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Abstract
Background: Pancreatic cancer (PC) is among the most lethal cancers. The lack 
of effective tools for early detection results in late tumor detection and, conse-
quently, high mortality rate. Precision oncology aims to develop targeted indi-
vidual treatments based on advanced computational approaches of omics data. 
Biomarkers, such as global alteration of cytosine (CpG) methylation, can be piv-
otal for these objectives. In this study, we performed DNA methylation profil-
ing of pancreatic cancer patients using circulating cell-free DNA (cfDNA) and 
artificial intelligence (AI) including Deep Learning (DL) for minimally invasive 
detection to elucidate the epigenetic pathogenesis of PC.
Methods: The Illumina Infinium HD Assay was used for genome-wide DNA 
methylation profiling of cfDNA in treatment-naïve patients. Six AI algorithms 
were used to determine PC detection accuracy based on cytosine (CpG) meth-
ylation markers. Additional strategies for minimizing overfitting were employed. 
The molecular pathogenesis was interrogated using enrichment analysis.
Results: In total, we identified 4556 significantly differentially methylated CpGs 
(q-value < 0.05; Bonferroni correction) in PC versus controls. Highly accurate PC 
detection was achieved with all 6 AI platforms (Area under the receiver operator 
characteristics curve [0.90–1.00]). For example, DL achieved AUC (95% CI): 1.00 
(0.95–1.00), with a sensitivity and specificity of 100%. A separate modeling ap-
proach based on logistic regression-based yielded an AUC (95% CI) 1.0 (1.0–1.0) 
with a sensitivity and specificity of 100% for PC detection. The top four biological 
pathways that were epigenetically altered in PC and are known to be linked with 
cancer are discussed.
Conclusion: Using a minimally invasive approach, AI, and epigenetic analysis of 
circulating cfDNA, high predictive accuracy for PC was achieved. From a clinical 
perspective, our findings suggest that that early detection leading to improved 
overall survival may be achievable in the future.

www.wileyonlinelibrary.com/journal/cam4
mailto:
https://orcid.org/0000-0001-5681-5143
http://creativecommons.org/licenses/by/4.0/
mailto:sangeetha.vishweswaraiah@corewellhealth.org
mailto:sangeetha.vishweswaraiah@corewellhealth.org


      |  19645BAHADO-SINGH et al.

1   |   INTRODUCTION

Pancreatic cancer (PC) is a lethal malignancy1 and is 
predicted to become the second leading cause of can-
cer deaths in the US by 2030.2 The principal cause of 
this poor prognosis is the late presentation, a direct con-
sequence of the lack of early screening markers. Late 
clinical presentation is characterized by disseminated 
spread and resistance to chemotherapy.2 The ultimate 
objective of precision medicine (PM) is the develop-
ment of targeted individual therapy. This will in part be 
accomplished using approaches such as genomics and 
advanced computational tools. Biomarker development 
is critical to PM. The primary application of PM has 
been precision oncology.3 Since its establishment as an 
NIH priority area, there has been a global explosion in 
publications related to precision oncology.4 Indeed, the 
concept of PM has now been seeded in other unrelated 
disciplines.5

Circulating cell-free DNA (cfDNA) refers to DNA that 
is present in the bloodstream and that exists outside of 
the cells.6 Recent publications have suggested the value 
of epigenomic analysis for the elucidation of cancer 
pathogenesis and for accurate minimally invasive detec-
tion7,8 using cfDNA. Methylation markers identified using 
cfDNA have the potential to function as a standalone 
predictor of progression-free survival,9 and treatment re-
sponse10 in PC. Recent studies have shown that cfDNA 
from patients with PC contains unique methylation pat-
terns that are specific to the disease and can provide valu-
able information on PC biology.11 Based on the above, we 
evaluated the use of circulating cfDNA methylation anal-
ysis for the accurate prediction of PC and for investigating 
PC pathobiology.

Artificial intelligence (AI) refers to the ability of 
computers to perform tasks that were once considered 
uniquely human, such as reasoning and learning. AI 
is a branch of computer science where machines can 
synthesize data presented to them, learn patterns there-
from, and identify these patterns and associations in 
new datasets. An exciting application of AI is the ability 
to identify previously unrecognized, defining features in 
a dataset and accurately classify or distinguish groups. 
In the biological sciences, AI can now be coupled with 
genomics for highly accurate disease detection and to 
elucidate the mechanisms of complex disorders in-
cluding cancer.7,8 In the era of multi-omics studies, the 

capability of AI adds significantly to the analysis and 
interpretation of omics big data. In the present study, 
we sought to combine DNA methylation analysis of cir-
culating cfDNA with AI analysis to identify minimally 
invasive biomarkers and to investigate the epigenomic 
pathogenesis of PC.

