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Abstract
Background  Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make 
comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple 
locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we 
systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, 
identifying differences and similarities in the data types, covariates, and modelling approaches used.

Methods  We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and 
yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit 
their model to real-world epidemiological data and make predictions to new spatial locations of some measure of 
population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.).

Results  We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral 
diseases, with a total of 176 papers published 2002–2022 with the largest increases shortly following major epidemics. 
Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess 
impacts of future global change, (ii) regional models used to predict the spread of major epidemics between 
countries and (iii) national and sub-national models that use local datasets to better understand transmission 
dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of 
covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly 
being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different 
domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance 
via out-of-sample validation procedures.

Conclusions  Here we show that approaches to map risk for different arboviruses have diversified in response to 
changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between 
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Background
Arboviruses, commonly referred to as arthropod-borne 
viruses, are a wide range of viral pathogens transmitted 
through the bite of arthropods such as mosquitoes and 
ticks. The term arbovirus does not refer to a distinct 
taxonomic group, but the viruses have similar transmis-
sion mechanisms, which makes information gained from 
one virus potentially useful in understanding and pre-
venting the spread of other viruses [1]. In this paper, we 
focus on Aedes (Stegomyia)-borne arboviruses, includ-
ing dengue, Zika, chikungunya, and yellow fever, which 
are of particular concern due to their high disease bur-
den and life-threatening health consequences [2]. The 
geographical spread and burden of this group of arbovi-
ruses have been rapidly increasing in recent years. It has 
been estimated that 100–400  million dengue infections 
occur each year worldwide, mainly in South America and 
South-East Asia (SE Asia), with the disease threatening 
to spread to new regions including Europe [3–5]. Zika 
and chikungunya viruses were first identified in Africa 
and Asia, but emerged and rapidly spread throughout the 
Americas between 2013 and 2015, likely due to a com-
bination of suitable climatic factors, increasing interna-
tional air travel and possible immunological drivers [6, 
7]. The Zika outbreak received global attention due to its 
link to congenital and neurological complications, result-
ing in the declaration of a Public Health Emergency of 
International Concern by the World Health Organization 
(WHO) in 2016 [7]. Chikungunya is frequently accom-
panied by joint pain and rheumatic manifestations that 
can persist for a long time and have a significant impact 
on the quality of life of affected individuals [4]. Yellow 
fever is endemic in tropical and subtropical countries of 
South America and Africa, with an estimated number of 
109,000 severe infections and 51,000 deaths in 2018 [8]. 
A sylvatic cycle between non-human primate reservoirs 
and mosquitoes is the most common source of yellow 
fever virus infection; however, humans can also become 
infected through the urban cycle, which can potentially 
lead to large outbreaks, as recently seen in Angola, Nige-
ria and the Democratic Republic of the Congo [8, 9]. As 
these Aedes-borne arboviruses share a common mecha-
nism of transmission, the WHO launched the Global 
Arbovirus Initiative in 2022, which includes the aim of 
developing a comprehensive risk monitoring and early 
detection tool that will allow countries to assess global 
risk of different Aedes-borne viruses, strengthen vec-
tor control, and develop global systems and strategies to 

monitor and reduce the risk in the local, regional, and 
national levels. This initiative identified reviewing the 
drivers of spatial arbovirus risk at global and regional lev-
els as a key priority.

Surveillance of arboviral diseases varies among coun-
tries, by clinical manifestations, and over time, but three 
main data types are used most commonly for risk map-
ping: disease occurrence, case incidence, and seropreva-
lence data. Occurrence data represent a specific location 
where one or more cases of a disease has occurred [10] 
(e.g. an outbreak report) and is often available even in 
otherwise data-sparse regions, but conveys limited infor-
mation about the magnitude of risk. Case incidence, as 
measured by traditional, largely passive disease surveil-
lance systems, provides more information on magnitude 
due to being denominator-based (e.g. cases per 1,000 
residents), but often underestimates the incidence of 
infection and is often not directly comparable between 
countries due to differing case definitions, health seeking 
patterns, health care and laboratory capacity, immuno-
logical landscape and surveillance systems. Age-specific 
community-representative seroprevalence survey data, 
when combined with models, can be used to estimate 
force of infection. This provides a less biased measure 
of long-term transmission risk, but is the least abundant 
data type and is subject to the limitations of serology in 
the context of cross-reactive flavivirus infections [11].

The geographic distribution and intensity of Aedes-
borne arbovirus transmission have been attributed to a 
combination of pathogen, environmental, demographic 
and socioeconomic factors such as climate change, 
urbanisation and local and international travel. Temper-
ature, in particular, is a frequently cited determinant of 
arbovirus transmission, as temperature drives all impor-
tant metabolic traits for vector mosquitoes to transmit 
the virus to humans [12]. Rapid unplanned urbanisation 
increases human population density, can create urban 
heat islands and can lead to inadequate water provision 
and solid waste disposal which favour the proliferation of 
both vectors and virus transmission [13]. Increasing trade 
has facilitated expansion of Aedes vectors while increas-
ing travel of humans has spread new viruses and virus 
sub-types into previously naive populations [14]. Finally, 
the level of local immunity also helps determine arbo-
viral transmission patterns. Immunity is driven by both 
demography and past pathogen circulation patterns and 
can vary substantially between populations. The inherent 
spatial and temporal patterns of arbovirus transmission 

different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus 
mapping.
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are therefore the result of the complex interactions of 
multiple factors, likely differing between arbovirus, loca-
tion and spatial scale.

