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Abstract 

Parts-based representations, such as non-negative matrix factorization and topic 
modeling, have been used to identify structure from single-cell sequencing data sets, 
in particular structure that is not as well captured by clustering or other dimensionality 
reduction methods. However, interpreting the individual parts remains a challenge. To 
address this challenge, we extend methods for differential expression analysis by allow-
ing cells to have partial membership to multiple groups. We call this grade of member-
ship differential expression (GoM DE). We illustrate the benefits of GoM DE for annotat-
ing topics identified in several single-cell RNA-seq and ATAC-seq data sets.
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Background
A key methodological aim in single-cell genomics is to learn structure from single-cell 
sequencing data in a systematic, data-driven way [1–3]. Clustering [4–7] and dimension-
ality reduction techniques such as such as PCA [8–10], t-SNE [11], or UMAP [12] are 
commonly used for this aim. Despite the fact that many of these techniques have been 
applied “out-of-the-box” (with some caveats [13–18]), they have been remarkably suc-
cessful in revealing and visualizing biologically interesting substructures from single-cell 
data [7, 19–29].

Another class of dimensionality reduction approaches that have been used to 
identify structure from single-cell data are what are sometimes called parts-based 
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representations—these approaches include non-negative matrix factorization (NMF) 
[30–44] and topic modeling [45–56], which also have formal connections [48, 57, 58]. 
Parts-based representations share some of the features of both a clustering and a dimen-
sionality reduction: on the one hand, they learn a lower dimensional representation of 
the cells; on the other hand, the individual dimensions (the “parts”) of the reduced rep-
resentation can identify discrete clusters or discrete subpopulations [59, 60]. However, 
parts-based representations are more flexible than clustering—the dimensions can also 
capture other features such as continuously varying cell states.

In this paper, we investigate the question of how to interpret the individual dimensions 
of a parts-based representation learned by fitting a topic model (in the topic model, the 
dimensions are also called “topics”). For topics that assign observations to discrete clus-
ters, one could apply a standard method for differential expression analysis [61, 62] to 
compare expression between topics, then annotate these topics by the genes that are dif-
ferentially expressed. The question, therefore, is what to do with topics that do not assign 
observations to discrete clusters. To tackle this question, we extend models that com-
pare expression between groups by allowing observations to have partial membership 
in multiple groups. This more flexible differential expression analysis is implemented by 
taking an existing model and modifying it to allow for partial memberships to groups 
or topics. This modified model is a “grade of membership” model [63], so we call our 
new method grade of membership differential expression (GoM DE). The idea is that, by 
generalizing existing methods, we can continue to take advantage of existing elements of 
differential expression analysis but now apply them to learn about different types of cell 
features beyond discrete cell populations.

We describe the GoM DE approach more formally in the next section. Then, we eval-
uate the GoM DE approach in simulations, showing, in particular, that it recovers the 
same results as existing differential expression analysis methods when the cells can be 
grouped into discrete clusters. In case studies, we demonstrate how the GoM DE analy-
sis analysis can be used to uncover and interpret a variety of cell features from single-cell 
RNA-seq and ATAC-seq data sets.

Results
Methods overview and illustration

We begin by giving a brief overview of the topic model; then, we describe the new meth-
ods for annotating topics. To illustrate key concepts, we analyze a single-cell RNA-seq 
(scRNA-seq) data set obtained from peripheral blood mononuclear cells (PBMCs) [29] 
that has been used in several benchmarking studies (e.g., [4, 7, 8, 64, 65]). We refer to 
these data as the “PBMC data.”

Learning expression topics from single‑cell RNA‑seq data

The original aim of the topic model was to discover patterns from collections of text 
documents, in which text documents were represented as word counts [45, 50, 66–68]. 
By substituting genes for words and cells for documents, topic models can also be used 
to learn a reduced representation of cells by their membership in multiple “topics” [47].

When applied to scRNA-seq data generated using UMIs, the topic model assumes a 
multinomial distribution of the RNA molecule counts in a cell,
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where si = xi1 + · · · + xim , and m is the number of genes, that is, the number of RNA 
molecules xij observed for gene j in cell i is a noisy observation of an underlying true 
expression level, πij [8, 69].

For n cells, the topic model is a reduced representation of the underlying expression,

where �,L,F are n×m , n× K ,m× K  matrices, respectively, with entries πij , lik , fjk . 
Each cell i is represented by its “grade of membership” in K topics, a vector of propor-
tions li1, . . . , liK  , such that lik ≥ 0 , K

k=1 lik = 1 , and each “expression topic” is rep-
resented by a vector of (relative) expression levels f1k , . . . , fmk , fjk ≥ 0  (these are also 
constrained to sum to 1, which ensures that the πij s are multinomial probabilities). To 
efficiently fit the topic model to large single-cell data sets, we exploit the fact that the 
topic model is closely related to the Poisson NMF model [48].

The matrix L in (2), which contains the membership proportions for all cells and top-
ics, can be visualized using a “Structure plot.” Structure plots have been used to visualize 
the results of population genetics analyses (e.g., [70–72]) and, more recently, to visualize 
the topics learned from bulk and single-cell RNA-seq data [47].

A Structure plot visualizing the topic model fit to the PBMC data, with K = 6 topics, 
is given in Fig. 1. In this data set, the cells have been “sorted” into different cell types 
which provides a cell labeling to compare against. From the Structure plot, it is apparent 

(1)xi1, . . . , xim ∼ Multinomial(si;πi1, . . . ,πim).

(2)� = LF
T ,

Fig. 1  A and B give two views of the topic model fit to the PBMC data [29] (n = 94,655 cells, K = 6 topics) 
using Structure plots [70, 71]. Cells are arranged horizontally; bar heights correspond to cell membership 
proportions. In A, the cells are arranged using the estimated membership proportions only. In B, the cells 
are grouped by the FACS labels (the “T cells” label combines all sorted T cell populations other than CD8+ 
cytotoxic T cells). In C, the topics are annotated by distinctive genes from the GoM DE analysis (Fig. 3) and 
by enriched gene sets. Numbers in parentheses next to genes give posterior mean l.e. LFCs, and for gene 
sets, they are enrichment coefficients. An enrichment coefficient is an estimate of the expected increase in 
the LFC for genes that belong to the gene set relative to genes that do not belong to the gene set. Note the 
groupings a–g in A are intended only to aid visualization. See also Additional file 1: Fig. S1 for an alternative 
visualization
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that a subset of topics—topics 1, 2, and 3—correspond closely to the sorted subpopula-
tions (B cells, CD14+ monocytes, CD34+ cells) (indeed, distinctive genes and enriched 
gene sets identified by the methods described below suggest these same subpopula-
tions; Fig. 1C). Topics 4 and 5, on the other hand, are not confined to a single sorted cell 
type and instead appear to capture biological processes common to T cells and natural 
killer (NK) cells. CD8+ cytotoxic T cells have characteristics of both NK cells and T 
cells—these are T cells that sometimes become “NK-like” [73]—and this is captured in 
the topic model by assigning membership to both topics. Topic 6 also captures continu-
ous structure, but, unlike topics 4 and 5, it is present in almost all cells, and therefore, 
its biological interpretation is not at all clear from the cell labeling. More generally, the 
topics, whether they capture largely discrete structure (topics 1–3) or more continuous 
structure (topics 4–6), can be thought of as a “soft” clustering [47].

Learning chromatin accessibility topics from single‑cell ATAC‑seq data

For single-cell ATAC-seq data, the observations xij denote the number of reads mapping 
to region j in cell i. However, it is common to “binarize” the read counts such that xij = 1 
when at least one fragment in cell i maps to region j and xij = 0 otherwise.

Using the topic model to analyze (binarized) single-cell ATAC-seq data was first sug-
gested by [49]. Therefore, they implicitly assumed a multinomial model (1) in which the 
xij s are binarized accessibility values instead of UMI counts. A binomial model for bina-
rized accessibility data was proposed in [74]. As we explain in the “Methods” section, we 
view both models as approximations, and under reasonable assumptions the models are 
similar.

Differential expression analysis allowing for grades of membership

Having learned the topics, our aim now is to identify genes that are distinctive to each 
topic. In the simplest case, the topic is a distinct or nearly distinct cluster of cells, such as 
topic 1 or topic 2 in Fig. 1.

In the following, we describe methods for analyzing differences in expression, but they 
can also be understood as methods for analyzing differences in chromatin accessibility. 
Therefore, “expression,” “expressed,” and “gene” in the descriptions below may be substi-
tuted with “accessibility,” “accessible,” and “peak” (or “region”).

Consider a single gene, j. Provided unmodeled sources of variation are negligible rela-
tive to measurement error, a simple Poisson model of expression should suffice:

In this model, θij for gene j in cell i is controlled by the cell’s membership in the cluster: 
when cell i belongs to the cluster, θij = pj1 ; otherwise, θij = pj2 . Under this model, dif-
ferential expression (DE) analysis proceeds by estimating the log-fold change (LFC) in 
expression for each gene j,

Although simple, this Poisson model forms the basis for many DE analysis methods 
[75–80].

(3)xij ∼ Poisson(siθij).

(4)LFC(j) = log2
pj1

pj2
.
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We now modify the Poisson model (3) in a simple way to analyze differential expres-
sion among topics. In a clustering, each cell belongs to a single cluster, whereas in the 
topic model, cells have grades of membership to the clusters [63] in which lik is the mem-
bership proportion for cluster or topic k. Therefore, we extend the model to allow for 
partial membership in the K topics:

in which the membership proportions lik are treated as known, and the unknowns 
pj1, . . . , pjK  represent relative expression levels (a related model is used in C-SIDE [80] 
to model cell-type mixtures in DE analysis of spatial transcriptomics data). Note that pjk 
will be similar to, but not the same as, fjk in the topic model because the DE analysis is a 
gene-by-gene analysis, whereas the topic model considers all genes at once. The stand-
ard Poisson model (3) is recovered as a special case of (5) when K = 2 and all member-
ship proportions lik are 0 or 1.

Recall, our aim is to identify genes that are distinctive to each topic. To this end, we 
estimate the least extreme LFC (l.e. LFC), which we define as

in which LFCk ,l(j) is the pairwise LFC,

In words, the l.e. LFC for topic k is the LFC comparing topics k and l, in which l is cho-
sen to be topic that results in the smallest (“least extreme”) change. By this definition, a 
“distinctive gene” is one in which its expression is significantly different from its expres-
sion in all other topics (note the l.e. LFC reduces to the standard LFC (4) when K = 2 ). 
We then annotate topics by the distinctive genes. The estimation of l.e. LFCs and com-
putation of related posterior statistics is described in the “Methods” section.