2   |   MATERIALS AND METHODS

The Institutional Review Board of Beaumont Health, 
Royal Oak, MI, approved the study protocol (IRB#2018-
306). Participants provided written consent. Blood was ob-
tained from seven treatment-naïve PC patients and with 
14 controls who had no diagnosis or suspicion of cancer. 
All the PC cases had histological confirmation of the di-
agnosis, and none received radiation, chemotherapy, or 
surgical therapy prior to sample collection. The specimens 
were collected in Streck Cell-Free DNA BCT® tubes,12 stor-
age conditions,13 and cfDNA processing methods using 
QIAamp circulating nucleic acid kit (Qiagen Cat # 55114) 
were described in a prior publication.7 DNA methylation 
profiling was performed using the EZ DNA Methylation 
Kit (Zymo) and14 and the Illumina Infinium Methylatio-
nEPIC BeadChip arrays as per manufacturer's instruc-
tions (Illumina, Inc.).

2.1  |  Statistical analysis

Raw iDAT files of Illumina EPIC array data were processed 
using the R package (v 4.1.1). The package's “minfi” and 
“noob” normalization method was used for data normali-
zation. Outlier detection was performed, and two control 
samples were considered as outliers15 and removed from 
further analysis. Cell type deconvolution was performed 
with blood immune cell types as the reference population. 
None of the estimated cellular populations showed a sig-
nificant difference between the groups. After analysis of 
variance inflation, cfDNA contribution from hemolyzed 
leukocytes namely CD4T, CD8T, and Granulocytes was 
found to be inflating the data and was removed from fur-
ther analysis. We retained age, sex, B-cell, monocytes, 
and natural killer cells as covariates in subsequent linear 
regression models. The “limma” package was used to de-
termine differentially methylated cytosines. All cytosine 
CpGs were annotated with genomic and island regions 
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followed by their enrichment was estimated using Fish-
er's exact test. Analysis details are as described in prior 
publications.7,8

2.2  |  Gene enrichment analysis

A graphical enrichment analysis tool “ShinyGO 0.77” was 
used to perform the gene enrichment analysis. Enrich-
ment of pathways was performed using the previously de-
scribed approaches.16–18

2.3  |  Imprinted gene analysis

We performed a search using “geneimprint” database 
(https://www.genei​mprint.com/site/genes​-by-species) 
to help elucidate the role of imprinted genes in PC 
pathogenesis.

2.4  |  Artificial intelligence analysis

Comprehensive AI analyses to identify the optimal CpG 
markers for distinguishing the groups and predicting PC 
after normalization procedures, detailed in a prior publi-
cation,19 were performed. A total of six AI algorithms or 
platforms: Deep Learning (DL), Support Vector Machine 
(SVM), Generalized Linear Model (GLM), Prediction 
Analysis for Microarrays (PAM), Random Forest (RF), 
and Linear Discriminant Analysis (LDA), were employed 
for both classification and regression analysis.20 A brief 
description of each of these platforms was previously re-
ported21 and is briefly summarized in Data S1. We sepa-
rately determined the predictive accuracy of CpGs within 
gene regions (intragenic CpGs) and those outside gene 
regions (extragenic CpGs). The method of modeling and 
evaluation that was utilized in this study involved a two-
step validation approach using two different data sets. Two 
techniques were used to find the best model and calculate 
performance metrics: 5-fold cross-validation and boot-
strapping. With 5-fold cross-validation, the dataset was 
randomly divided into a training and a test set. The model 
was fitted to the training set and tested in the independ-
ent test set. This process was repeated 10 times, and the 
results were averaged to obtain the performance metrics. 
In the bootstrapping technique, new data sets were gener-
ated by repeatedly sampling observations from the origi-
nal dataset with replacement. Each of these “bootstrap 
datasets” was used as a training sample, and the original 
dataset was used as a test sample. This process was also 
repeated 10 times, and the results were averaged to ob-
tain performance metrics. Both techniques were used for 

validation on a separate validation dataset, and the results 
were provided separately for the validation group. The 
detailed methods of training and validating the data are 
provided in Data S1.

2.5  |  Minimizing overfitting

Due to the relatively small sample size, there is a risk of 
overfitting. We minimized overfitting using the following 
strategies. For the DL model, we applied L1 and L2 regu-
larization parameters, causing some weights to become 
0 and preventing weight enlargement. Additionally, we 
utilized the “input dropout ratio” to control overfitting 
with respect to high-dimensional noisy data. For other AI 
platforms, we tuned various parameters, such as number 
of trees for RF, classification cost for SVM, and threshold 
amount for PAM, to overcome the challenge of overfitting.