A wide range of spatial modelling techniques has been 
developed to account for complexities in investigating 
the variations in geographic spread of Aedes-borne arbo-
virus infections. Broadly, these can be categorised into (i) 
data-driven approaches where flexible statistical mod-
els aim to recreate observed patterns with fewer built-in 
mechanistic assumptions about how variables are related 
to risk or (ii) process-driven approaches where assump-
tions about drivers and how they affect transmission are 
encoded in a mechanistic (mathematical) model, which 
is then fit to observational data. Due to data scarcity in 
many risk mapping applications, implementing statisti-
cal and mathematical models in Bayesian frameworks has 
become increasingly popular due to incorporating prior 
information and better representing uncertainty in their 
predictions.

Previous systematic reviews have been conducted to 
identify and characterise dengue transmission models 
focused on predicting trends over time (hindcasting with 
the goal of developing forecasting systems) as opposed to 
spatially explicit prediction (risk mapping) [15–17]. Some 
of these systematic reviews included risk mapping stud-
ies but they have been limited to just a single arbovirus, 
usually dengue [7, 18–20]. Although arbovirus risk map-
ping studies have become more diverse and advanced, 
to our knowledge, no review has systematically assessed 
these studies to identify best practices in the field, char-
acterise similarities and differences when mapping dif-
ferent arboviral diseases, identify knowledge gaps and 
develop recommendations for future arbovirus mapping 
studies. Therefore, this systematic review aims to address 
these unmet needs through systematically evaluating the 
epidemiological data, covariates, modelling frameworks 
and methods of evaluation used by arbovirus mapping 
studies.

Methods
This review employed a search strategy and inclusion and 
exclusion criteria based on the preferred reporting items 
for systematic reviews and meta-analyses (PRISMA) 
guidelines [21].

Search strategy
Four online bibliographic databases were searched: 
Embase, Global Health, Medline, and Web of Science. 
The final search was conducted on 15 June 2022 using 
institutional access from Oxford University. The search 
strategy included keywords and Medical Subject Head-
ings (MesH) related to different arboviral diseases 
(namely dengue, Zika, chikungunya, and yellow fever) 
and those related to prediction. Search terms included 

“(Dengue OR DENV OR Zika OR ZIKV OR Chikungu-
nya OR CHIKV OR Yellow fever OR YFV) AND (pre-
dict* OR forecast* OR map* OR driver*)”. Additionally, 
we manually searched the reference lists of articles and 
contacted experts in the field of arbovirus modelling to 
identify any studies not identified through the database 
search.

Selection process
Results from database searches were combined and 
stored using Zotero referencing software; duplicates were 
removed using R (version 4.2.2) [22] by comparing the 
Digital Object Identifier (DOI) numbers of each study. 
Titles and abstracts were screened independently by 
two team members. All identified papers were included 
in full-text review and irrelevant articles were excluded. 
Full-text review was completed and disagreements on 
inclusion were resolved by consensus.

Inclusion/exclusion criteria
Articles must be peer-reviewed, published in English and 
contain a spatial model that investigates the transmis-
sion of the arboviruses to humans. Spatial models were 
defined as models that included geographically realis-
tic and explicit representations of more than one spatial 
location. While our primary focus was to review spa-
tial models, spatiotemporal models were also included. 
There were no geographical or publishing date restric-
tions applied. We only included models that made pre-
dictions of some measure of the population-level virus 
infection risk, including but not limited to occurrence, 
incidence, prevalence, and derivatives of these measures 
(e.g. reproduction number). Studies where the model was 
developed and/or validated in a previous paper were also 
included.

Articles were excluded if they did not fit to or validate 
predictions using autochthonous human case data. Stud-
ies that only predicted suitability for the mosquito vec-
tors or non-human hosts were excluded. Articles that 
predicted mosquito-based virus transmission metrics, 
such as vectorial capacity, were excluded, unless they 
were combined with other variables in a model fit to or 
validated with autochthonous human case data. Stud-
ies were excluded if they had only descriptive mapping 
of incidence using geographic information systems.
Simulation-based and theoretical modelling studies were 
excluded unless their predictions of Aedes-borne disease 
transmission risk (as opposed to model parameters) were 
validated using data from real-world settings. Confer-
ence and workshop proceedings were excluded, as were 
review articles. This systematic review is registered on 
PROSPERO (reference: CRD42022343032).
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Data extraction
The following variables were extracted from eligible 
articles:

 	– study identification (title, author names, year of 
publication, study area, disease studied);

	– model characteristics (type of model used, 
covariates included, covariates tested and not 
included, spatiotemporal resolution, assessment of 
collinearity);

	– model validation (validation methods, metrics used 
to assess the model performance).

Analysis of the data and visualisations were carried 
out using R (version 4.2.2) [22]. The complete list of all 
included studies and data extracted from each study are 
available in Additional file 1.