To illustrate what the least extreme LFC does and does not do, consider the follow-
ing toy example with K = 10 topics (Fig.  2). Gene 1 has high expression in topic 1 
and low expression in the other topics. Therefore, all the pairwise LFCs for topic 1 are 
large, LFC1,k(1) = log2(100) , k = 2, . . . , 10 , and this results in an l.e. LFC for topic 1 of 
log2(100) ≈ 6.6 . So gene 1 is a distinctive gene for topic 1. Next consider gene 2, which 
has high expression in topics 1 and 2 and low expression in the other topics. For gene 
2, the pairwise LFCs for topic 1 are mostly large, LFC1,k(2) = log2(100) , k = 3, . . . , 10 , 
except for LFC1,2(2) = 0 . So, the l.e. LFC for topic 1 is zero and, as a result, gene 2, 
although potentially helpful for interpreting topic 1, is not a distinctive gene for topic 1.

Illustration of GoM DE analysis in PBMC data set

To illustrate, we applied the GoM DE analysis to the topic model shown in Fig. 1 and 
visualized the results in “volcano plots” (Fig.  3). We then used the GoM DE results 

(5)
xij ∼ Poisson(siθij)

θij =
∑K

k=1 likpjk ,

(6)
LFCl.e.

k (j) := LFCk ,l(j)

such that l = argminl′ �=k |LFCk,l′(j)|,

(7)LFCk ,l(j) := log2
pjk

pjl
.
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(Additional file 2: Table S1) to perform gene set enrichment analysis (Additional file 3: 
Tables S3, S4).

For the topics that closely correspond to cell types, the GoM DE analysis, as 
expected, identified genes and gene sets reflecting these cell types. For example, 
topic 1 corresponds to FACS B cells and is characterized by overexpression of CD79A 
(posterior mean l.e. LFC = 13.05) and enrichment of B cell receptor signaling genes 
(enrichment coefficient = 0.72). Topic 2 corresponds to myeloid cells and is char-
acterized by overexpression of S100A9 (l.e. LFC = 15.45) and enrichment of genes 
down-regulated in hematopoietic stem cells (enrichment coefficient = 0.90).

The close correspondence between topics 1 and 2 and FACS cell types (B cells, mye-
loid cells) provides an opportunity to contrast the GoM DE analysis with a standard 
DE analysis of the FACS cell types (Fig. 4). This is not a perfect comparison because 
the topics and FACS cell populations are not exactly the same, but the LFC estimates 
correlate well (Fig. 4A, B). This comparison illustrates to two key differences: 

1.	 Many more l.e. LFCs are driven toward zero in the GoM DE analysis (Fig. 4C), so the 
l.e. LFCs more effectively draw attention to the “distinctive genes” (Fig. 4A, B). This 
includes genes that are distinctively underexpressed such as ID2 in B cells [81].

Fig. 2  Toy example illustrating the least extreme LFC. Gene 1 has high expression in topic 1 and low 
expression in the other topics; p11 = 0.01 , p1k = 0.0001 , k = 2, ..., 10. Gene 2 has high expression in topics 1 
and 2 and low expression in the other topics; p21 = p22 = 0.01 , p2k = 0.0001 , k = 3, ..., 10
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2.	 The GoM DE analysis yields much larger LFC estimates of the cell-type-specific 
genes. This is because the topic model isolates the biological processes (topics 1 and 
2) related to cell type while removing background biological processes (topic 6) that 
do not relate to cell type.

Fig. 3  GoM DE analysis of the PBMC data using the topic model shown in Fig. 1. The volcano plots show 
posterior mean estimates of the l.e. LFC vs. posterior z-scores for 17,055 genes. The posterior z-score is 
defined as the posterior mean l.e. LFC divided by the posterior standard error. Genes are colored according 
to the local false sign rate (lfsr) [82]. A few genes with extreme posterior z-scores are shown with smaller 
posterior z-scores so that they fit within the y-axis range. See also the detailed GoM DE results (Additional 
file 2: Table S1), detailed GSEA results (Additional file 3: Table S3, S4), and the interactive volcano plots 
(Additional file 4)

Fig. 4  GoM DE analysis vs. DESeq2 analysis in PBMC data. A and B compare differential expression in topics 
1 and 2 (Fig. 1) with their closely corresponding FACS cell populations. Genes are only shown if the posterior 
z-score was greater than 2 in magnitude in at least one of the DE analyses. Genes are colored by the “null 
model” expression rate. The Q-Q plot (C) compares the overall distribution of posterior z-scores for B cells and 
myeloid cells (x-axis) and for topics 1 and 2 (y-axis). For better visualization of quantiles near zero, posterior 
z-scores larger than 20 in magnitude are shown as 20 or −20. Analysis of differential expression among the 6 
FACS cell populations was performed using DESeq2 [79, 84]
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Other topics capture more continuous structure, such as topics 4 and 5 (Fig.  1). 
Although the GoM DE analysis of these topics is not comparable to a standard DE 
analysis, many of the the distinctive genes and gene sets suggest NK and T cells, 
which are precisely the FACS-labeled cells with greatest membership to these topics: 
for example, for topic 4, overexpression of NKG7 (posterior mean l.e. LFC = 14.09), 
enrichment of cytolysis genes (enrichment coefficient = 2.22); for topic 5, overexpres-
sion of CD3D (l.e. LFC = 12.01), enrichment co-stimulatory signaling during T-cell 
activation (enrichment coefficient = 1.58).

Topic 6 captures continuous structure and is present in almost all cells, so knowl-
edge of the FACS cell types is not helpful for understanding this topic. Still, the GoM 
DE results for topic 6 show a striking enrichment of ribosome-associated genes (Fig. 3, 
Additional file 3: Tables S3, S4) (these ribosomal protein genes also account for a large 
fraction of the total expression in the cells [5]). This ability to annotate distinctly non-
discrete structure is a distinguishing feature of the grade-of-membership approach, and 
below we will show more examples where this feature contributes to understanding of 
the cell populations.

Evaluation of DE analysis methods using simulated data

Having illustrated the features of this approach, we now evaluate the methods more sys-
tematically in simulated expression data sets. We began our evaluation by first consid-
ering the case of two groups in which there is no partial membership to these groups, 
that is, when the cells can be separated into two cell types. The GoM DE analysis should 
accommodate this special case and should compare well with existing DE analysis meth-
ods. We compared with DESeq2 [79] and MAST [83], both popular methods that have 
been shown to be competitive in benchmarking studies [61, 62, 85] (and are included in 
Seurat [25]).

To compare the ability of these methods to discover differentially expressed genes, we 
simulated RNA molecule count data for 10,000 genes and 200 cells in which 98% of cells 
were attributed to a single topic, with roughly the same number of cells assigned to each 
of the two topics (with membership proportions of 99% or greater). Note that although 
half the simulated genes had different expression levels in the two topics, most of these 
expression differences were small, and therefore the methods were not expected to iden-
tify most expression differences. This mimics the typical situation in gene expression 
studies whereby most expression differences are small. Molecule counts were simulated 
using a Poisson measurement model so that variation in expression across cells was due 
to either measurement error or true differences in expression levels between the two 
groups. For all DE analyses, we took group/topic assignments to be known so that incor-
rect assignment of cells to topics was not a source of error. Other aspects of the simu-
lations were chosen to emulate molecule count data from scRNA-seq studies (see the 
“Methods” section). We repeated the simulations 20 times, and summarized the results 
of the DE analyses in Fig. 5 (also Additional file 1: Figs. S2, S3).

DESeq2 and the GoM DE analysis have several features in common: both are based 
on a Poisson model, and both use adaptive shrinkage [82, 84] to improve accuracy of 
the LFC estimates and test statistics. Therefore, we expected the GoM DE results to 
closely resemble DESeq2 in these simulations. Indeed, both methods produced nearly 
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identical posterior mean LFC estimates, posterior z-scores (Fig. 5A, B), and s-values 
(Additional file 1: Fig. S3) and achieved very similar performance (Fig. 5C). Although 
DESeq2 additionally estimates an overdispersion level for each gene, in these simu-
lations, DESeq2 correctly determined that the level of overdispersion was small for 
genes with large expression differences, which explains the strong similarity of the 
LFC estimates and posterior z-scores. MAST, owing to an approach that is very dif-
ferent from DESeq2 and the GoM DE analysis, yielded estimates that were less similar 
(Additional file 1, Fig. S3), yet achieved comparable performance (Fig. 5C).

Next, we evaluated the GoM DE analysis methods in data sets in which the cells had 
varying degrees of membership to multiple topics. Since existing DE methods can-
not handle the situation in which there are partial memberships to groups, we mainly 
sought to verify that the method behaves as expected in the ideal setting when data 
sets are simulated from the topic model (2). To provide some baseline for compari-
son, we also applied the method of Dey et al. [47], which is not strictly a DE analysis 
method but does provide a ranking of genes by their “distinctiveness” in each topic. 
This ranking is based on a simple Kullback-Leibler (K-L) divergence measure; large 
K-L divergences should signal large differences in expression, as well as high overall 
levels of expression, so large K-L divergences should correspond to small DE p-val-
ues. Since the K-L divergence is not a signed measure, we omitted tests for negative 
expression differences from the evaluations, which was roughly half of the total num-
ber of possible tests for differential expression.

We performed 20 simulations with K = 2 topics and n = 200 cells and another 20 
simulations with K = 6 topics and n = 1,000 cells. To simplify evaluation, all genes 
either had the same rate of expression in all topics, or the rate was different in exactly 
one topic. As a result, the total number of expression differences in each data set was 
roughly the same regardless of the number of simulated topics. Other aspects of the 
simulations were kept the same as the first set of simulations (see Methods). Similar 
to before, we took the membership proportions to be known so that mis-estimation 

Fig. 5  Evaluation of DE analysis methods in single-cell expression data sets in which cells were simulated 
from two groups without partial membership to these groups. A and B compare posterior mean LFC 
estimates and posterior z-scores returned by DESeq2 [79] and GoM DE. Each plot shows 200,000 points for 
10,000 genes × 20 simulated data sets. C summarizes performance in identifying differentially expressed 
genes in all simulated data sets; it plots power and false discovery rates (FDR) for the three methods 
compared as the p-value (MAST [83]), s-value (DESeq2), or lfsr threshold (GoM DE) is varied from 0 to 1. Power 
and FDR are calculated from the number of true positives (TP), false positives (FP), true negatives (TN), and 
false negatives (FN) as FDR = FP/(TP + FP) and power = TP/(TP + FN). See also Additional file 1: Figs. S2, S3
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of the membership proportions would not be source of error in the GoM DE analysis 
and in calculation of the K-L divergence scores.