2.6  |  Multivariate analysis and 
regression models

Multivariate analysis including partial least squares discri-
minant analysis (PLS-DA) and logistic regression models 
were performed using the R package through MetaboAna-
lyst (v 5.0).22 Prior to performing PLS-DA, all data were 
normalized to the median and auto-scaled.23 Models were 
cross-validated using permutation testing (2000 iterations) 
to determine whether the observed separation in the rep-
resentative scores' plots achieved statistical significance. 
Subsequently, logistic regression analysis was performed 
using a stepwise variable selection of CpGs to optimize 
all the model components. A k-fold cross-validation (CV) 
technique ensures the validity and generalizability of our 
logistic regression model by randomly dividing the entire 
sample data into “k” equal-sized subsets. Optimal and ro-
bust predictive algorithms were generated.24 The predic-
tive accuracy of regression models was determined based 
on the calculation of the area under the receiver operating 
characteristics curve (AUROC or AUC), sensitivity, and 
specificity values.

3   |   RESULTS

There were a total of seven treatment-naïve PC cases and 
12 unaffected controls analyzed after elimination of two 
outliers. The detected outliers are pictorially represented 
in Figure S1. Variance inflation in the study data is pre-
sented in Figure  S2. Clinical and demographic data are 
shown in Table S1 along with the details of the PCs histol-
ogy. There were no significant differences in age, BMI, or 

https://www.geneimprint.com/site/genes-by-species
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gender between groups. Of the seven PC patients, four had 
a family history of cancer.

Linear modeling identified 4556 cytosine CpGs that 
were significantly (FDR-adjusted p-value < 0.05) differ-
entially methylated in PC versus controls. A total of 2805 
hypomethylated and 1751 hypermethylated CpG markers 
were identified in the study with the FDR-adjusted p-
value < 0.05. The CpGs were significantly more likely to 
be hypo- rather than hypermethylated (Fisher's exact test, 
p = 0.03) in PC (Table S2).

3.1  |  Pathway enrichment analysis

The pathway enrichment analysis was performed using 
the significantly differentially methylated genes. We iden-
tified 66 significantly altered molecular pathways (FDR 
p-value < 0.05; Table S3), of which a high percentage ap-
pear to be linked to cancer. The top four pathways were: 
Phospholipase D signaling pathway (Figure  1), AMPK 
signaling pathway (Figure  2), MAPK signaling pathway 
(Figure  S3), and Notch signaling pathway (Figure  S4). 
Based on current literature, these pathways are signifi-
cantly linked to cancer and will be individually reviewed 
in the “Section 4.”

3.2  |  Artificial intelligence for the 
detection of pancreatic cancer

The predictive accuracy of six separate AI platforms was 
assessed. In addition, as previously noted, the separate 
performance of intragenic and extragenic CpG markers 
was assessed. The AI techniques achieved high model ac-
curacy as represented by the AUC, sensitivity, and speci-
ficity values. For example, DL achieved an AUC (95% CI) 
of 1 (0.95–1) with sensitivity and specificity of 100% for 
both intragenic and separate intergenic CpG markers. The 
DL intragenic CpG markers using 10 predictive variables 
(5-fold cross-validation) were: cg16984992, cg16590012, 
cgg16550438, cg07240877, cg14870958, cg01291513, 
cg13151361, cg21242417, cg09518293, and cg00019091 
(Table  1). Table  2 provides intragenic CpG 10-marker 
algorithm based on bootstrapping. All six AI platforms 
using 10 marker predictors achieved an AUC >0.94. Using 
20-marker algorithms slightly improved the predictive 
performance with 5-fold cross-validation and bootstrap-
ping (Tables  3 and 4). The same was also true for the 
extragenic (intergenic) CpG markers with 10 and 20 vari-
ables and either 5-fold cross-validation or bootstrapping 
(Tables  S4 and S5 provide prediction based on 10 vari-
ables) and (Tables S6 and S7 provide prediction based on 

F I G U R E  1   The KEGG pathway analysis: epigenetically altered genes involved in the enriched Phospholipase D signaling.
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20 variables). Comparably high diagnostic performances 
were achieved using more parsimonious 5-marker algo-
rithms (Tables S8 and S9).

3.3  |  Partial least squares 
discriminant analysis plot and logistic 
regression models for the detection of 
pancreatic cancer

The PLS-DA plot showed good separation between the 
PC and control groups (Figure S5). The R2 (0.90) and Q2 

values (0.81) indicate good classification accuracy and 
strong predictive relevance of the model (Figure S6). Simi-
larly, the heatmap showed good visual discrimination of 
PC and control groups based on CpG methylation studies 
(Figure S7).

The literature indicates that AI is superior to regression 
analysis for group discrimination.25 However, at this time, 
regression analysis remains a more widely used tool. We 
therefore also performed logistic regression analysis to de-
velop multi-biomarker prediction for PC. Using a combi-
nation of top five CpG markers (cg19388016, cg04545708, 
cg13069535, cg17350349, and cg18923221), an AUC (95% 

F I G U R E  2   The KEGG pathway analysis: epigenetically altered genes involved in the enriched AMPK signaling pathway.
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T A B L E  1   Artificial intelligence and circulating cfDNA in pancreatic cancer: CpG markers located within genes (intragenic; 10-marker 
algorithm; 5-fold cross-validation).