Quality assessment
A quality assessment tool was developed using the EPI-
FORGE checklist (Additional file 2), a guideline for 
standardised reporting of epidemic forecasting and 
prediction research, to assess the reporting quality of 
included studies [23]. This guideline assesses whether 
studies report on the following domains: study goals, data 
sources, model characteristics and assumptions, model 

evaluation, and study generalisability. The nine criteria 
were equally weighted, each with a score of 0 (poor) to 2 
(good), for a maximum of 18 points. On the basis of the 
overall score, each paper was rated ‘low’ (< 10), ‘medium’ 
(10–12), ‘high’ (13–15) or ‘very high’ (> 15).

Results
A total of 16,625 records were retrieved from the data-
bases and 7,742 titles and abstracts screened after 
removing duplicates (Fig.  1). A total of 83 records were 
additionally identified through bibliographic searches 
and contacts with experts. Of 301 records, a total of 
125 studies were excluded. A total of 69 studies did not 
meet the inclusion criteria because they only included 
descriptive spatial analyses rather than models (n = 48), 
did not make predictions to more than one spatial loca-
tion (n = 13) or made temporal predictions only (n = 8). A 
total of 49 studies were excluded because they met our 
exclusion criteria as simulation-only studies (n = 14), 
only predicting the vector distribution (n = 10) or not fit-
ting or validating models to autochthonous human case 
data (n = 25). Full text manuscripts were unavailable for 
2 studies, a further 2 were published in languages out-
side the inclusion criteria and 3 studies were deleted 

Fig. 1  PRISMA flow chart
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because they addressed topics outside the scope of this 
review. One paper included two different models using 
different datasets so we counted it as two separate stud-
ies [24]. As a result, we identified 176 studies published 
between 2002 and 2022 that were ultimately included in 
the review (Fig. 1).

There has been a rapid increase in the number of arbo-
viral spatial modelling studies over the past 20 years, 
reflecting the growing public health priority of these 
diseases and increasing accessibility of data and model-
ling methods. There was an average of 1.7 studies pub-
lished per year before 2008, 4.6 studies per year between 
2008 and 2014 and 18.4 per year between 2015 and 2021 
(Fig. 2).

The distribution of risk mapping studies over geog-
raphy and by disease closely follow the abundance and 
availability of data. Using WHO Regions, a total of 41.5% 
(n = 73) of the studies were conducted in the Americas, 
followed by 21.0% (n = 37) in SE Asia and 17.3% (n = 30) 
in the Western Pacific region with a wide geographic 
diversity of studies over the past five years. Brazil (n = 35) 
was the most frequently studied country, followed by 
Colombia (n = 15) and Indonesia (n = 13). The diversity 
of regions studied has also increased: until 2014 studies 
tended to focus primarily on the Americas and West-
ern Pacific whereas since 2015 studies focusing on SE 

Asia and the global scale have been increasingly preva-
lent (Fig. 2). More than 70% (n = 125) of the studies mod-
elled dengue transmission, 19 (10.8%) modelled Zika, 15 
(8.5%) modelled yellow fever and seven (4.0%) chikungu-
nya. There were six (3.4%) studies that modelled the risk 
of dengue, Zika, and chikungunya together, while also 
modelling the diseases individually; two modelled den-
gue and Zika together and two modelled Zika and chi-
kungunya together.

Purpose of maps
The main groups of purposes or goals of risk maps vary 
depending on the specific disease and context, but can 
generally be grouped into four categories: (1) provid-
ing a broad overview of the spatial distribution of risk 
over long-term averages and suggesting how it might 
change under different scenarios of global changes in cli-
mate, economics, and demographics (e.g., [28, 29]); (2) 
predicting the spread of outbreaks and gaining a better 
understanding of major drivers of geographical spread 
(e.g., [30, 31]); (3) evaluating and planning vaccination 
programs by estimating disease burden and identifying 
high-risk areas at the continental or country-level scale 
(e.g., [32, 33]); and (4) informing planning and outbreak 
response by increasing the precision of risk estimates and 

Fig. 2  Number of included studies per year by study region. The brackets represent the key years for Aedes-borne arbovirus outbreaks, including chikun-
gunya in the Americas (2014–2015) [25], Zika in the Americas (2015–2016) [7], yellow fever in Brazil (2016–2019) and Angola and Democratic Republic of 
Congo (2015–2016) [26], and dengue in the Americas & SE Asia (2019–2020) [27]
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mapping sub-national risk using surveillance data (e.g., 
[34, 35]).

Data types
Most studies (n = 130, 73.9%) used case count data from 
routine passive surveillance to fit models, most often 
aggregated to the administrative district (admin2)- or 
province (admin1)-level (Fig. 3). Use of occurrence data 
was also widespread (n = 29, 16.5%), particularly for spe-
cific use cases, such as the generation of global suitability 
maps. There were only seven studies (4.0%) that included 
data from community-representative seroprevalence sur-
veys, and seven studies that included data from at least 
two different data types. The use of seroprevalence data 
was limited to dengue (n = 8) and yellow fever (n = 4), 
both resulting from widespread seroprevalence sur-
veys in preparation for, or to evaluate, vaccination pro-
grammes. Generally the paucity of any one data type for 
yellow fever meant a more equally distributed use of dif-
ferent data types in models and greater use of multiple 
types of data [8, 33, 36, 37] (Fig. 3).