The largest K-L divergence scores in the simulated data sets reliably recovered true 
expression differences (Fig. 6A, E). Therefore, the K-L divergence scores achieved good 
true positives rates (i.e., good power) at low false positive rates, FPR = FP/(TN + FP) 
(see Fig. 5 for notation). However, for DE analysis, a more relevant performance meas-
ure is the false discovery rate, FDR = FP/(TP+ FP) . Because the K-L divergence score 
does not fully account for uncertainty in the unknown gene expression differences, many 
genes with no expression differences among topics were also highly ranked, leading to 
poor FDR control (Fig. 6D, H). By contrast, the GoM DE analysis better accounted for 
uncertainty in the unknown expression levels. The GoM DE analysis also more accu-
rately recovered true expression differences at small p-values or s-values (Fig. 6B, C, F, 
G) and therefore obtained much lower false discovery rates at corresponding levels of 
power (Fig. 6D, H). Comparing the GoM DE analysis with and without adaptive shrink-
age, the adaptive shrinkage did not necessarily lead to better performance (Fig. 6D, H) 
but did provide more directly interpretable measures of significance (s-values or local 
false sign rates) by shrinking the LFC estimates and adapting the rate of shrinkage to the 
data; for example, the expression differences were shrunk more strongly in the K = 6 
data sets, correctly reflecting the much smaller proportion of true expression differences 
(compare Fig. 6C and G).

Fig. 6  Evaluation of methods for identifying expression differences in single-cell expression data sets in 
which cells were simulated with partial membership to 2 topics (A–D) or 6 topics (E–H). Methods compared 
are the Kullback-Leibler (K-L) divergence score of [47] and GoM DE with adaptive shrinkage (s-values, lfsr) and 
without adaptive shrinkage (p-values). The left-most panels (A, E) show the distribution of K-L divergence 
scores for all candidate expression differences (approximately half of 10,000 genes × 2 or 6 topics × 20 
simulated data sets), shown separately for true expression differences (dark blue) and non-differences 
(orange). K-L divergence scores smaller than 10−8 are plotted as 10−8 . Similarly, B, C, F, and G show the 
distribution of GoM DE p-values or s-values with or without adaptive shrinkage, separately among differences 
and non-differences. D and H summarize performance in identifying expression differences; it shows power 
and FDR as the GoM DE p-value or lfsr are varied from 0 to 1 or as the K-L divergence score is varied from 
large to small. Note that in E and G, some bar heights are actually larger than 25,000 but are cut off at 25,000 
for better visualization
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Case study: scRNA‑seq epithelial airway data from Montoro et al. (2018)

We reanalyzed scRNA-seq data for n = 7193 single cells sampled from the tracheal epi-
thelium in wild-type mice [86]. The original analysis [86] used a combination of meth-
ods, including t-SNE, community detection [87], diffusion maps [88], and partitioning 
around medoids (PAM) to identify 7 epithelial cell types: abundant basal and secretory 
(club) cells; rare, specialized epithelial cell types, including ciliated, neuroendocrine and 
tuft cells; a novel subpopulation of “ionocytes”; and a novel basal-to-club transitional 
cell type, “hillock” cells. Although not large in comparison to other modern single-cell 
data sets, this data set is challenging to analyze, with complex structure, and a mixture of 
abundant and rare cell types. In contrast to the PBMC data set, there are no existing cell 
annotations to interpret the topics, so we must rely on inferences made from the expres-
sion data alone to make sense of the results.

The topic model fit to the UMI counts with K = 7 topics is shown in Fig.  7A, and 
the results of the GoM DE analysis and subsequent GSEA are summarized in Fig.  7. 

Fig. 7  Structure in mouse epithelial airway data (n = 7193 cells [86]) inferred from topic modeling (A, B), 
and GoM DE analysis (D) of selected topics using the membership proportions matrix L shown in A. In C, 
the topics are annotated by selected distinctive genes (numbers in parentheses are posterior mean l.e. LFCs) 
and selected enriched gene sets (numbers in parentheses are posterior mean estimates of the enrichment 
coefficients). In A, to better visualize the rare cell types, the cells were divided into two groups, “abundant” 
and “rare,” based on the estimated membership proportions, then the “abundant” cells were subsampled. 
The Structure plot in B was obtained by fitting another topic model, with K = 5 topics, to rare epithelial cell 
types (defined as the subset of 637 cells i with at least 10% membership to topic 6). The volcano plots show 
posterior estimates of l.e. LFC vs. posterior z-scores for 18,388 genes. A small number of genes with extreme 
posterior z-scores are shown with smaller posterior z-scores so that they fit within the y-axis range. See also 
the interactive volcano plots (Additional file 5: S6), GoM DE results (Additional file 2: Table S2, Additional file 1: 
Figs. S6; S7), and GSEA results (Additional file 3: Tables S5, S6)
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Although we do not have cell labels to compare with, distinctive genes emerging from 
the GoM DE analysis help connect some of the topics to known cell types. For example, 
the most abundant topics correspond well with predominant epithelial cell types in the 
lung: topic 1 shows strong overexpression of basal cell marker gene Krt5 [89] (posterior 
mean l.e. LFC = 4.62) and distinctive genes in topics 2 and 3 include key secretory genes 
in club cells such as Bpifa1/Splunc1 [90] (l.e. LFC = 4.93) and Scgb1a1 [91] (l.e. LFC = 
5.90).

The “hillock” transitional cells, which were originally identified via a diffusion maps 
analysis [86], emerge as a single topic (topic 4, cyan), with Krt13 (l.e. LFC = 8.04) and 
Krt4 (l.e. LFC = 5.46) being among the most distinctive genes. The transitional nature 
of these cells is evoked by their mixed membership; only 237 out of the 7193 cells have > 
90% membership to this topic.

Other less abundant epithelial cell types emerge as separate topics once a topic model 
is fit separately to the subpopulation of these rare cell types (Fig.  7B). These topics 
recover ciliated cells (topics 8, 9; Ccdc153, posterior l.e. LFC = 5.39), neuroendocrine 
cells (topic 10; Chga, l.e. LFC = 6.92), and tuft cells (topic 11; Trpm5, l.e. LFC = 6.94). 
Note that Foxi1+ ionocytes were previously identified as a novel cell type from a small 
cluster of 26 cells [86], but our analysis failed to distinguish this very rare cell type from 
the neuroendocrine cells (Additional file 1: Figs. S4, S5).

The topics also capture biologically relevant continuous substructure in club cells (top-
ics 2 and 3) and ciliated cells (topics 8 and 9) that was not discovered in the original 
analysis [86]. This continuous substructure may be reflective of finer scale cell differ-
entiation or specialization of function. In particular, we interpret topic 3 as capturing 
“canonical” or “mature” (Scgb1a1+, l.e. LFC = 5.90) club cells [90], with negative regula-
tion of inflammation, whereas cells with greater membership to topic 2 are “club-like” 
(Bpifa1/Splunc1+, l.e. LFC = 3.94) [89, 91]. Topic 9, similarly, appears to represent 
“canonical” ciliated cells, featuring upregulated genes such as such as Ccdc67/Deup1 
( l.e. LFC = 4.82 ) and Ccdc34 (3.29) [89, 92, 93], and enrichment of Gene Ontology 
terms [94] such as cilium organization (GO:0044782) and axonemal dynein inner arm 
assembly (GO:0036159).

In summary, by taking a topic-model-based approach we identified and annotated 
well-characterized cell types such as basal cells, as well less distinct but potentially inter-
esting substructures such as “Hillock” cells and club cell subtypes.

Case study: Mouse sci‑ATAC‑seq Atlas data from Cusanovich et al. (2018)

We reanalyzed data from the Mouse sci-ATAC-seq Atlas [97], comprising 81,173 single 
cells in 13 tissues. First, to provide an overview of the primary structure in the whole 
data set, we fit a topic model with K = 13 topics to these data. The topics correspond 
closely to the clusters identified in [97] (Additional file 1: Fig. S8), and several different 
tissues are distinguished by different topics (Fig. 8A). For the 4 tissues that have repli-
cates, the replicates show a similar composition of the topics (Fig. 8A).

Next, we performed a more detailed analysis of just the kidney (6431 cells), fitting a 
topic model with K = 10 to just these cells. We focussed on the kidney cells because, as 
noted previously [97, 98], both expression and chromatin accessibility vary in relation 
to the spatial organization of the renal tubular cells, and we predicted that this spatial 
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structure could be better captured by topics rather than by traditional clustering meth-
ods. To interpret these topics obtained from chromatin accessibility data, we first used 
the GoM DE analysis to identify differentially accessible peaks for each topic; then, we 
used “co-accessibility” as predicted by Cicero [95, 97] to connect genes to peaks rep-
resenting distal regulated sites. Finally, we performed a simple enrichment analysis to 
identify the “distinctive genes” for each topic, which we defined as the genes with many 
distal regulatory sites that were differentially accessible.

The results of these analyses are shown in Fig. 8. Many of the distinctive genes (Fig. 8, 
Additional file 1: Fig. S9, Additional file 6: Table S7) clearly relate topics to known kid-
ney cell types. For example, topic 1 is enriched for genes Klf5 and Elf5 which relate to 
the collecting duct [98, 99]; topic 3 is enriched for genes Umod and Slc12a1 associated 
with the loop of Henle [98, 100]); and topics 2, 6, and 7 are respectively enriched for 

Fig. 8  A Structure in Mouse Atlas sci-ATAC-seq data (n = 81,173) inferred from topic modeling, with K = 13 
topics. B Topic model fit to kidney cells (n = 6,431) with K = 10 topics. C, D Gene-based enrichment analysis 
of differentially accessible peaks for the kidney cell topics shown in B, in which peaks are linked to genes 
using Cicero [95]. In A, the cells are grouped by tissue, and replicates (for bone marrow, large intestine, lung 
and whole brain) are shown as separate tissues. Numbers in parentheses next to each tissue give the number 
of cells in that tissue. In D, marker genes for S1 (topic 4) and S3 (topic 5) proximal epithelial tubular cells are 
highlighted in red (see Table 1 of [96]). “Mean l.e. LFC” is the average l.e. LFC among all peaks connected to 
the gene, restricted to l.e. LFCs with lfsr < 0.05. Log-Bayes factors greater than 200 are shown as 200 in the 
volcano plots. See Additional file 1: Fig. S9 and Additional file 6: Table S7 for more gene enrichment results. In 
B, the cells are subdivided into 5 groups (a–f ) only to improve visualization. See also Additional file 1: Fig. S10 
which compares the topics in B to cell-type predictions based on clustering [97]
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genes related to the distal convoluted tubule (Wnk1), podocytes (Col1a2) and glomeru-
lar endothelial cells (Ptprb).