SVM GLM PAM RF LDA DL

AUC
95% CI

1.0000
(0.9000–1)

1.0000
(0.9000–1)

0.9456
(0.8500–1)

0.9788
(0.9000–1)

1.0000
(0.9000–1)

1.0000
(0.9500–1)

Sensitivity 0.9000 0.9200 0.8500 0.9600 0.9555 1.0000

Specificity 0.9600 0.8800 0.9100 0.9000 0.9700 1.0000

Note: Important predictors in order: SVM: cg14224170, cg02805448, cg11148697, cg13339291, cg21466229, cg20727403, cg01430372, cg02403931, cg23178322, 
cg09632446. GLM: cg22712861, cg13775996, cg08035872, cg06085890, cg26607620, cg18784929, cg10275695, cg06931905, cg02484127, cg18106397. PAM: 
cg25773935, cg10475689, cg20967889, cg09632446, cg24531698, cg00395140, cg14224170, cg10059324, cg24273843, cg20096979. RF: cg04725405, cg06931905, 
cg23178322, cg09921548, cg04510815, cg05285759, cg07663722, cg27315239, cg01333650, cg21328081. LDA: cg20967889, cg25773935, cg13339291, cg14224170, 
cg23178322, cg17897505, cg05065507, cg24877731, cg02610227, cg10845342. DL: cg16984992, cg16590012, cgg16550438, cg07240877, cg14870958, cg01291513, 
cg13151361, cg21242417, cg09518293, cg00019091.
Abbreviations: DL, Deep Learning; GLM, Generalized Linear Model; LDA, Linear Discriminant Analysis; PAM, Prediction Analysis for Microarrays; RF, 
Random Forest; SVM, Support Vector Machine.

T A B L E  2   Artificial intelligence and circulating cfDNA in pancreatic cancer: CpG markers located within genes (intragenic; 10-marker 
algorithm; Bootstrapping).

SVM GLM PAM RF LDA DL

AUC
95% CI

1.0000
(0.9000–1)

1.0000
(0.9000–1)

0.9488
(0.8500–1)

0.9800
(0.9000–1)

1.0000
(0.9000–1)

1.0000
(0.9500–1)

Sensitivity 0.9100 0.9200 0.8700 0.9600 0.9566 1.0000

Specificity 0.9600 0.9000 0.9100 0.9100 0.9700 1.0000

Note: Important predictors in order: SVM: cg14224170, cg02805448, cg11148697, cg13339291, cg21466229, cg20727403, cg01430372, cg02403931, cg23178322, 
cg09632446. GLM: cg22712861, cg13775996, cg08035872, cg06085890, cg26607620, cg18784929, cg10275695, cg06931905, cg02484127, cg18106397. PAM: 
cg25773935, cg10475689, cg20967889, cg09632446, cg24531698, cg00395140, cg14224170, cg10059324, cg24273843, cg20096979. RF: cg04725405, cg06931905, 
cg23178322, cg09921548, cg04510815, cg05285759, cg07663722, cg27315239, cg01333650, cg21328081. LDA: cg20967889, cg25773935, cg13339291, cg14224170, 
cg23178322, cg17897505, cg05065507, cg24877731, cg02610227, cg10845342. DL: cg16984992, cg16590012, cgg16550438, cg07240877, cg14870958, cg01291513, 
cg13151361, cg21242417, cg09518293, cg00019091.
Abbreviations: DL, Deep Learning; GLM, Generalized Linear Model; LDA, Linear Discriminant Analysis; PAM, Prediction Analysis for Microarrays; RF, 
Random Forest; SVM, Support Vector Machine.

T A B L E  3   Artificial intelligence and circulating cfDNA in pancreatic cancer: CpG markers located within genes (intragenic; 20-marker 
algorithm; 5-fold cross-validation).

SVM GLM PAM RF LDA DL

AUC
95% CI

1.0000
(0.9000–1)

1.0000
(0.9000–1)

0.9477
(0.8500–1)

0.9799
(0.9000–1)

1.0000
(0.9000–1)

1.0000
(0.9500–1)