Risk maps have been generated across a wide range 
of spatial scales from global to sub-national (Fig. 4). We 
identified 22 studies that produced global risk maps of 
various Aedes-borne arboviruses. Despite large gaps 

in data availability at the global scale, the majority 
(n = 18/22, 81.8%) of these global maps make high reso-
lution predictions at the pixel level, enabled by growing 
availability of high resolution remotely-sensed climate 
datasets (Fig. 5). For Zika, yellow fever, and chikungunya, 
maps were primarily focussed at a continent or national 
scale with a resolution between city-level and national-
level (Figs. 4 and 5), reflecting the more regional scope of 
their distribution (yellow fever in Africa) or high profile 
epidemics (the 2015–2016 Zika epidemic in the Ameri-
cas). While maps are available at all spatial scales for 
dengue, the majority of models (n = 82, 65.6%) are now 
at sub-national scale, usually at the resolution of city/
district (admin2) (Figs. 4 and 5). This reflects the increas-
ing application of these techniques to routinely collected 
case incidence data to provide country-specific recom-
mendations about targeting of control resources within 
countries based on the latest local data. There remain 
strong regional disparities in the scale and resolution of 
mapping efforts with many high-resolution and country-
specific maps in the Americas, while risk estimates for 
Africa are fewer, of comparatively lower resolution, and 
are typically derived from global or continent-level mod-
elling efforts (Figure S1, Additional file 3).

Fig. 3  Sources of epidemiological data used by diseases. Each cell represents the number and percentage of studies with the denominators summed 
vertically. Three studies did not specify the data source
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Fig. 5  Spatial resolution by geographical scope. Each cell represents the number and percentage of studies with the denominators summed horizontally. 
Eleven studies did not specify the spatial resolution

 

Fig. 4  Geographical scope by diseases. Each cell represents the number and percentage of studies with the denominators summed vertically
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Spatiotemporal prediction maps were often generated 
based on monthly or weekly intervals (Table S1, Addi-
tional file 3). The longest period of study was for 804 
months (67 years), while the shortest period of study was 

for 3 months, with an average of 128 months (10 years) 
and a median of 60 months (5 years). Studies tended to 
use data from periods with high numbers of reported 
cases, with dengue data concentrated in between 2010 
and 2015, Zika data between 2015 and 2016. For chikun-
gunya many studies use data from 2014 and for yellow 
fever the data used have been spread over time, with few 
studies using recent data from 2015 to 2020 (Figure S2, 
Additional file 3).

Covariates
Studies reviewed included a wide range of covariates in 
their models (Table 1). We grouped these into six main 
groups: climatic, demographic, socioeconomic, ecologi-
cal, environmental and spatiotemporal incidence.

Climatic variables were the most common group 
of covariates in models with temperature and rainfall 
dominating. More than half of the studies (n = 97, 55.1%) 
included temperature as a covariate while around 40% of 
studies had rainfall (n = 78, 44.3%). For temperature, the 
mean temperature (n = 78, 44.3%) was most frequently 
used, while for rainfall, the cumulative amount of rain 
fallen during the time period (n = 42, 23.9%) was more 
commonly included. Station-based data was the most 
popular data source for both temperature (n = 46) and 
rainfall (n = 36), with satellite images (e.g., NASA MODIS 
[38, 39], the Climate Prediction Center Morphing Tech-
nique [40, 41] and Global Precipitation Climatology 
Project [42, 43]) and the reanalysis and model assimila-
tion data (e.g., ERA5 [27, 36]) becoming popular. Tem-
perature and rainfall were better fit when lagged one or 
two months rather than unlagged [44–47]. Temperature 
and rainfall were considered as significant factors in most 
studies, but some studies showed that meteorological 
factors alone are not sufficient to explain spatial hetero-
geneity in disease transmission, which may be associ-
ated more with non-climatic factors [48–50]. Rather than 
rely on raw measures of temperature, 22 studies (12.5%) 
instead used “temperature suitability” of Aedes mosquito 
vectors, which incorporates a variety of different meth-
ods of modelling the temperature constraints on the vec-
tor and virus dynamics that are most critical for virus 
transmission [51]. Six studies used bioclimatic variables 
that encompassed annual temperature and precipitation 
ranges, seasonal fluctuations, as well as extreme or con-
straining factors that capture broader biological patterns 
[29, 52–56]. Four studies additionally used indicators 
associated with El Niño Southern Oscillation as covari-
ates [35, 57–59]. Examples of other climatic variables that 
were included in the reviewed models were diurnal tem-
perature range [8, 60, 61], atmospheric pressure [62, 63], 
wind speed [64, 65], and duration of sunshine [44, 66, 67].

Population density (n = 43, 24.4%) and age distribu-
tions (n = 25, 14.2%) were often considered in modelling 

Table 1  List of covariates included in the studies. Some articles 
are listed more than once
Covariates Number of 

studies
Per-
cent-
age 
(%)

Climatic factors
Temperature 97 55.1

  Mean temperature 78 44.3

  Min temperature 21 11.9

  Max temperature 16 9.1

Rainfall 78 44.3

  Total rainfall 42 23.9

  Mean rainfall 23 13.1

  Max rainfall 6 3.4

Humidity 25 14.2

Temperature suitability 22 12.5

Bioclimatic variables 6 3.4

El Niño Southern Oscillation 
Index

4 2.3

Soil moisture (water stress/
wetness)