Most interestingly, spatial organization of the proximal tubule is captured by two 
topics; topic 4 is enriched for Slc5a2 (also known as Sglt2) and Slc2a2 (also known as 
Glut2), associated with the S1 segment of the proximal tube [96, 101, 102], and topic 5 is 
enriched for Slc5a8 (Smct1) and Atp11a, related to the S3 segment [96, 103]. This result 
illustrates the ability of the topic model to capture continuous variation in membership 
of two somewhat complementary processes, which traditional clustering methods are 
not designed for.

Case study: chromatin accessibility profiles of the hematopoietic system from Buenrostro 

et al. (2018)

Buenrostro et al. [104] studied 2034 single-cell ATAC-seq profiles of 10 cell populations 
isolated by FACS to characterize regulation of the human hematopoietic system. Both 
PCA and t-SNE showed, visually, the expected structure into the main developmental 
branches (Fig. 2 in [104]). However, neither PCA nor t-SNE isolated these branches as 
individual dimensions of the embedding. Identifying these branches may allow for more 
precise characterization of the underlying regulatory patterns. Here, by fitting a topic 
model to the data, the main developmental branches are identified as individual topics 
(Fig. 9A): topic 3, pDC; topic 4, erythroid (MEP); topic 5, lymphoid (CLP); and topic 6, 
myeloid (GMP and monocytes). Another topic captures the cells at the top of the devel-
opmental path (topic 1; HSC and MPP). Other cells at intermediate points in the devel-
opmental trajectory, such as CMP, GMP and LMPP cells, are more heterogeneous, and 
this is reflected by their high variation in topic membership.

Fig. 9  Structure in human hematopoietic system data [104] (n = 2034 cells) inferred from the topic model 
with K = 10 topics (A) and HOMER motif enrichment analysis [105] applied to the results of the GoM 
DE analysis (B). In the Structure plot, the cells are grouped by FACS, as well as an unknown population 
from human bone marrow [104]. B shows HOMER enrichment results for selected motifs (for the full 
results, see Additional file 7: Table S8). Acronyms used: common lymphoid progenitor (CLP); common 
myeloid progenitor (CMP); granulocyte-macrophage progenitor (GMP); hematopoietic stem cell (HSC); 
lymphoid-primed multipotent progenitor (LMPP); megakaryocytic-erythroid progenitor (MEP); multi-potent 
progenitor (MPP); plasmacytoid dendritic cells (pDC)
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To better interpret the regulatory patterns behind each topic, we identified transcrip-
tion factor (TF) motifs that were enriched for differentially accessible regions in each 
topic (Fig.  9B, Additional file  7: Table  S8). Many of the top TF motifs (as ranked by 
HOMER p-values [105]) point toward regulation of the main developmental trajectories, 
such as EBF motifs in topic 5 (lymphoid), CEBP motifs in topics 6 and 7 (myeloid), and 
Hox motifs in topic 1 (HSC and MPP cells). A few topics (topics 8–10) are much less 
abundant and do not align well with the FACS cell types, and their motif enrichment 
results were correspondingly more difficult to interpret.

A complication that arose in analyzing these data, which was also noted in [104], is 
that the cells were obtained from different sources, and this shows up as systematic vari-
ation in the chromatin accessibility. This donor effect is captured by topics 1 and 2 in 
HSC and MPP cells and, to a lesser extent, in CMP and LMPP cells (Additional file 1: 
Fig. S11). Topic 1 is enriched for Jun and Fos TF motifs, similar to what was found in 
[104].

Discussion
The GoM DE analysis is part of a topic-model-based pipeline for analysis of single-cell 
RNA-seq [47] or ATAC-seq data [49]. This pipeline includes the following steps: (1) fit 
a topic model to the data; (2) visualize the structure inferred by the topic model; (3) run 
the GoM DE analysis with the estimated topics; and, optionally, (4) perform other down-
stream analyses using the results of the GoM DE analysis, e.g., gene set enrichment anal-
ysis (for RNA-seq data) or motif enrichment analysis (for ATAC-seq data). Unlike most 
analysis pipelines for clustering and dimensionality reduction (e.g., [4, 19, 23, 26, 27]), 
the topic-model-based pipeline is directly applied to the “raw” count data and therefore 
does not require an initial step to transform and normalize the data which can lead to 
downstream issues in the statistical analysis [8, 106–108]. We presented several case 
studies illustrating the use of the topic-model-based pipeline to analyze single-cell RNA-
seq and ATAC-seq data sets. From these case studies, we have drawn a few lessons on 
the practical challenges that may arise in applying topic modeling approaches to single-
cell data, and we share these lessons here (see also [47, 49] for related discussion).

One practical question is how to choose K, the number of topics. Many papers have 
suggested different criteria for determining K. Our view, following [47], is that there is 
no single “best” K, and we recognize the advantages of learning topics at multiple set-
tings of K; in some data sets, different Ks can reveal structure at different levels of granu-
larity (for example, increasing the number of topics in the Mouse sci-ATAC-seq Atlas 
data revealed more structure within tissues; see https://​tinyu​rl.​com/​2p99s​wdk). We have 
found that it is often helpful to start with a smaller K to elucidate the less granular struc-
ture, which is often easier to interpret, then rerun the topic modeling with larger K to 
identify finer structure.

We proposed annotating topics by distinctive genes identified using the l.e. LFC. One 
drawback is that this does not reveal the commonalities that may exist among multi-
ple topics, for example, topics corresponding to subpopulations within a common class 
of cells. A simple alternative to the l.e. LFC, which is also implemented in the fast-
Topics R package, is to compare against expression under the “null model” (see the 

https://tinyurl.com/2p99swdk
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“Methods”). We view this as a complementary LFC metric that may reveal additional 
insights into the topics.

Donor, batch or other technical effects in the single-cell RNA-seq or ATAC-seq data 
can complicate the analysis and interpretation of the topics if these effects are not 
small. Since these effects are usually not known, usually we must assess their impact 
indirectly [109]. For example, the Mouse sci-ATAC-seq Atlas data included several 
replicates, but the replicate effects appeared to be small judging by the fact that the 
replicates showed a similar composition of topics. By contrast, the donor effects in 
the human hematopoietic system data were much larger, and in the topic model, 
these donor effects were at least partially captured by individual topics. The broader 
question of how to deal with non-ignorable donor or batch effects—in particular, how 
to separate technical effects from biological effects of interest—remains a question 
of considerable debate and continued investigation [25, 39, 109–116]. In particular, 
it has been noted that attempting to “correct” for effects can sometimes remove dif-
ferences that we would like to learn about such as differences in cell-type proportions 
among the batches.

For modeling UMI counts, an open question is whether the Poisson or multino-
mial model (1) is sufficient or whether more flexible models are needed (this ques-
tion was investigated in [69] for single-gene models, but not for multi-gene models). 
Alternative models such as the negative binomial [117] or Poisson log-normal [80, 
118], which can capture additional random variation (“overdispersion”) in underlying 
expression or measurement error, may result in more robust estimation of the topics.

In single-cell ATAC-seq data, the GoM DE analysis identifies differentially acces-
sible peaks or regions. Usually, these peak-level results need to be translated into 
biological units that are more useful for annotating the topics (e.g., genes, gene sets, 
transcription factors). In the analysis of the hematopoietic system single-cell ATAC-
seq data, we used HOMER [105] to identify TF motifs enriched for differentially 
accessible peaks. In the analysis of the Mouse sci-ATAC-seq Atlas data, we identified 
genes enriched for differentially accessible distal regularity sites. Clearly, the quality 
of the gene enrichment results will depend on our ability to accurately associate peaks 
with genes. For this, we used the scores computed in [97] using Cicero [95]. However, 
there are now several alternatives to Cicero that may be preferred [19, 27, 28, 119–
122], and in principle any of these approaches could be combined with the peak-level 
GoM DE results to identify relevant genes.

Recently developed technologies profile both transcription and chromatin accessi-
bility in single cells [123, 124]. For such data, one could fit two topic models, one to 
the RNA-seq data and another to the ATAC-seq data. With a careful initialization 
of the topic model fitting algorithm, the topics may be more consistent across the 
two modalities. But it would be preferrable to analyze the multimodal data jointly 
for improved accuracy [125–130]. Potentially, the strategy used in MOFA [131, 132] 
could be adapted for topic modeling—that is, the transcripts and accessibility profiles 
would share the same membership proportions, L , but each modality would have a 
different F . However, it remains to be seen how well this strategy works in practice.
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Conclusions
To summarize, we have described a new method that aids in annotating and interpre-
tating the “parts” of cells learned by fitting a topic model to scRNA-seq data or single-
cell ATAC-seq data. Our method, GoM DE (differential expression analysis allowing 
for grades of membership), can be viewed as an extension of existing differential 
expression methods that allows for mixed membership to multiple groups or topics.

Methods
Models for single‑cell ATAC‑seq data

In single-cell ATAC-seq data, xij is the number of unique reads mapping to peak or 
region j in cell i. Although xij can take non-negative integer values, it is common to 
“binarize” the accessibility data (e.g., [19, 74, 133–135]), meaning that xij = 1 when at 
least one read in cell i maps to region j and xij = 0 otherwise. For this reason, one might 
prefer to model the binarized accessibility values as binomial (Bernoulli) random vari-
ables. A multinomial model, on the other hand, should better capture the sampling pro-
cess for reads mapping to regions but does not account for the truncation of read counts 
above 1. Therefore, we view both the binomial and multinomial models as approxima-
tions. As we explain next, under reasonable assumptions the binomial and multinomial 
models are similar to each other so it may not matter which model one chooses.