Sensitivity 0.9000 0.9200 0.8600 0.9600 0.9555 1.0000

Specificity 0.9600 0.8800 0.9100 0.9000 0.9700 1.0000

Note: Important predictors in order: SVM: cg14224170, cg02805448, cg11148697, cg13339291, cg21466229, cg20727403, cg01430372, cg02403931, cg23178322, 
cg09632446, cg05065507, cg15127853, cg17897505, cg22486192, cg24877731, cg16984992, cg22873177, cg21506278, cg20967889, cg06900089. GLM: cg22712861, 
cg13775996, cg08035872, cg06085890, cg26607620, cg18784929, cg10275695, cg06931905, cg02484127, cg18106397, cg21959890, cg17330034, cg09899541, 
cg02403931, ch.1.1248405R, cg09464192, cg08125081, cg23203809, cg11148697, cg15127853. PAM: cg25773935, cg10475689, cg20967889, cg09632446, 
cg24531698, cg00395140, cg14224170, cg10059324, cg24273843, cg20096979, cg20727403, cg01430372, cg08940169, cg13339291, cg21466229, cg07240877, 
cg16590012, cg10299917, cg23499977, cg02403931. RF: cg04725405, cg06931905, cg23178322, cg09921548, cg04510815, cg05285759, cg07663722, cg27315239, 
cg01333650, cg21328081, cg05729577, cg03407412, cg17570350, cg21669037, cg12525249, cg17498612, cg20203854, cg15306794, cg06823437. LDA: cg20967889, 
cg25773935, cg13339291, cg14224170, cg23178322, cg17897505, cg05065507, cg24877731, cg02610227, cg10845342, cg22486192, cg02403931, cg10475689, 
cg08879111, cg01430372, cg09632446, cg16590012, cg22873177, cg02805448, cg15127853. DL: cg16984992, cg16590012, cgg16550438, cg07240877, cg14870958, 
cg01291513, cg13151361, cg21242417, cg09518293, cg00019091, cg16868591, cg23957525, cg01723761, cg01688293, cg14224638, cg20967889, cg04725405, 
cg25773935, cg22712861, cg14224170.
Abbreviations: DL, Deep Learning; GLM, Generalized Linear Model; LDA, Linear Discriminant Analysis; PAM, Prediction Analysis for Microarrays; RF, 
Random Forest; SVM, Support Vector Machine.
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CI) = 1.0 (1.0–1.0) with 100% sensitivity and 100% speci-
ficity for PC detection was achieved following 10-fold 
cross-validation.

4   |   DISCUSSION

The integration of systems biology including epigenomics, 
genomics, and transcriptomics has advanced our under-
standing of the mechanisms of pancreatic cancer. Further, 
targeted therapy based on these molecular alterations ap-
pears to be associated with an improved prognosis.26 This 
further validates the wisdom of the precision medicine 
approach to pancreatic cancer detection and treatment. 
DNA methylation plays a crucial role in controlling gene 
expression and holds promise in the field of cancer biol-
ogy and ultimately for delivering clinical benefits due to 
its early role in neoplastic transformation.27,28 It is clear 
from several studies that treatments such as chemo-
therapy and radiation therapy can induce methylation 
differences in patients.29,30 We therefore focused on meth-
ylation changes in circulating cfDNA from the treatment-
naïve patients in this study.

The late presentation and diagnosis of PC remain 
a fundamental challenge to improving survival statis-
tics.31,32 Imaging techniques such as CT scans and MRI 
which are currently used tools for aiding diagnosis, are 
useful in the later stages of PC. Also, given their expense, 
they are not suitable as screening tools. Based on a min-
imally invasive approach grounded in the principles of 
precision oncology, we used a combination of circulating 
cfDNA, genome-wide epigenetic analysis, and AI to accu-
rately detect PC. For example, using 20-marker predictive 

algorithms (Table  4), all six AI platforms achieved an 
AUC ≥ 0.94, with four achieving an AUC (95% CI) = 1.0 
(0.95–1.00). As an example, DL achieved AUC (95% 
CI) = 1.0 (0.95–1.00), with sensitivity and specificity both 
at 100%. Similar performance was found with either intra-
genic markers (Tables 3 and 4) or intergenic (extragenic) 
markers (Tables S6 and S7). Parsimonious 5-marker mod-
els achieved comparably high diagnostic performances 
(Tables S8 and S9). Using a non-AI approach, each CPG 
marker and top logistic regression model yielded similarly 
high diagnostic performance.

Recent studies have begun to evaluate the utility of 
cfDNA for pancreatic cancer detection. Henriksen et al.,33 
targeted a handful of specific genes. Others, based on 
meta-analysis by the Visser et al.,34 have used cfDNA ob-
tained from pancreatic juice. For example, using a pooled 
diagnostic performance strategy, NPTX2 gene methylation 
achieved sensitivity of 42% and specificity of 98% for PC 
detection. However, the need to collect pancreatic juice, 
which is not easily accessible, would preclude the use of 
this approach in the routine screening of at-risk individ-
uals. As noted above, our parsimonious algorithm based 
on five markers and using DL achieved an AUC (95% 
CI) = 1 (0.95–1) with a sensitivity and specificity of 100% 
when either intragenic or intergenic CpGs by themselves 
were used (Tables S8 and S9, respectively). The study by 
Ying et al.35 analyzed plasma cfDNA using the Human-
Methylation450K BeadChip Ilumina kit and assessed the 
effectiveness of a 4-panel gene approach. They achieved 
an AUC of 0.94, a sensitivity of 100%, and a specificity 
of 90%. Li et al.36 performed whole genome methylation 
analysis using the methylated DNA immunoprecipita-
tion sequencing (MeDIP-Seq) method on plasma cfDNA 

T A B L E  4   Artificial intelligence and circulating cfDNA in pancreatic cancer: CpG markers located within genes (intragenic; 20-marker 
algorithm; Bootstrapping).