4 2.3

Demographic factors
Population density 43 24.4

Age 25 14.2

Air travel 15 8.5

Human daily mobility 13 7.4

Vaccination coverage 7 4.0

Sex 7 4.0

Socio-economic factors
Gross domestic product 15 8.5

Household income 11 6.3

Education/literacy rate 6 3.4

Occupation and employment 
status

5 2.8

Socio-economic strata 6 3.4

Ecology
Non-human primates species 6 3.4

Location of breeding sites 4 2.3

Breteau index 3 1.7

Adult mosquito abundance 2 1.1

Environmental factors
Vegetation 27 15.3

Elevation/altitude 25 14.2

Urbanisation 22 12.5

Distance to roads, road density 14 8.0

Land use/land cover 13 7.4

Distance to water bodies/river 9 5.1

Spatiotemporal incidence
Case count across time periods 
and neighbouring regions

18 10.2
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arboviruses. Many studies found population density to 
be a significant covariate in their models, demonstrat-
ing a positive association with disease transmission, but 
some studies reported a negative [68, 69] or null asso-
ciation [45, 50, 70]. Human mobility between cities or 
countries (n = 15, 8.5%) was also considered by includ-
ing travel distance between regions [71, 72] or air travel 
passenger volume [73–76]. Some studies included daily 
human mobility data (n = 13, 7.4%%), mostly mapped at 
sub-national scale, with the aim of better representing 
short-distance high frequency movements such as daily 
commuting [77, 78]. Seven studies, for yellow fever and 
dengue, considered vaccination coverage and measures 
of population immunity from infection in their models 
[27, 33, 37, 53, 68, 79, 80].

The most common socio-economic variable was gross 
domestic product (GDP) (n = 15, 8.5%), followed by 
household poverty/income level (n = 11, 6.3%) and edu-
cation level (n = 6, 3.4%). A socio-economic strata or a 
composite index such as human development index, 
social advantage and disadvantage score (n = 6, 3.4%) 
were also included as socio-economic predictors in some 
of the reviewed models. Lower neighbourhood socio-
economic status was generally associated with increased 
risk of Aedes-borne arbovirus diseases; in regions with 
established arboviral circulation, community-level fac-
tors such as inadequate garbage collection, low income, 
and lack of access to health care were associated with ele-
vated risk of dengue infections [81–83].

For models fit at the sub-national scale to case inci-
dence data, accompanying direct measurements of the 
Aedes mosquito population improved model predictive 
performance. Breteau index (BI), which is defined as the 
number of positive containers per 100 houses, was used 
as a predictor in three studies [59, 84, 85]. Six studies 
included location of Aedes breeding sites in their mod-
els [77, 86–90]. The number of catches of female adult 
mosquitoes was included in two studies [63, 91]. In the 
absence of direct measurements of the vector abundance, 
modelled predictions of “suitability for Aedes mosquitoes 
[92]” have been used, particularly at broad global scales 
and to make early predictions for emerging Zika epidem-
ics. Six studies included the occurrence or species rich-
ness of non-human primates in modelling yellow fever [8, 
33, 38, 41, 68, 79].

The most common environmental variable was veg-
etation index (n = 27, 15.3%), followed by altitude/eleva-
tion (n = 25, 14.2%) and urbanisation (n = 22, 12.5%). 
Some studies found that vegetation was not a key pre-
dictor variable and had no association with dengue inci-
dence [39, 93], whereas those considering vegetation in 
modelling yellow fever generally found that there was a 
strong and significant vegetation-disease association 
possibly because of the greater role of the forest-fringe 

environment in driving spillover from non-human pri-
mate reservoirs [38, 40, 41, 69]. Road density and prox-
imity to the road were also included as a predictor in 14 
studies (8.0%). More generic categories of land use and 
land cover type have also been considered in another 13 
studies.

Disease incidence across time periods and neighbour-
ing regions were included as covariates in 18 studies 
(10.2%) to explain contemporaneous disease transmis-
sion. Several studies included past case counts lagged by 
one week to four months to improve temporal prediction 
accuracy [42, 57, 71, 94–96]. Source country’s disease 
incidence rate was included in studies estimating the risk 
of Zika virus spread and local transmission in the Ameri-
cas [73] and Asia-Pacific regions [74].

For each paper, we also examined whether the collin-
earity among covariates was checked and whether mod-
els retained covariates after conducting variable selection 
procedures. Among the 144 studies excluding those that 
used mechanistic models or only included random effect 
terms, only 31 studies (21.5%) tested different combina-
tions of covariates and checked the multicollinearity 
among them by calculating the correlation coefficient 
or variance inflation factor, or using principal compo-
nent analysis. There were 61 studies (42.4%) that did not 
include any process for selecting variables or checking 
collinearity (Table S2, Additional file 3). However, it is 
worth noting that some of these studies may have had a 
small number of covariates that were selected based on 
their known or cited ecological or theoretical relevance 
to disease transmission, which may explain the lack of 
variable selection process.