The multinomial topic model for analyzing single-cell ATAC-seq data was suggested 
by [49]. They assumed the multinomial model (1) in which the xij s are binarized acces-
sibility values instead of UMI counts.

A binomial model was proposed in [74],

where ti > 0 is a cell-specific factor that depends on sequencing coverage and other 
properties (e.g., amplification, read post-processing [136]), rj > 0 is a region-specific 
factor (say, proportional to the size of the region), and the θij s capture additional vari-
ation in accessibility across cells and regions. Moving forward, we make the simplifying 
assumption that the regions are all approximately the same size; that is, rj = 1 for all 
j = 1, . . . ,m.

The binomial model (8) is closely related to a multinomial model. To make the connec-
tion, we first note that the binomial model with rj = 1 for all j can be approximated by a 
Poisson model,

This will be a good approximation when the θij s are small and the cell-specific factors 
ti are large, which is usually the case in single-cell ATAC-seq data. Next, we note that 
the Poisson model (9) and multinomial model (1) are closely related if we choose the 
size factors to be ti = si [69, 137]; this implies � ≈ � , where � is the n×m matrix with 
entries θij . By these arguments, the binomial model (8) (also the model used in [74]) and 
the multinomial model (1) (also the model used in [49]) are similar, and connecting the 
two models clarifies the assumptions made by each of the models. In particular, the mul-
tinomial topic model (1–2) used here and in [49] assumes a low-rank structure in the θij s 
across cells and regions; i.e., � ≈ LF

T.

(8)xij ∼ Binom(1, tirjθij),

(9)xij ∼ Pois(tiθij).
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Differential expression analysis allowing for grades of membership

Derivation of GoM DE model

In the “Methods overview,” we motivated the GoM DE model (3) as extending a basic 
Poisson model expression to allow for partial membership to K groups or topics. The 
GoM DE model can also be motivated from an approximation to the topic model. 
Recall, the topic model, is a multinomial model (1) in which the multinomial prob-
abilities πij are given by affine combinations of the expression levels fjk in the K top-
ics, πij =

∑K
k=1 lik fjk . The non-negativity constraints lik ≥ 0, fjk ≥ 0 and sum-to-one 

constraints 
∑K

k=1 lik = 1,
∑p

j=1 fjk = 1 ensure that the πij s are multinomial probabilities. 
From a basic identity relating the multinomial and Poisson distributions [138, 139], the 
multinomial likelihood for the topic model can be replaced with a likelihood formed by a 
simple product of independent Poissons, that is,

where xi = (xi1, . . . , xim) and π i = (πi1, . . . ,πim) . The approximation then comes from 
no longer requiring the πij s to be multinomial probabilities by removing the constraint 
that f1k + · · · + fmk = 1 . This allows us to analyze the genes j = 1, . . . ,m independently. 
This is a good approximation so long as si is large and the fjk s are small (a similar approx-
imation was used for GLM-PCA [8]). To be explicit about this approximation, we say 
πij ≈ θij (which are no longer guaranteed to be multinomial probabilities) and fjk ≈ pjk 
(which are no longer guaranteed to sum to one), resulting in the GoM DE model, which 
for convenience we restate here:

“Null” model

The simplest Poisson model of the form (3) is one in which θij is the same across all cells 
i, that is, θij = pj0 for all i = 1, . . . , n . We treat this a “null” model, which can be used to 
make certain comparisons, e.g., to estimate changes in expression in relative to expres-
sion in all cells. The maximum-likelihood estimate (MLE) of pj0 under the null model is

Estimation of log‑fold change

In practice, we have found the l.e. LFC to work well, so in our results we use the l.e. LFC. 
But the l.e. LFC may not be appropriate in all circumstances, and for this reason ,we note 
that the GoM DE analysis framework is quite general and accommodates alternatives 
to the l.e. LFC. Two alternatives are implemented in the software. One alternative is to 
compare with the “null” model,

(10)Multinomial(xi; si,π i) ∝

m
∏

j=1

Pois(xij; siπij),

(11)
xij ∼ Poisson(siθij),

θij =
∑K

k=1 likpjk .

(12)p̂j0 =

∑n
i=1 xij

∑n
i=1 si

.
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Another treats one topic l as a “reference topic”, and compares all other topics k  = l to 
l using (4).

Maximum‑likelihood estimation

A convenience of the Poisson model allowing for grades of membership is that we can 
reuse Poisson NMF computations (described below and in more detail in [48]) to com-
pute MLEs of the unknowns pjk : if we consider all genes j = 1, . . . ,m simultaneously, 
we recover a Poisson NMF model, xij ∼ Poisson(�ij), �ij =

∑K
k=1 hikwjk , by setting 

hik = silik , wjk = pjk . Therefore, we can reuse the Poisson NMF algorithms to compute 
MLEs of the unknowns pjk.

Maximum a posteriori estimation

To improve numerical stability in the parameter estimation, we compute maximum a 
posteriori (MAP) estimates of pj1, . . . , pjK  in which each pjk is assigned a gamma prior, 
pjk ∼ Gamma(α,β) , with α = 1+ ε , β = 1 , and ε > 0 . Typically, ε will be some small, 
positive number, e.g., ε = 0.1 . Here, we use the parameterization of the gamma distribu-
tion from [140] in which α is the shape parameter and β is the inverse scale parameter; 
under this parameterization, the mean is α/β and the variance is α/β2 . The maximum-
likelihood computations can be reused for MAP estimation with this gamma prior by 
adding “pseudocounts” to the data; specifically, MAP estimation of pj1, . . . , pjK  given 
counts x1j , . . . , xnj and membership proportions L and is equivalent to maximum-likeli-
hood estimation of pj1, . . . , pjK  given counts x1j , . . . , xnj , ε, . . . , ε and membership pro-

portions matrix 
[

L

IK

]

 , where IK  is the K × K  identity matrix. Unless otherwise stated, 

we added ε = 0.1 pseudocounts to the data.

Quantifying uncertainty and stabilizing LFC estimates

We implemented a simple Markov chain Monte Carlo (MCMC) algorithm [141, 142] 
to quantify uncertainty in the LFC estimates. Although normal approximations to 
likelihoods are typically used by DE methods to quickly obtain analytical measures of 
uncertainty (e.g., standard errors, confidence intervals) for LFCs, we found that normal 
approximations to the likelihoods from (5) were sometimes poorly behaved, particularly 
for lowly expressed genes. Another consideration was that the analytical solutions pro-
vide confidence intervals for the unknowns pjk , but ultimately we are interested in quan-
tifying uncertainty in the l.e. LFCs (6) which do not have a simple linear relationship to 
the pjk s. Therefore, it is unclear whether the standard analytical solutions can be applied 
to the l.e. LFCs without making further approximations or simplifications.

MCMC is typically computationally intensive, but with careful implementation (e.g., 
use of sparse matrix operations and multithreaded computations) the MCMC algorithm 
is quite fast. Other benefits of using MCMC is that the algorithm can straightforwardly 

(13)LFCnull
k (j) := log2

pjk

pj0
.
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accommodate different choices of LFC statistics and no normality assumptions are 
needed.

The basic idea behind the MCMC algorithm is as follows: for a given gene j, simulate 
the posterior distribution of the LFC statistic by performing a “random walk” on 
g j = (gj1, . . . , gjK ) , where gjk := log pjk , k = 1, . . . ,K  . The random walk generates a 
sequence of states g1j , . . . , g

(ns)
j  , in which ns denotes the pre-specified length of the simu-

lated Markov chain. After choosing an initial state g(0)j  , each new state g(s+1)
j  is gener-

ated from the current state g(s)j  by the following procedure: first, a topic k ∈ {1, . . . ,K } is 
chosen uniformly at random; next, a proposed state g⋆j  is generated as g⋆jk = gjk + δ , 
δ ∼ N (0, σ 2) , with g⋆jk ′ = gjk ′ for all k ′ �= k . Assuming an (improper) uniform prior for 
the unknowns, Pr(pjk) ∝ 1 , the proposed state is accepted into the Markov chain with 
probability

in which xj is the jth column of the counts matrix X , xj = (x1j , . . . , xnj) , and Pr(xj | pj) is 
the likelihood at pj , Pr(xj | pj) =

∏n
i=1 Poisson(xi; siθi)  (note that xj may include pseu-

docounts). The standard deviation of the Gaussian proposal distribution, σ , is a tuning 
parameter (unless otherwise stated, we used σ = 0.3 ) The additional p⋆jk/p

(s)
jk  term in the 

acceptance probability is needed to account for the fact that we are simulating the log-
transformed parameters g j , not pj ([143], p. 11). When the proposal is not accepted, the 
new state is simply copied from the previous state, g(s+1)

j = g
(s)
j .

Most of the effort in running the MCMC goes into computing the acceptance prob-
abilities (14), so we have carefully optimized these computations. For example, we have 
taken advantage of the fact that the count vectors xj are typically very sparse. Addition-
ally, these computations can be performed in parallel since the Markov chains are simu-
lated independently for each gene j.

Once Monte Carlo samples g(s) , for s = 1, . . . , ns , have been simulated by this ran-
dom-walk MCMC, we compute posterior mean LFC estimates and quantify uncer-
tainty in the LFC estimates. For example, expressing the l.e. LFC for gene j and topic k 
as a function of the unknowns, LFCl.e.

k (pj) , the posterior mean l.e. LFCs are calculated as 
E[LFCl.e.

k (pj)] ≈
∑ns

s=1 LFC
l.e.
k (p

(s)
j )/ns.

The final step in the GoM DE analysis is to perform adaptive shrinkage [82] to stabilize 
the posterior mean estimates. To implement this step, we used the ash function from 
the ashr R package [144]. We used the same settings as DESeq2 to replicate as closely 
as possible the performance of DESeq2 with adaptive shrinkage. DESeq2 calls ash with 
method = “shrink”, which sets the prior to be a mixture of uniforms without a 
point-mass at zero.