SVM GLM PAM RF LDA DL

AUC
95% CI

1.0000
(0.9000–1)

1.0000
(0.9000–1)

0.9499
(0.8500–1)

0.9833
(0.9000–1)

1.0000
(0.9000–1)

1.0000
(0.9500–1)

Sensitivity 0.9100 0.9200 0.8900 0.9600 0.9566 1.0000

Specificity 0.9600 0.9000 0.9100 0.9100 0.9700 1.0000

Note: Important predictors in order: SVM: cg14224170, cg02805448, cg11148697, cg13339291, cg21466229, cg20727403, cg01430372, cg02403931, cg23178322, 
cg09632446, cg05065507, cg15127853, cg17897505, cg22486192, cg24877731, cg16984992, cg22873177, cg21506278, cg20967889, cg06900089. GLM: cg22712861, 
cg13775996, cg08035872, cg06085890, cg26607620, cg18784929, cg10275695, cg06931905, cg02484127, cg18106397, cg21959890, cg17330034, cg09899541, 
cg02403931, ch.1.1248405R, cg09464192, cg08125081, cg23203809, cg11148697, cg15127853. PAM: cg25773935, cg10475689, cg20967889, cg09632446, 
cg24531698, cg00395140, cg14224170, cg10059324, cg24273843, cg20096979, cg20727403, cg01430372, cg08940169, cg13339291, cg21466229, cg07240877, 
cg16590012, cg10299917, cg23499977, cg02403931. RF: cg04725405, cg06931905, cg23178322, cg09921548, cg04510815, cg05285759, cg07663722, cg27315239, 
cg01333650, cg21328081, cg05729577, cg03407412, cg17570350, cg21669037, cg12525249, cg17498612, cg20203854, cg15306794, cg06823437. LDA: cg20967889, 
cg25773935, cg13339291, cg14224170, cg23178322, cg17897505, cg05065507, cg24877731, cg02610227, cg10845342, cg22486192, cg02403931, cg10475689, 
cg08879111, cg01430372, cg09632446, cg16590012, cg22873177, cg02805448, cg15127853. DL: cg16984992, cg16590012, cgg16550438, cg07240877, cg14870958, 
cg01291513, cg13151361, cg21242417, cg09518293, cg00019091, cg16868591, cg23957525, cg01723761, cg01688293, cg14224638, cg20967889, cg04725405, 
cg25773935, cg22712861, cg14224170.
Abbreviations: DL, Deep Learning; GLM, Generalized Linear Model; LDA, Linear Discriminant Analysis; PAM, Prediction Analysis for Microarrays; RF, 
Random Forest; SVM, Support Vector Machine.
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but validated the results using a public database in which 
tissue samples were analyzed with the HumanMethyla-
tion450K array. When the methylation markers identified 
from cfDNA were evaluated in that tissue database, an 
AUC of 0.975 with sensitivity of 97.1% and a specificity 
of 98.0% in the training dataset and an AUC of 0.943 with 
sensitivity of 93.2% and a specificity of 95.2% in a valida-
tion dataset. Huang et al.37 also performed genome-wide 
methylation analysis using cfDNA-based methyl-binding 
domain sequencing (MBD-seq) method. However, for 
the prediction analysis, they evaluated the overlapping 
methylation changes of cfDNA and primary tumor tis-
sues from public databases. Using a large number of 
CpGs, the top 100 cancer-type-specific “differentially hy-
permethylated CpG islands (DMCGIs),” they reported an 
AUC of 0.989. Additionally, TET-assisted pyridine borane 
sequencing (TAPS), a direct DNA methylation sequenc-
ing method that does not require bisulfite conversion of 
DNA, has been also evaluated using cfDNA.38 That study 
evaluated prediction based on methylation changes in the 
promoter regions, and an AUC of 0.98 for PC detection 
was achieved. Also, when applying the cfDNA TAPs seq 
data to publicly available databases of tumor tissues, they 
achieved an AUC of 0.81 for PC detection.38 These studies 
fundamentally support our findings that DNA methyla-
tion changes and in particular cfDNA analysis have the 
potential to be accurate, minimally invasive biomarkers 
for PC. Consistent with precision medicine principles, 
we used sophisticated analytic approaches namely AI for 
disease prediction. Epigenome-wide analysis generates a 
large volume of data including putative biomarkers. AI 
techniques are specifically engineered to handle such big 
data.39 Studies have also shown the superiority of Machine 
Learning/AI techniques including DL25 over conventional 
statistical analysis for disease detection and prediction of 
medical outcomes.40,41

We assessed the importance of the differentially meth-
ylated genes on biological pathways, both to further 
elucidate the molecular mechanisms of PC and also to de-
termine the biological plausibility of our findings. A high 
percentage of the 66 epigenetically dysregulated molecu-
lar pathways identified (Table S3) was related to cancer.

