Skip to main content
. Author manuscript; available in PMC: 2024 May 12.
Published in final edited form as: J Med Entomol. 2023 May 12;60(3):590–603. doi: 10.1093/jme/tjad042

Table 1.

Relative contributions of the climate predictors selected by the modeling algorithms for the pathogen datasets; A. phagocytophilum, Ba. microti, and Bo. miyamotoi

Predictors Normalized contribution values (%)
GLM MARS Maxent

A. phagocytophilum models
 Mean diurnal temp. range (BIO2) 24.9 19.3 11.9
 Isothermality (BIO3) 12.0 7.8 7.4
 Max temp. warmest month (BIO5) 21.9 27.4 15.3
 Mean temp. of wettest quarter (BIO8) 1.3 2.4
 Mean temp. of driest quarter (BIO9) 24.7 18.9 34.0
 Precip. of warmest quarter (BIO18) 8.4 4.2 1.1
 Precip. of coldest quarter (BIO19) - 2.7
 Percent forest cover 6.8 22.4 25.1
Ba. microti models
 Mean diurnal temp. range (BIO2) 6.8 25.5 5.0
 Isothermality (BIO3) 4.6 1.9 4.7
 Max temp. warmest month (BIO5) 4.9 37.8 4.3
 Mean temp. of wettest quarter (BIO8) 3.3 1.3
 Mean temp. of driest quarter (BIO9) 47.1 14.2 52.2
 Precip. of warmest quarter (BIO18) 12.0 10.8 3.2
 Precip. of coldest quarter (BIO19) 15.3 4.4 9.8
 Percent forest cover 5.9 5.3 19.3
Bo. miyamotoi models
 Mean diurnal temp. range (BIO2) 11.6 15.0 14.9
 Isothermality (BIO3) 3.4 4.3 5.0
 Max temp. warmest month (BIO5) 20.8 54.5 24.3
 Mean temp. of wettest quarter (BIO8) 1.8 1.5
 Mean temp. of driest quarter (BIO9) 34.4 13.1 27.2
 Precip. of warmest quarter (BIO18) 10.4 3.3 3.5
 Precip. of coldest quarter (BIO19) 8.9 1.9 6.4
 Percent forest cover 8.5 7.9 17.1

Normalized Contribution Values: Describes the contribution of each predictor to the predictive power of each of the 3 models (GLM, MARS, Maxent).