The adaptive shrinkage method takes as input a collection of effect estimates β̂1, . . . , β̂m 
and associated standard errors ŝ1, . . . , ŝm . In this setting, it is not immediately obvious 
what are the standard errors, in part because the posterior distribution of the unknowns 
is not always symmetric about the mean or median. To provide a reasonable substitute 
summarizing uncertainty in the estimates, we computed Monte Carlo estimates of high-
est posterior density (HPD) intervals. A (1− α) HPD interval is the smallest interval that 
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contains 100(1− α)% of the probability mass [145, 146]. Specifically, let [ajk , bjk ] denote 
the (1− α) HPD interval for the LFC estimate of gene j in topic k, and let β̂jk denote 
the posterior mean. We defined the standard error as ŝjk = bjk − β̂jk when β̂jk < 0 ; oth-
erwise, ŝjk = β̂jk − ajk . Defining the standard errors in this way prevented overshrink-
ing of estimates that were uncertain but had little overlap with zero. We set the size of 
the HPD intervals to 1− α = 0.68 so that the ŝjk would recover conventional standard 
error calculations when the posterior distribubtion is well approximated by the normal 
distribution. The revised posterior means and standard errors returned by the adaptive 
shrinkage method were then used by ashr to calculate test statistics including posterior 
z-scores (defined as the posterior mean divided by the posterior standard error [147]), 
local false sign rates (lfsr), and s-values.

An important question is the choice of ns . One heuristic way to assess whether ns is 
large enough is to perform two independent MCMC runs initialized with different pseu-
dorandom number generator states (“seeds”) and check consistency of the posterior 
estimates from the two runs (we checked consistency of the posterior estimates after 
stabilizing the estimates using adaptive shrinkage, as described above). In simulated data 
sets (below), comparison of two independent MCMC runs suggested that ns = 10,000 
was sufficient to obtain reasonably accurate estimates of posterior means and poste-
rior z-scores for all genes (Additional file  1: Fig.  S2). Therefore, we performed initial 
MCMC simulations for all single-cell data sets using ns = 10,000 . The runtimes for per-
forming these MCMC simulations on the single-cell data sets (described below), with 
ns = 10,000 , are given in Table 1.

Although this consistency check suggested that running a simulation with ns = 10,000 
would be “good enough,” to provide additional assurance we performed another con-
sistency assessment in the PBMC data set. We found that even better consistency was 
achieved with ns = 100,000 (Additional file 1: Fig. S12). Therefore, to provide more reli-
able results, the final GoM DE results were generated with ns = 100,000.

The GoM DE analysis methods are implemented in the de_analysis function in 
the fastTopics package [148].

Single‑cell data sets

All data sets analyzed were stored as sparse n×m matrices X , where n was the number 
of cells and m was the number of genes or regions. The data sets are summarized in 
Table 1.

Table 1  GoM DE simulation running times for the single-cell data sets with ns = 10, 000 simulation 
states; n is the number of cells, m is the number of genes or accessibility peaks analyzed, and K is the 
number of topics. See “Computing environment” for more details

Data set n m K runtime

PBMC [29] 94,655 21,952 6 5.1 h

Epithelial airway [86] 7193 18,388 7 1.0 h

Mouse Atlas, kidney only [97] 6431 270,864 10 3.2 h

Hematopoietic system [104] 2034 126,719 10 1.1 h
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Preparation of scRNA‑seq data

Since the topic model is a multinomial model of count data, no log-normalization or 
other transformation of the scRNA-seq molecule counts was needed. Furthermore, we 
kept all genes other than those with no variation in the data set (this is done in part to 
demonstrate that our methods are robust to including genes with little variation). Also 
note that due to the use of sparse matrix techniques in our software implementations, 
including genes with low variation did not greatly increase computational effort.

Preparation of single‑cell ATAC‑seq data

As previously suggested [19, 133–135]), we “binarized” the single-cell ATAC-seq data, 
that is, we assigned xij = 1 (“accessible”) when least one fragment in cell i mapped to 
peak or region j; otherwise, xij = 0 (“inaccessible”). There are at least a couple reasons 
for doing this. For small peaks (say, < 5 kb), read counts do not provide a reliable quanti-
tative measure of accessibility in single cells. This is because the (random) first insertion 
restricts the space for subsequent insertions. Additionally, insertions could occur within 
the same site on the same allele or on each of the two alleles, complicating interpretation 
of the read counts.

Like the RNA molecule count data (see above), we kept all regions except those that 
showed no variation.

PBMC data from Zheng et al. (2017)

We combined reference transcriptome profiles generated from 10 bead-enriched 
subpopulations of PBMCs (donor A) processed using Cell Ranger 1.1.0 [29, 149]. We 
downloaded the “Gene/cell matrix (filtered)” tar.gz file from the 10x Genomics web-
site for each of the following 10 FACS-purified data sets: CD14+ monocytes, CD19+ 
B cells, CD34+ cells, CD4+ helper T Cells, CD4+/CD25+ regulatory T Cells, CD4+/
CD45RA+/CD25- naive T cells, CD4+/CD45RO+ memory T Cells, CD56+ natural 
killer cells, CD8+ cytotoxic T cells, and CD8+/CD45RA+ naive cytotoxic T cells. After 
combining these 10 data sets, then filtering out unexpressed genes, the combined data 
set contained molecule counts for 94,655 cells and 21,952 genes; 97.1% of the molecule 
counts were zero.

In Fig. 1, the 54,132 cells from these data sets were labeled as “T cells”: CD4+ helper T 
Cells, CD4+/CD25+ regulatory T Cells, CD4+/CD45RA+/CD25- naive T cells, CD4+/
CD45RO+ memory T Cells, and CD8+/CD45RA+ naive cytotoxic T cells.

Epithelial airway data from Montoro et al. (2018)

We analyzed a mouse epithelial airway data set from [86, 150]. These were gene expres-
sion profiles of trachea epithelial cells in C57BL/6 mice obtained using droplet-based 
3′ scRNA-seq, processed using the GemCode Single Cell Platform. We downloaded file 
GSE103354_Trachea_droplet_UMIcounts.txt.gz. This file also contained the 
cluster assignments that we compared with (in [86], the samples were subdivided into 7 
clusters using a community detection algorithm). After removing genes that were not 
expressed in any of the cells, the data set contained molecule counts for 7193 cells and 
18,388 genes (90.7% of counts were zero).



Page 23 of 37Carbonetto et al. Genome Biology          (2023) 24:236 	

Mouse Atlas data from Cusanovich et al. (2018)

Cusanovich et al. [97] profiled chromatin accessibility by single-cell combinatorial index-
ing ATAC-seq (sci-ATAC-seq) [151, 152] in nuclei from 13 distinct tissues of a 8-week-
old male C57BL/6J mouse. Replicates for 4 of the 13 tissues were obtained by profiling 
chromatin accessibility in a second mouse. We downloaded the (sparse) binarized peak 
× cell matrix in RDS format, atac_matrix.binary.qc_filtered.rds, from the 
Mouse sci-ATAC-seq Atlas website [153]. We also downloaded cell_metadata.txt 
which included cell types estimated by a clustering of the cells (see Table S1 in [97]). The 
full data set used in our analysis (13 tissues, including 4 replicated tissues) consisted of 
the binary accessibility values for 81,173 cells and 436,206 peaks (1.2% overall rate of 
accessibility). Note that all peaks had fragments mapping to at least 40 cells, so no extra 
step was taken to filter out peaks.

Separately, we analyzed the sci-ATAC-seq data from kidney only, in which peaks with 
fragments mapping to fewer than 20 kidney cells were removed, resulting in data set 
containing binary accessibility values for 6431 cells and 270,864 peaks. Base-pair posi-
tions of the peaks were based on Mouse Genome Assembly mm9 (NCBI and Mouse 
Genome Sequencing Consortium, Build 37, July 2007).

From the Mouse sci-ATAC-seq website, we also downloaded the file master_cic-
ero_conns.rds containing the Cicero co-accessibility predictions [95, 153], which we 
used to link chromatin accessibility peaks to genes. For the kidney data, we connected a 
peak given in the “Peak2” column of the Cicero co-accessibility data table to a gene given 
in the “peak1.tss.gene_id” column if the “cluster” column was 11, 18, 22, or 25 (these four 
clusters were the main kidney-related clusters identified in [97]). This extracted, for each 
gene, the distal and proximal sites connected to the gene associated with Peak1 (specifi-
cally, a gene in which the transcription start site overlaps with Peak1). Among the 22,194 
genes associated with at least one peak, the median number of peaks connected to a 
gene was 19, and the largest number of peaks was 179 (for Bahcc1 on chromosome 11). 
Among the 270,864 peaks included in the topic modeling analysis, 113,489 (42%) were 
connected to at least one gene, 95% of peaks were connected to 10 genes or fewer, and 
the largest number of connected genes was 60.

Human hematopoietic system data from Buenrostro et al. (2018)

Buenrostro et  al. [104] used FACS to isolate 10 hematopoietic cell populations from 
human bone marrow and blood; then, the cells were assayed using single-cell ATAC-seq. 
The processed single-cell ATAC-seq data were downloaded from [154], specifically file 
GSE96769_scATACseq_counts.txt.gz containing the fragment counts and file 
GSE96769_PeakFile_20160207.bed.gz containing peaks obtained from bulk 
ATAC-seq data [104]. Although there may be benefits to calling peaks using aggregated 
single-cell data instead [155], we used the original accessibility data based on the bulk 
ATAC-seq peaks so that our analysis was more directly comparable to the analysis of 
[104].

Following [104, 155], we extracted the 2034 samples passing quality control filters; 
then, we “binarized” the counts. The list of 2034 cells considered “high quality” was 
obtained from file metadata.tsv included in the online benchmarking repository 
[155]. After removing peaks with fragments mapping to fewer than 20 cells, the final 
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data set used in our analysis consisted of binary accessibility values for 2034 cells and 
126,719 peaks (4.6% overall rate of accessibility). Base-pair positions of the peaks were 
based on human genome assembly 19 (Genome Reference Consortium Human Build 37, 
February 2009).

In [104], a large, patient-specific batch effect was identified in the accessibility profiles 
for the HSC cells, and therefore, steps were taken in [104] to normalize the accessibility 
data before performing PCA. We instead fit the topic model to the unnormalized binary 
accessibility values, in part to find out how well the topic model can cope with the com-
plication of a batch effect. In agreement with [104], this batch effect is at least partly cap-
tured by the topics, although in our analysis, the batch effect also appeared in MPP cells 
and, to a lesser extent, in CMP cells (Additional file 1: Fig. S11).

Fitting the topic models

In brief, we took the following steps to fit a topic model. All these steps are implemented 
in the R package fastTopics.

First, we fit a Poisson NMF model [37, 156],

where � ∈ R
n×m is a matrix of the same dimension as X with entries �ij ≥ 0 giving the 

Poisson rates for the counts xij . The parameters of the Poisson NMF model are stored as 
two matrices, H ∈ R

n×K  , W ∈ R
m×K  , with non-negative entries hik ,wjk . fastTopics 

has efficient implementations of algorithms for computing maximum-likelihood esti-
mates (MLEs) of W,H [48].