4.1  |  Signaling pathways

Studies indicate that the regulation of cancer cell survival, 
proliferation, invasion, and growth is significantly influ-
enced by phospholipases.42 The role of Phospholipase D 
in cancer development and management specifically due 
to its antiapoptotic effects is therefore an area of inter-
est.43 We identified 36 differentially methylated genes that 
were enriched in the Phospholipase D signaling pathway, 

indicating a plausible role of this signaling pathway in 
PC pathogenesis. The MAPK signaling pathway was also 
found to be enriched along with Phospholipase D signal-
ing pathway. A study previously suggested an interaction 
between Phospholipase D and p38 MAPK, in which the 
activation of Phospholipase D is necessary for the activa-
tion of p38 MAPK signaling.44 Our analysis found that 
57 genes in the MAPK signaling pathway underwent sig-
nificant methylation changes in PC. The AMPK signaling 
pathway was also found to be overrepresented in PC. The 
AMPK pathway is known to interact with MAPK signal-
ing and to regulate cellular metabolism, cellular survival, 
cell differentiation, and proliferation.45 We also found 
that the Notch signaling pathway was overrepresented in 
PC. Studies show that MAPK is involved in regulating the 
expression of Notch target genes through a transcription 
factor and several cofactors controls transcription.46 In the 
current study, we identified several biological pathways 
that were significantly epigenetically altered in pancreatic 
cancer, one of which was cellular senescence. This pro-
cess has a dual impact on cancer cells. On one side, it in-
hibits cell division and enhances the removal of damaged 
cells by the immune system, thus preventing tumor de-
velopment. On the other hand, senescence can contribute 
to tumor progression and relapse by creating an immune-
suppressing environment.47,48 Additionally, we found that 
the RAS signaling pathway is involved in tumor initiation, 
invasion, and metastasis.49 Another important pathway is 
the Rap1 signaling pathway, which plays a crucial role in 
regulating key events related to tumor cell migration, in-
vasion, and metastasis.50 Moreover, the calcium signaling 
pathway was found to be significant, with calcium playing 
a central role in the migration, invasion, and metastasis 
of PC cells.51 The PI3K-Akt signaling pathway was also 
identified, and its frequent activation is well-established 
in promoting PC aggressiveness.52 Among the pathways 
directly related to cancer, “pathways in cancer” and “pan-
creatic cancer” signaling showed the possible involvement 
of several differentially methylated genes in our study. 
Overall, given the known relationship of these and multi-
ple other overrepresented pathways with cancer, our find-
ings of epigenetic dysregulation of these CpGs and genes 
in PC appears to be biologically plausible and confirm the 
great complexity involved in cancer transformation.

We identified several significantly differentially 
methylated imprinted genes with potential implica-
tions for PC. Among these, genes were TP73, SVOPL, 
DLGAP2, KCNK9, OSBPL5, H19, KCNQ1, HNF1A, 
MEG8, RASGRF1, NLRP2, and GNAS. Notably, 
DLGAP2 inhibition in PC cells led to a reduction in pro-
liferation, invasion, and migration abilities.53 We found 
four hypomethylated CpGs on DLGAP2, suggesting 
possible gene overexpression, which could help explain 
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the aggressive behavior of PC cells. The GNAS gene, in-
volved in cAMP-PKA pathways, was found to contribute 
to tumor cell proliferation.54 TP73, a tumor suppressor 
gene belonging to the p53 family of transcription fac-
tors, was identified as crucial for tumor progression due 
to its interaction with p53.55 The H19 gene, encoding 
H19 imprinted maternally expressed transcript, was as-
sociated with abnormal Wnt/β-catenin signaling path-
ways in PC.56 In our study, OSBPL5 exhibited higher 
transcriptional expression in PC patients57 consistent 
with our findings showing two hypomethylated mark-
ers on this gene. RASGRF1, another imprinted gene, 
demonstrated fusion with other genes, rendering the 
cells sensitive to targeting of the RAF-MEK-ERK path-
way, leading to multiple malignancies, including PC.58 
All these imprinted genes displayed a strong individual 
predictive accuracy for PC detection, with each having 
an AUC > 0.90. Among the remaining imprinted genes, 
MEG8 was found to contribute the epigenetic changes 
that lead to the progression in epithelial-mesenchymal 
transition in PC cells.59 HNF1A, a transcription factor 
regulating pancreatic differentiation and endocrine 
pancreas homeostasis, is considered a susceptibility 
gene for PC.60 Although KCNK9 was previously studied 
in association with breast cancer, our findings indicate 
its potential relevance to PC as well. This gene encodes 
a potassium channel, and its overexpression in cell lines 
promotes tumor formation and confers resistance to hy-
poxia and serum deprivation.61 The discoveries from our 
study shed light on the intricate roles of imprinted genes 
in PC and open avenues for further research and thera-
peutic interventions.