For the 31 studies that both checked the multicol-
linearity of covariates and performed variable selection, 
we summarised the retention rate of different groups of 
covariates in the final models (Fig. 6A) [8, 27, 32, 38, 44–
50, 52–54, 64, 65, 75, 81, 82, 89, 97–108]. Of 31 studies, 25 
studies (96.2%) retained climatic variables when tested. 
Only one study on dengue [107] tested all six categories 
and rejected demographic, ecological data and spatio-
temporal incidence. Apart from climatic variables, envi-
ronmental variables were the most commonly used, with 
21 studies tested and only three of them rejected, fol-
lowed by demographic (22 tested and 6 rejected), socio-
economic variables (14 tested but 5 rejected). Ecological 
data (7 tested and 2 rejected) and spatiotemporal inci-
dence (3 tested and 1 rejected) were the least tested and 
included (Fig.  6A). The most common combinations of 
retained categories were climatic, environmental, demog-
raphy, and socio-economic (n = 4) [47, 50, 100, 104]. For 
climatic variables, different measures of temperature and 
rainfall were tested in reviewed studies. Inclusion of tem-
perature in models differed between studies, with mean 
temperature often selected over minimum and maximum 
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Fig. 6  Covariates included and rejected. (a) Selected covariate categories; (b) climate variable selections. Mean T: mean temperature; Min T: minimum 
temperature; Max T: maximum temperature; T range: temperature range; Total R: total rainfall; Mean R: mean rainfall; Min R: minimum rainfall; Max R: maxi-
mum rainfall. The values in the bottom represent the number and percentage of studies tested and included the corresponding category of covariates
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temperature in nine out of 16 studies (Fig. 6B). We identi-
fied that any measures of rainfall (e.g., total or mean rain-
fall) was preferred over humidity but only seven studies 
examined the performance of models in which both vari-
ables were considered (Fig. 6B). We found that 29 stud-
ies have included lagged covariates in their models. The 
length of the lag periods tested for temperature, humidity 
and precipitation ranged from 0 to 16 weeks, with most 
being concentrated between 4 and 12 weeks (Figure S3, 
Additional file 3). The average lag periods for mean tem-
perature and precipitation tend to be longer in the Amer-
icas compared to Western Pacific and SE Asia (Figure S3, 
Additional file 3).

Modelling framework
Four classes of modelling methods were identified: sta-
tistical mixed effect models, statistical fixed effect mod-
els, machine learning and mechanistic models (Table S3, 
Additional file 3). Overall, the most common modelling 
approaches were types of statistical mixed effect mod-
els (n = 69, 39.2%), with generalised linear mixed models 
(GLMM) dominating (n = 59), followed by generalised 
additive mixed models (GAMM) (n = 5) and distributed 
lag non-linear models (DLNM) (n = 4). Mixed effect mod-
els were often preferred when using areal-type case count 
data aggregated over distinct geographical areas (e.g. 
administrative boundaries) (Fig. 7).

Statistical fixed effect models were used in 22.2% of 
studies, with generalised linear models (GLM) and geo-
graphically weighted regression (GWR) as the most used 
approaches. Since fixed effect models assume that all 
observations are independent, models used spatial vari-
ables to account for spatial relationships. For example, 
several studies included the coordinates (long, lat) of 
cases, households, or the centroid of a region [32, 36, 49, 
80, 109–111].

A variety of machine learning methods were employed 
in 27.3% of studies. The most frequently used machine 
learning methods were maximum entropy (MaxEnt) and 
boosted regression tree (BRT). They were often used 
when developing ecological niche or species distribu-
tion models using point-referenced occurrence data to 
describe the environmental suitability of arbovirus trans-
mission, and especially for larger geographical scales (e.g., 
international scale). Of 22 studies that developed a global 
risk map of different arbovirus transmission, eleven stud-
ies adopted machine learning methods, seven of which 
used either MaxEnt or BRT [3, 28, 29, 68, 112–114]. Six 
studies developed and compared the performance of dif-
ferent machine learning methods. For example, Jiang et 
al. (2018) adapted three different machine learning mod-
els, namely backward propagation neural network, gradi-
ent boosting machine and random forest, and reported 
that backward propagation neural network showed the 

Fig. 7  Modelling framework by input data type
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best performance in predicting the global transmission 
risk of Zika [115]. Two studies generated ensemble model 
projections of the spatiotemporal dynamics of Zika in 
Brazil and burden of yellow fever in Africa [33, 116].

Mechanistic models were used in 14.2% of studies, 
especially compartmental and metapopulation models. 
Compartmental models e.g. human SEIR - mosquito SIR 
models were used in six studies to explain the impact of 
different factors on the transmission dynamics, espe-
cially for smaller scales e.g. country or sub-national scale 
[78, 91, 117–120]. Six studies used metapopulation or 
network models, all of which considered the connectiv-
ity between areas or regions by including the patterns of 
daily human mobility or air travel data [31, 72, 76, 85, 86, 
121]. Five studies used mechanistic mosquito models to 
produce estimates of temperature suitability, vectorial 
capacity or basic reproductive number (R0) at the conti-
nent or global scale [43, 122–125].

Surprisingly, only 48.9% of studies (n = 86) included in 
this review assessed the predictive performance using 
cross-validation procedures, such as K-fold cross-valida-
tion or random partitioning of data, commonly referred 
to as “out-of-sample validation”. It was more common to 
perform this type of validation in studies using machine 
learning methods than in studies using other modelling 
methods; only 23.1% of studies using fixed effect mod-
els performed out-of-sample validation (Fig. 8). Of these 

studies, only three studies included model validation on 
independent test data (“hold-out validation”) [60, 126, 
127].