Second, we recovered MLEs of F,L from MLEs of W,H by a simple reparameteriza-
tion [48].

In an empirical comparison of Poisson NMF algorithms with count data sets, includ-
ing scRNA-seq data sets [48], we found that a simple co-ordinate descent (CD) algo-
rithm [157, 158], when accelerated with the extrapolation method of Ang and Gillis 
[159], almost always produced the best Poisson NMF (and topic model) fits, and in 
the least amount of time. To confirm this, we compared topic model fits obtained by 
running the same four algorithms that were compared in [48]—EM and CD, with and 
without extrapolation—on the PBMC data set and assessed the quality of the fits. We 
evaluated the model fits in two ways: using the likelihood and using the residuals of the 
Karush-Kuhn-Tucker (KKT) first-order conditions (the residuals of the KKT system 
should vanish as the algorithm approaches maximum-likelihood estimates of W,H ). 
Following [48], to reduce the possibility that multiple optimizations converge to different 
local maxima of the likelihood, which could complicate these comparisons, we first ran 
1000 EM updates; then, we examined the performance of the algorithms after this ini-
tialization phase (Additional file 1: Figs. S13, S14). Consistent with [48], the extrapolated 
CD updates always produced the best fit, or at the very least a fit that was no worse than 
the other algorithms, and almost always converged on a solution more quickly than the 
other algorithms. Therefore, subsequently we used the extrapolated CD updates to fit 
the topic models.

(15)
xij ∼ Poisson(�ij)

� = HW
T ,
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In more detail, the pipeline for fitting topic models consisted of the following steps: (1) 
initialize W using Topic-SCORE [160], (2) perform 10 CD updates of H , with W fixed, (3) 
perform 1000 EM updates (without extrapolation) to get close to a solution (“prefitting 
phase”), (4) run an additional 1000 extrapolated CD updates to improve the fit (“refine-
ment phase”), and (5) recover F,L from W,H by a simple transformation. The prefitting 
phase was implemented by calling fit_poisson_nmf from fastTopics with these 
settings: numiter = 1000, method = “em”, control = list(numiter = 
4). The refinement phase was implemented with a second call to fit_poisson_nmf, 
with numiter = 1000, method = “scd”, control = list(numiter = 
4,extrapolate = TRUE), in which the model fit was initialized using the fit from 
the prefitting phase. The topic model fit was recovered by calling poisson2multinom 
in fastTopics. Note that only the estimates of L were used in the GoM DE analysis.

For each data set, we fit topic models with different choices of K and compared the fits 
for each K by comparing their likelihoods (Additional file 1: Fig. S5).

Visualizing the membership proportions

The membership proportions matrix L can be viewed as an embedding of the cells 
i = 1, . . . , n in a continuous space with K − 1 dimensions [50] (it is K − 1 dimensions 
because of the constraint that the membership proportions for each cell must add up to 
1). A simple way to visualize this embedding in 2-d is to apply a nonlinear dimensional-
ity reduction technique such as t-SNE [11, 161] or UMAP [12] to L ([49] used t-SNE). 
We have also found that plotting principal components (PCs) of the membership pro-
portions can be an effective way to explore the structure inferred by the topic model 
(Additional file 1: Figs. S1, S4). However, we view these visualization techniques as pri-
marily for exploration, and a more powerful approach is to visualize all K − 1 dimensions 
simultaneously using a Structure plot [70, 71]. Here, we describe some improvements to 
the Structure plot for better visualization. These improvements are implemented in the 
structure_plot function in fastTopics.

When cells were labeled, we compared topics against labels by grouping the cells by 
these labels in the Structure plot. We then applied t-SNE to the L matrix, separately for 
each group, to arrange the cells on a line within each group. For this, we used the R 
package Rtsne [162] (in fastTopics, we also implemented options to arrange the 
cells in each group using UMAP or PCA, but in our experience we found that UMAP 
and PCA produced “noisier” visualizations).

Arranging the cells by 1-d t-SNE worked best for smaller groups of cells with less 
complex structure. For large groups of cells, or for unlabeled single-cell data sets, we 
randomly subsampled the cells to reduce t-SNE runtime (when cells number in the thou-
sands, it is nearly impossible to distinguish individual cells in the Structure plot any-
how). Even with this subsampling, the Structure plot sometimes did not show fine-scale 
substructures or rare cell types. Therefore, in more complex cases, we first subdivided 
the cells into smaller groups based on the membership proportions, then ran t-SNE on 
these smaller groups. These groups were either identified visually from PCs of L or in a 
more automated way by running k-means on PCs of L (see [163]).
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Gene enrichment analysis based on differential accessibility of peaks connected to genes

Here, we describe a simple approach to obtain gene-level statistics from the results of a 
differential accessibility analysis. This approach was applied in the topic modeling analy-
sis of the Mouse Atlas kidney cells.

Cusanovich et  al. [97] used the Cicero co-accessibility predictions and the bina-
rized single-cell ATAC-seq data to compute a “gene activity score” Rki for each 
gene k and cell i. Here, we have a related but different goal: we would like to use the 
results of the differential accessibility analysis, which generates differential acces-
sibility estimates and related statistics for each peak and each topic, to rank genes 
according to their importance to a given topic. A difficulty, however, with ranking 
the genes is that the Cicero co-accessibility predictions are uncertain, and they are 
only partially informative about which peaks are relevant to a gene. In aggregate, 
however, the expectation is that the “most interesting” genes will be genes that are 
(a) predicted by Cicero to be connected many peaks that are differentially accessible 
and (b) the differences in accessibility are mainly in the same direction. This sug-
gests an enrichment analysis in which, for each gene, we test for enrichment of dif-
ferential acccessibility among the peaks connected to that gene. Here, we describe a 
simple enrichment analysis for (a) and (b).

For (a), we computed a Bayes factor [164] measuring the support for the hypoth-
esis that at least one of the peaks is differentially accessible (the LFC is not zero) 
against the null hypothesis that none of the peaks are differentially accessible. For 
(b), we computed the average LFC among all differentially accessible peaks (that is, 
peaks with nonzero LFC according to some significance criterion).

We implemented this gene enrichment analysis by running adaptive shrinkage [82] 
separately for each gene and topic. This had the benefit of adapting the shrinkage 
separately to each gene in each topic. In particular, in comparison to the usual adap-
tive shrinkage step for a GoM DE analysis (see above), it avoided overshrinking dif-
ferences for genes exhibiting strong patterns of differential accessibility. We took the 
following steps to implement this adaptive shrinkage analysis. First, we ran function 
ash from the ashr package [144] once on the posterior mean l.e. LFC estimates β̂jk 
and their standard errors ŝjk for all topics k and all peaks j, with settings mixcom-
pdist = “normal”, method = “shrink”. This was done only to determine 
the variances in the mixture prior and to get a “default” model fit to be used in the 
subsequent adaptive shrinkage analyses.

Next, we ran ash separately for gene and each topic k using the l.e. LFC estimates 
β̂jk and standard errors ŝjk from the peaks j connected to that gene. We set the vari-
ances in the mixture prior to the variances determined from all the l.e. LFC esti-
mates, and used ash settings mixcompdist = “normal” and pointmass = 
FALSE. One issue with running adaptive shrinkage using only the l.e. LFC estimates 
for the peaks connected to a gene is that some genes have few Cicero connections, 
leading to potentially unstable fits and unreliable posterior estimates. We addressed 
this issue by encouraging the fits toward the “default model” that was fitted to all 
genes and all topics; specifically, we set the Dirichlet prior on the mixture propor-
tions to be Dirichlet(α1, . . . ,αK ) with prior sample sizes αk = 1.01+ n0π̂

default
k  , where 

here K denotes the number of components of the prior mixture (not the number of 
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topics), π̂default
k  denotes the kth mixture proportion in the adaptive shrinkage prior 

for the fitted “default” model, and n0 = 20 . This stabilized the fits for genes with 
few Cicero connections while still allowing some ability to adapt to genes with many 
connections.

Finally, we used the logLR output from ash as a measure of support for enrich-
ment (this is the Bayes factor on the log-scale), and we computed the mean l.e. LFC 
as the average of the posterior mean estimates of the l.e. LFCs taken over all peaks j 
connected to the gene and with posterior lfsr < 0.05.

Motif enrichment analysis for differentially accessible regions

We used HOMER [105] to identify transcription factor (TF) motifs enriched for dif-
ferentially accessible regions, separately for each topic estimated from the single-cell 
ATAC-seq data. For each topic k = 1, . . . ,K  , we applied the HOMER Motif Analysis 
tool findMotifsGenome.pl to estimate motif enrichment in differentially accessible 
regions; specifically, we took “differentially accessible regions” to be those with p-value 
less than 0.05 in the GoM DE analysis (Additional file 1: Fig. S16). These differentially 
accessible regions were stored in a BED file positions.bed. The exact call from the 
command-line shell was findMotifsGenome.pl positions.bed hg19 homer 
-len 8,10,12 -size 200 -mis 2 -S 25 -p 4 -h.

Note that the adaptive shrinkage step was skipped in the GoM DE analysis, so these 
are the p-values for the unmoderated l.e. LFC estimates. The reason for skipping the 
adaptive shrinkage step is that the shrinkage is performed uniformly for the LFC esti-
mates for all regions, and since the vast majority of regions have l.e. LFC estimates are 
that are indistinguishable from zero, the result is that very few differentially accessible 
regions remain shrinkage.

