of PDOs 
derived from the same patient at different tumor sites or 
over different time points. Currently, there is only limited 
literature on PDOs in cell types other than HGSC.8,51,53

7.3  |  Co-culture models

Co-culture spheroid models have been used to study 
immune-oncology. However, the spheroids are mostly 
derived from human cancer cell lines that lack other cell 
populations.114–116 There is a concern on the compatibil-
ity of HLA typing between the immune cells and cancer 
cell lines. Besides, the use of FBS may potentially inter-
fere with the immune response in the co-culture spheroid 
models. PDOs contain different cell lineages including 

T A B L E  3   Potential combination use of PDO culture and NGS in personalized medicine.

PDOs NGS

Cell requirement Fresh Fresh or archived

Tumor or body fluid Usually tumor; cytological specimen 
may not be feasible if there are 
enough cells

Sampling procedure Usually invasive Usually invasive

Information on druggable mutations Yes if there is enough DNA Yes

Direct functional assays for drug screening response Yes No

Further mechanistic assays after drug treatment Yes No

Abbreviations: NGS, next-generation sequencing; PDOs, patient-derived organoids.
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tumor cells and their stem cells, immune cells, and mesen-
chymal and stromal cells like fibroblasts, which can better 
resemble the TME and appear more relevant in evaluating 
immunotherapy compared to co-culture spheroid models. 
However, these cells will inadvertently be lost after sev-
eral rounds of organoid passaging, leaving only the epi-
thelial layers behind.69,117 Therefore, co-culture systems of 
PDOs and patient-matched isolated immune cells and/or 
stromal cells are required.

There are two approaches to perform co-culture sys-
tems in PDOs.118 The holistic approach retains all the 
cells including the endogenous immune cells within the 
PDOs, where the latter are then expanded and activated, 
allowing short-term culture and functional studies. For 
example, Wan et al. generated co-cultures by enriching 
the immune cells in the tumor organoids with IL2, which 
were then incorporated in 15% Matrigel with DMEM and 
IL2.9 Immune checkpoint inhibitors such as anti-PD-1 
and bispecific anti-PD-1/PD-L1 were added for 96 h, after 
which further mechanistic studies like flow cytometry and 
single-cell RNA sequencing were performed.

In contrast, the reconstitution approach involves the 
expansion of PDO and exogeneous immune cells indi-
vidually before coculturing them together. Dijkstra et al. 
generated co-cultures of co-cultures of tumor organoids 
and autologous peripheral blood lymphocytes, where the 
tumor organoids were stimulated by IL-2 for 24 h before 
co-culture and the peripheral blood lymphocytes were 
stimulated weekly by the tumor.119 The enriched tumor-
reactive T cells could then be used to kill the efficacy and 
mechanism of matched tumor organoids. One drawback 
of PDOs is the lack of tumor stroma where only the pro-
genitor cells of epithelial origin can be retained.120 Yet, 
CAFs can suppress the immune environment.121 These 
can be easily isolated by digesting the tumors by trypsin, 
which can then be co-cultured with the matched PDOs 
with and without immune cells to study tumor-stromal in-
teractions.122–124 The lack of vasculature limits the growth 
of the PDOs causing necrosis of their center. There have 
been reports of co-culturing the PDOs with human um-
bilical vein endothelial cells with tumor spheroids and 
fibroblasts,125 and engrafting organoids into animals' tis-
sues.126–128 Vascularized PDOs could also be generated 
by inducing pluripotent stem cells (iPSCs) to mesoder-
mal progenitor cells (MPCs) using a mesodermal induc-
tion medium, the latter of which is then co-cultured with 
organoids.129

Recently, Malacrida et al. described the generation of 
tri- and tetra-culture of HGSC, where mesothelial cells, fi-
broblasts, and adipocytes were isolated from the patient's 
omentum and were then cultured with the tumor cells in 
adipocyte gel with or without collagen gel.130 This model 
could allow experiments for up to 21–28 days. The authors 

used this model to elicit the interaction between platelet 
and mesothelial cells in tumor invasion.131

7.4  |  Other novel methods

There are ongoing developments in tissue culturing tech-
niques to overcome some of the shortcomings of the cur-
rent PDO cultures. Microfluidics-based tumor-on-a-chip 
(TOC) model uses a fabricated chip made of glass, plas-
tic, or polymers with hollow microchannels lined by liv-
ing cells or tissues cultured under dynamic fluid flow.132 
This system can be tissue-based which contains only one 
channel lined by one type of cells, or organ-based which 
contains multiple cell types separated by either porous 
ECM-coated membrane or ECM gel.133 This novel device 
allows cell-to-cell and even tissue-to-tissue interaction 
and can mimic certain physiological features such as fluid 
shear stress and drug delivery through dynamic perfusion 
of culture media or even blood.133

New scaffolding materials like recombinant silk micro-
fiber have been used to generate mature human brain or-
ganoids, which could facilitate the delivery of oxygen and 
nutrients, promote self-assembly, and reduce heterogene-
ity of cellular organization compared to organoids without 
silk scaffold.134 The use of native ECM by decellularization 
from native tumor and liver scaffolds had been reported in 
cholangiocarcinoma, which had a better resemblance to 
the original tumor TME than ordinary BME.135,136

Dynamic cell culture like magnetic levitation is an 
alternative way to create organoids, where cells are sus-
pended with magnetic beads and organoids are generated 
under magnetic field.137,138 It was postulated that the cell 
aggregates could be more homogeneous, and the rotat-
ing magnetic field may also mimic the mechanical forces 
of blood flow.116 Rotary cell culture systems like spinner 
bioreactor, rotational bioreactor, and vibrating bioreactor 
have been used in various cancers.139 This method can 
evaluate the effects of fluid flow on cell behaviors, such 
as the shear stress from the flow of ascites.73 The dynamic 
movement of cell culture by rotation could also reduce 
cellular adhesion and increase the supply of nutrients and 
oxygen to the organoids.139,140

3D bioprinting techniques use cell-compatible bio-
inks and post-printing crosslinking methods to build 3D 
models.75,141 Examples include extrusion-based technique 
where 3D models are constructed layers by layers using 
gelatin-methacryloyl,142 and droplet-based technique 
which involves fabrication of microtissue cultures and 
formation of 3D models by drops in hydrogels that can 
control spatial organization and density of cells.143 How-
ever, these techniques are costly and the experience is still 
limited.
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8   |   CONCLUSION

PDOs have emerged as a valuable and powerful tool that 
can advance the knowledge in cancer biology and assess 
drug response. As a more complex system that at least 
partially retains the architecture and cell components of 
the tumor, this model can better reflect the tumor biology 
compared to conventional 2D systems. PDOs are now com-
monly incorporated in EOC research as well. However, 
there are still limitations in the current models. The choice 
of the culture medium, growth factors, and ECM are not 
standardized, and the quality of these reagents may vary 
from batch to batch. Another major pitfall is the loss of the 
components in TME after several passages of PDOs. Next-
generation organoids like co-culture models incorporate 
different cells like immune cells and CAF may partially 
ameliorate this problem. However, the protocols are not 
standardized and the success rates vary. Gene-engineered 
organoids using different techniques like CRISPR-Cas9 
have been developed. These models can help researchers 
further understand the etiology of EOC and drug resistance 
mechanisms. While there is a potential to employ PDOs in 
personalized medicine, further research is needed to refine 
these techniques and identify the best models before these 
can be translated into clinical care.
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