The most common model performance evaluation met-
rics were information criteria (n = 82, 46.6%), with Akaike 
information criteria (AIC) and the Bayesian information 
criterion (BIC) as the most used metric (Table S4, Addi-
tional file 3). Confusion matrix-based metrics were used 
in 33.0% of studies, with the Receiver Operating Charac-
teristics (ROC) curve most frequently used. Correlation-
based metrics were used in 21.6% of studies, especially 
R-squared. 20 studies (11.4%) did not use any of the met-
rics described above (Table S4, Additional file 3).

Quality assessment
Using the adapted tool for assessment of modelling study 
reporting, scores for the reviewed paper ranged from 6 to 
18 out of 18. Eleven studies were classified as low quality, 
48 as medium quality, 74 as high quality and 43 as very 
high quality. The median score was 13/18, which is cat-
egorised as high quality. Discussions on the generalisabil-
ity of the developed models were lacking in many papers. 
Study objectives, settings, and data sources were often 
unclear in poorly scored studies.

Fig. 8  Out-of-sample validation by modelling framework
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Discussion
This review provides a comprehensive overview of arbo-
virus risk mapping studies in order to identify current 
best practices and research gaps for each disease. We 
found that the choices of data, covariates and model-
ling frameworks were largely determined by the pur-
pose of the map. We identified 22 studies that generated 
global risk maps, with machine learning-based ecological 
niche modelling being the most commonly used. These 
approaches are designed to give a broad overview of the 
spatial distribution of risk over long-term averages and 
suggest how it might change under different scenarios of 
global changes in climate, economics and demograph-
ics. Geolocation of disease occurrence data, often com-
bined with high-resolution environmental datasets, 
were more common for global risk mapping because 
they encompass large areas and various environmental 
conditions and provide information about the extent of 
transmission. However, caution is needed when utilising 
the outputs of high resolution global risk maps, particu-
larly for informing local decisions due to large data gaps 
and biases [127] that are not reflected in their highly 
geographically precise predictions and sometimes do 
not align with (typically later published) estimates from 
country-specific models that use more local data.

We found that major epidemics, such as the 2015–2016 
Zika epidemic, have acted as catalysts for the develop-
ment of new risk mapping methods applied in new con-
texts, possibly due to expanding generation and sharing 
of data that has accompanied these more recent epidem-
ics. The paucity of data in the early stages of epidemics 
and similarities between arboviral diseases gives mecha-
nistic modelling approaches an advantage over more 
data-dependent statistical approaches despite the latter’s 
traditional dominance of the field of risk mapping [14]. 
As with any model, the predictions are inherently a func-
tion of the data available and primary use cases at the 
time of analysis, and contemporary approaches to map-
ping risk of diseases like Zika and chikungunya would 
likely differ substantially from those conducted in the 
early stages of epidemics. We also show how epidem-
ics have accelerated the use of human movement data in 
arbovirus risk mapping, and that human movement data 
is especially valuable to understand long-distance spread 
since Aedes mosquitoes have a limited dispersal capabil-
ity [128]. Daily commuting and air travel has improved 
predictions in both statistical and mechanistic model-
ling approaches, particularly when mapping how the 
spatial distribution of risk changes over the course of an 
epidemic.

Studies on modelling yellow fever employed multiple 
datasets and various approaches, mostly motivated by the 
need to account for sparse, non-standardised data. They 
tend to be conducted at continental or country-level 

scale in African and South American countries with high 
endemicity for yellow fever transmission or recent out-
breaks, for the purpose of evaluation and planning vac-
cination programs. Inclusion of seroprevalence data and 
vaccination coverage therefore played a significant role 
in robust estimation of disease burden and approaches 
used for yellow fever could be increasingly important for 
mapping dengue risk as vaccines begin to be rolled out in 
various countries [129].

In contrast, the majority of publications that use pre-
dictive risk mapping for dengue (which accounted for 
more than 70% of the studies included in this review) now 
focus on mapping sub-national risk using case incidence 
data from a country’s passive surveillance system. Such 
models theoretically offer the most potential for direct 
integration with country surveillance systems and would 
allow risk maps to directly inform planning, interven-
tion targeting and outbreak response. The proliferation of 
risk mapping in this domain closely aligns with improve-
ments in routine dengue disease surveillance and sharing 
of sub-nationally disaggregated data and could be applied 
to other emerging disease threats if similar approaches to 
surveillance are adopted. We found that statistical mixed 
effect models were more commonly implemented than 
machine-learning approaches for sub-national models, 
which allow more constraints over the effects of environ-
mental covariates and are easier to implement in Bayes-
ian frameworks, both assets that allow more stability and 
better representation of uncertainty when making spatio-
temporal predictions. Such models blur the boundaries 
between pure risk mapping (predicting to new spatial 
locations) and pure hindcasting/forecasting (predicting 
to new periods of time) and show the added value con-
sidering both spatial and temporal information can con-
tribute to each of these applications.