Gene sets

Human and mouse gene sets for the gene set enrichment analyses (GSEA) were com-
piled from the following gene set databases: NCBI BioSystems [165], Pathway Com-
mons [166, 167], and MSigDB [168–170], which includes Gene Ontology (GO) gene 
sets [94, 171]. Specifically, we downloaded bsid2info.gz and biosystems_gene.
gz from the NCBI FTP site (https://​ftp.​ncbi.​nih.​gov/​gene) on March 22, 2020; Path-
wayCommons12.All.hgnc.gmt.gz from the Pathway Commons website (https://​
www.​pathw​aycom​mons.​org) on March 20, 2020; and msigdb_v7.2.xml.gz from the 
MSigDB website (https://​www.​gsea-​msigdb.​org) on October 15, 2020. For the gene set 
enrichment analyses, we also downloaded human and mouse gene information (“gene 
info”) files Homo_sapiens.gene_info.gz and Mus_musculus.gene_info.gz 
from the NCBI FTP site on October 15, 2020. Put together, we obtained 37,856 human 
gene sets and 33,380 mouse gene sets. In practice, we filtered gene sets based on certain 
criteria before running the GSEA. To facilitate integration of these gene sets into our 
analyses, we have compiled these gene sets into an R package [172].

https://ftp.ncbi.nih.gov/gene
https://www.pathwaycommons.org
https://www.pathwaycommons.org
https://www.gsea-msigdb.org
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Gene set enrichment analysis

We took a simple multiple linear regression approach to the gene set enrichment analy-
sis (GSEA), in which we modeled the l.e. LFC estimate for gene i in a given topic, here 
denoted by yi , as yi = µi +

∑n
j=1 xijbj + ei , ei ∼ N (0, σ 2) , in which xij ∈ {0, 1} indicates 

gene set membership; xij = 1 if gene i belongs to gene set j, otherwise xij = 0 (we rep-
resented the gene-set membership as a sparse matrix since most xij s are zero). Here, n 
denotes the number of candidate gene sets, and σ 2 is the residual variance to be esti-
mated. The idea behind this simple approach was that the most relevant gene sets are 
those that best explain the log-fold changes yi , and therefore, in the multiple regression, 
we sought to identify these gene sets by finding coefficients bj that were nonzero with 
high probability. See [173, 174] for similar ideas using logistic regression. Additionally, 
since many genes were typically differentially expressed in a given topic, modeling LFCs 
helped distinguish among DE genes that showed only a slight increase in expression 
versus those that were highly overexpressed [175, 176]. Of course, this simple multiple 
linear approach ignores uncertainty in the LFC estimates yi , which is accounted for in 
most gene set enrichment analyses. We addressed this issue by shrinking the l.e. LFC 
estimates prior to running the GSEA, that is, we took yi to be the the posterior mean LFC 
estimate after applying adaptive shrinkage, as described above (see the “Quantifying 
uncertainty and stabilizing LFC estimates” section). The result was that genes that we 
were more uncertain about had have an l.e. LFC estimate yi that was zero or near zero.

We implemented this multiple linear regression approach using SuSiE (susieR ver-
sion 0.12.10) [177]. A benefit to using SuSiE is that it automatically organized similar 
or redundant gene sets into “credible sets” (CSs), making it easier to quickly recognize 
complementary gene sets; see [178–183] for related ideas.

In detail, the GSEA was performed as follows. We performed a separate GSEA for 
each topic, k = 1, . . . ,K  . Specifically, for each topic k, we ran the susieR function 
susie with the following options: L = 10, intercept = TRUE, standard-
ize = FALSE, estimate_residual_variance = TRUE, refine = FALSE, 
compute_univariate_zscore = FALSE and min_abs_corr = 0. We set L 
= 10 so that SuSiE returned at most 10 credible sets. For a given topic k, we reported 
a gene set as being enriched if it was included in at least one CS. We organized the 
enriched gene sets by (95%) credible sets. We also recorded the Bayes factor for each 
CS, which gives a measure of the level of support for that CS. For each gene set included 
in a CS, we reported the posterior inclusion probability (PIP) and the posterior mean 
estimate of the regression coefficient bj . In the results, we refer to bj as the “enrichment 
coefficient” for gene set j since it is an estimate of the expected increase in the l.e. LFC 
for genes that belong to gene set j relative to genes that do not belong to the gene set.

Table 2  Number of gene sets included in each GSEA

Data set All gene sets Curated only

PBMC 23,193 12,225

Mouse epithelial airway 20,917 9946

    —rare epithelial cell types only 20,288 9450
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Often, a CS contained only one gene set, in which case the PIP for that gene set was 
close to 1. In several other cases, the CS contained multiple similar gene sets; in these 
cases, the smaller PIPs indicated that it was difficult to choose among the gene sets 
because they are similar to each other (note that the sum of the PIPs in a 95% CS should 
always be above 0.95 and less than 1). Occasionally, SuSiE returned a CS with a small 
Bayes factor containing a very large number of gene sets. We excluded such CSs from 
the results.

We repeated these gene set enrichment analyses with two collections of gene sets: 
(1) all gene sets other than the MSigDB collections C1, C3, C4, and C6 and “archived” 
MSigDB gene sets and (2) only gene sets from curated pathway databases, specifically 
Pathway Commons, NCBI BioSystems and “canonical pathways” (CP) in the MSigDB C2 
collection, and Gene Ontology (GO) gene sets in the MSigDB C5 collection. In all cases, 
we removed gene sets with fewer than 10 genes and with more than 400 genes. Table 2 
gives the exact number of gene sets included in each GSEA.

Simulations

For evaluating the DE analysis methods, we generated matrices of UMI counts X ∈ R
n×m 

for m = 10,000 genes and n = 200 or n = 1000 cells. We simulated the UMI counts xij 
from a Poisson NMF model (15) in which W and H were chosen to emulate UMI counts 
from scRNA-seq experiments.

The matrices W and H were generated as follows. First, for each cell i, we gener-
ated membership proportions li1, . . . , liK  then set hik = silik , for k = 1, . . . ,K  , where si 
is the total UMI count. To simulate the wide range of total UMI counts often seen in 
scRNA-seq data sets, total UMI counts si were normally distributed on the log-scale, 
si = 10ui ,ui ∼ N (0, 1/5) , where N (µ, σ) denotes the univariate normal distribution with 
mean µ and standard deviation σ.

Membership proportions lik for each cell i were generated so as to obtain a wide range 
of mixed memberships, according to the following procedure: the number of nonzero 
proportions was set to K ′ ∈ {1, . . . ,K } with probability 2−K ′ ; the K ′ selected topics 
t1, . . . , tK ′ ⊆ {1, . . . ,K } were drawn uniformly at random (without replacement) from 
1, . . . ,K  ; then, the membership proportions for the selected topics were set to 1 when 
K ′ = 1 , or, when K ′ > 1 , they were drawn from the Dirichlet distribution with shape 
parameters αt1 , . . . ,αtK ′.

Expression rates wjk were generated so as to emulate the wide distribution of gene 
expression levels observed in single-cell data sets and to allow for differences in expres-
sion rates among topics. The procedure for generating the expression rates for each gene 
j was as follows: with probability 0.5, the expression rates were the same across all topics 
and were generated as fj1 = · · · = fjK = 2vj , vj ∼ N (−4, 2) . Otherwise, with probability 
0.5, the expression rates were the same in all topics except for one topic. The differ-
ing topic k ′ was chosen uniformly at random from 1, . . . ,K  ; then, the expression rate 
for topic k ′ was set to fjk ′ = 2vj+ej , ej ∼ N (0, 1) . As a result, the expression rates were 
roughly normally distributed on the log-scale, and the expression differences were also 
normally distributed on the log-scale. About half of genes had an expression difference 
among the topics.
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Using this simulation procedure, we generated three collections of data sets. The simu-
lation settings were altered slightly for each collection. In the first, data sets were simu-
lated with K = 2 , α = (1/100, 1/100) , n = 200 so that most membership proportions 
were equal or very close to 0 or 1. In the second, we used K = 2 , α = (1, 1) , n = 200 
to allow for a range of mixed memberships. In the third, we generated data sets with 
K = 6 , α = (1, . . . , 1) , n = 1,000.

For the data sets simulated with K = 2 , α = (1/100, 1/100) , the cells could essentially 
be subdivided into two groups. Therefore, we ran MAST [83, 184] and DESeq2 [78, 84] to 
test for genes that were differentially expressed between the two groups. MAST (R pack-
age version 1.20.0) was called via the FindMarkers interface in Seurat [25] (Seurat 
4.0.3, SeuratObject 4.0.2) with the following settings: ident.1 = “2” ,ident.2 
= NULL, test.use = “MAST”, logfc.threshold = 0, min.pct = 0. 
DESeq was called from the DESeq2 R package (version 1.34.0) using settings recom-
mended in the package vignette: test = “LRT”, reduced = ∼1, useT = TRUE, 
minmu = 1e-6, minReplicatesForReplace = Inf. Size factors were calcu-
lated using the calculateSumFactors method from scran version 1.22.1 [23]. The 
LFC estimates returned by DESeq were subsequently revised using adaptive shrinkage 
[82] by calling lfcShrink in DESeq2 with type = “ashr”, svalue = TRUE (as 
in the GoM DE analysis, the DESeq2 posterior z-scores were defined as the posterior 
means divided by the posterior standard errors returned by the adaptive shrinkage).

To perform the GoM DE analysis in each of the simulations, we first fit a Poisson NMF 
model to the simulated counts X using fit_poisson_nmf from the fastTopics R 
package [48, 148] (version 0.6-97). The loadings matrix H was fixed to the matrix used 
to simulate the data, and W was estimated by running 40 co-ordinate ascent updates on 
W alone (update.loadings = NULL, method = “scd”, numiter = 40). The 
equivalent topic model fit was then recovered. Three GoM DE analyses were performed 
using the de_analysis function from the fastTopics R package, with the topic 
model fit provided as input: one analysis without adaptive shrinkage (shrink.method 
= “none”), and two analyses with adaptive shrinkage (shrink.method = “ash”, 
ashr version 2.2-51 [144]) in which the MCMC was initialized with different pseudor-
andom number generator states. In all three runs, posterior calculations were performed 
with ns = 10,000, ε = 0.01 . Comparison of the two MCMC runs (with adaptive shrink-
age) suggested that ns = 10, 000 was sufficient to obtain reasonably accurate posterior 
estimates in these simulations (Additional file 1: Fig. S2).

Computing environment

Most computations on real data sets were run in R 3.5.1 [185], linked to the OpenBLAS 
0.2.19 optimized numerical libraries, on Linux machines (Scientific Linux 7.4) with Intel 
Xeon E5-2680v4 (“Broadwell”) processors. For performing the Poisson NMF optimiza-
tion, which included some multithreaded computations, as many as 8 CPUs and 16 GB 
of memory were used. The DESeq2 analysis of the PBMC data was performed in R 4.1.0, 
using 4 CPUs and 264 GB of memory. The evaluation of the DE analysis methods in sim-
ulated data sets was performed in R 4.1.0, using as many and 8 CPUs as 24 GB of mem-
ory. More details about the computing environment, including the R packages used, are 
recorded in the workflowr pages in the companion code repositories [186, 187].
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