While epigenomic therapeutics offer promise in 
pancreatic cancer therapy,62 effective targeted therapy 
cannot be realized without extensive mapping of the 
epigenome and determination of the dysregulated mo-
lecular networks associated with specific features of PC, 
such as neoplastic transformation, clonality, and drug 
resistance. The CA19-9 is a commonly used blood-based 
biomarker for PC detection. CA19-9 is an epitope that 
can be found on various proteins, although the precise 
number and nature of these carrier proteins have not 
been determined. Nevertheless, some proteins have 
been identified, including mucins.63,64 Examples in-
clude MUC1 and MUC5AC, which are known to be el-
evated in malignancy. At the same time, CA-19-9 was 
identified in nonmalignant tissues in association with 
MUC3 and MUC6, while MUC2 has been detected in 
patients with less advanced tumors.65 Additionally, the 
CA19-9 epitope was also found on MUC4 and MUC16 in 
PC.64,66 Beyond the mucin family, other proteins such 
as Apolipoprotein B-100 (APOB), kininogen (KNG1), 
ARVCF, and Apolipoprotein E (APOE) have also been 

identified as carriers of the CA19-9 antigen.64 However, 
it is important to emphasize that the expression of the 
CA19-9 antigen requires the presence of the Lewis blood 
group antigen. Patients who lack the genotypic mark-
ers for Lewis blood group antigens will not produce the 
CA19-9 antigen, even in the presence of malignancy.67 
We found significant methylation changes in some of 
the genes known to express the CA-19-9 epitope such as 
MUC4, MUC6, and MUC16. Our work helps to lay the 
groundwork for this effort in identifying epigenetically 
dysregulated loci and molecular pathways associated 
with pancreatic cancer.

Our study is not without limitations. These include 
the relatively small sample size. Multiple AI strategies, 
including choice of platforms as detailed in Data  S1 
“overfitting and computation time,” were utilized to 
minimize the risk of overfitting. We also separately 
employed cross-validation and bootstrapping analytic 
approaches. Although we did not have a separate test 
group, we performed cross-validation procedures to en-
hance the generalizability of the results. Larger valida-
tion studies are now required to confirm our findings. 
Despite these limitations, using multiple different AI 
platforms, different CpG markers, and the evaluation of 
both intra- and extragenic CpG markers yielded consis-
tently high and statistically significant prediction of PC. 
To further address this issue of overfitting with AI, we 
also performed non-AI-based prediction. Using logistic 
regression analysis, the diagnostic accuracy achieved 
was comparably high as that obtained with the use of 
AI. Ten-fold cross-validation was performed to mini-
mize overfitting. The high R2 statistic from the PLS-DA 
analysis indicated that the variance between PC and 
normal controls group was significantly explained by 
the CpG methylation. In addition, the high R2 value in-
dicated that the model has predictive relevance. While 
the AUCs consistently achieved statistical significance 
for the models across different AI platforms and with 
the use of logistic regression-based analysis, we recom-
mend cautious interpretation of our findings given the 
small sample size of our study. The risk of a chance find-
ing increases with decreasing sample size.

The ultimate objective of precision oncology is the 
development of targeted, patient-specific treatments. 
The fundamental challenge with current cancer therapy 
is the clonality and heterogenetic of tumor cells result-
ing in initial suppression, but subsequent resurgence of 
resistant clones leading to drug resistance, and clinical 
recurrence. There is now good evidence that epigenetic 
modification plays a critical role in tumor cell heteroge-
neity.68 This awareness has stimulated the design of epi-
genetic based inhibitors to be used in combination with 
chemotherapy for reprogramming resistant tumors.69 



      |  19653BAHADO-SINGH et al.

Thus, our work of mapping the PC epigenome has the 
future potential of contributing to the development of 
targeted therapy.

In summary, using a minimally invasive approach 
based on epigenome-wide analysis of circulating cfDNA, 
consistently high PC prediction was achieved. Further, 
our analysis found that the genes and molecular pathways 
that were epigenetically altered are known or suspected to 
be involved in various aspects of cancer biology giving fur-
ther biological plausibility to our findings. Larger studies 
to validate our findings are clearly indicated.
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