Overall, we found that the quantity and variety of 
covariates included in arbovirus risk mapping studies 
has increased in line with growing availability of these 
variables. While developments over the past decade 
have focussed on global climate datasets, data on human 
movement [130] and urban infrastructure [131] are 
becoming increasingly available and may play impor-
tant roles in future arbovirus risk mapping studies. His-
torically, limited data availability has made it difficult to 
quantify human mobility patterns, requiring models that 
incorporate gravity or radiation as an approximation [31, 
86, 132]. However, the recent emergence of mobile phone 
data enables real-time tracing of fine-scale movement 
across large numbers of individuals, although privacy and 
bias issues remain [133]. The move towards large, open, 
accessible datasets for vector-borne diseases necessitates 
not just a more robust data science workforce, but a bet-
ter motivation and capacity planning for data fluency 
among primary data producers. While issues of human 
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subjects and data privacy must remain foremost in con-
templating large-scale studies of vector-borne disease 
risk, nonetheless, leveraging entomological surveillance 
data, meteorological data, geospatial representation of 
infrastructure and landscape (e.g., derived from remote 
sensing, well-resolved built environment enumerations, 
high-resolution travel network data), and climatologi-
cal modelling output, is less constrained by international 
regulations, so identifying the necessary investments 
and key routes of engagement is a high-level first step to 
addressing the data gaps.

We found surprisingly few studies conducted robust 
variable selection procedures. In addition, out-of-sample 
validation techniques were explicitly stated in only half 
of the studies reviewed. Statistical and machine learning 
models, predominantly used in arbovirus risk mapping 
studies, require a large amount of data and therefore both 
variable selection and cross-validation are important 
steps to reduce overfitting and improve model interpret-
ability and predictive accuracy. Although the majority of 
studies used traditional cross-validation techniques, the 
use of spatial cross-validation i.e., spatial block boot-
strapping is increasingly popular due to its ability to 
account for spatial dependence in the data [40, 41]. This 
may help to better test the spatial predictive performance 
of the model, particularly if there are large heterogene-
ities in data availability across the study sites, which is 
common in many arbovirus mapping applications.

Limitations
One limitation of our systematic review is that it focussed 
on spatial modelling approaches. The conclusions we 
reach, particularly with reference to drivers of transmis-
sion, may differ between risk mapping and temporal 
prediction models which may be particularly important 
as the two fields continue to overlap. We also only con-
sidered studies published in English, which may affect 
our conclusions about regional patterns. Additionally, 
it is possible that some relevant literature, particularly 
in the form of grey literature, may have been missed as 
the databases do not contain all journals and university 
press articles. This is particularly true for locally-relevant 
geospatial modelling work, which may not have been 
published in mainstream academic outlets. Finally, we 
excluded studies that did not assess risk of human infec-
tion, excluding a number of studies dealing exclusively 
with entomological risk or non-human host risk. Finally, 
to improve study comparability, we chose to exclude 
studies that were not fit or validated against autoch-
thonous human case data. This excluded several stud-
ies that predict risk measures such as vectorial capacity 
based on laboratory-derived mosquito and virus data. 
Consequently, we do not include studies that make risk 
predictions for areas that do not currently experience 

widespread arbovirus transmission, e.g. Europe. Different 
factors may influence the risk of importation and estab-
lishment in transmission free areas where other vector 
species may exist (e.g. Aedes albopictus) and there is an 
absence of population-wide arbovirus immunity.

Recommendations for future studies
Based on the best practices and gaps identified in this 
systematic review we suggest the following recommenda-
tions for future arbovirus risk mapping studies:

 	• Consider the strengths and weaknesses of different 
data types for different purposes as the choice of data 
type imposes specific restrictions on the modelling 
framework and resolution of the prediction. 
Historically the most common applications have 
been: occurrence data to map the changing global 
limits of transmission, short-term aggregated level 
incidence data to track the geographic spread of 
epidemics and high spatiotemporal resolution 
incidence data to understand the roles of different 
drivers and forecast epidemics.

 	• Include covariates from multiple domains (climatic, 
environmental, demographic, socioeconomic, 
ecological) and test whether their inclusion improves 
prediction.

 	• National or subnational studies should consider 
additional local covariates not available across 
broader regions, such as data from the arbovirus 
control programmes, finer scale meteorological 
resolution data, or infrastructural data from census 
databases.

 	• Even with extensive use of covariates, unobserved 
confounding will still be an issue, particularly for 
broad scope (national and above) models, meaning 
that the use of structured spatio-temporal random 
effects, ideally in a Bayesian mixed effects statistical 
modelling framework, is preferable to more 
simplistic fixed effect statistical models.

 	• Use predictive validation metrics on held out 
datasets. Ideally using procedures that take into 
account the unique challenges posed by highly 
spatially and temporally heterogeneous datasets, 
such as multiple-fold blocked spatial and temporal 
cross validation.

 	• Arbovirus risk mapping is a rapidly developing field 
with continual improvements in data quantity and 
representativeness, growing availability of potentially 
informative covariates and new innovations to model 
fitting and evaluation. Future arbovirus risk mapping 
studies should incorporate these new developments 
and not just rely on the status quo of existing studies.
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Conclusion
Spatial modelling can help identify potential risk factors 
for arbovirus transmission and provide a better under-
standing of the current and future distribution of arbovi-
ruses. We provide a synthesis of covariates and modelling 
frameworks used for risk mapping of arbovirus, provid-
ing an evidence base for developing up-to-date arbovi-
rus risk maps based on current best practices. Although 
approaches to map arbovirus risk have diversified, it is 
important to select the data, covariates, models, and 
evaluation methods based on the purpose of maps, data 
availability and epidemiological contexts.
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