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Obesity is one of the most prevalent metabolic diseases
worldwide, and it increases the risk of developing type 2
diabetes, heart failure, cancer, and other diseases (1).
White adipocytes are specialized cells that store enormous
amounts of lipids, predominantly in the form of triglycer-
ides, and they release free fatty acids into the circulation in
response to lipolytic stimuli. In addition, adipocytes com-
municate with other cells by secreting a complex set of hor-
mones, cytokines, and metabolites that maintain white
adipose tissue (WAT) homeostasis and regulate the func-
tion of distant organs, such as the heart, liver, pancreas,
and brain (2). In obesity, shifts in adipocyte-derived signals
contribute to the development of local and systemic in-
flammation, pathologic tissue remodeling in WAT, and ad-
verse metabolic sequelae such as insulin resistance (3,4).
Increasing our understanding of how adipocytes communi-
cate with neighboring and distant cells may reveal new
therapeutic targets to treat obesity or associated metabolic
diseases.

An emerging body of literature indicates that adipocytes
release extracellular vesicles (EVs) that contain a wide vari-
ety of cargo, including lipids, proteins, nucleic acids, and
even organelles such as mitochondria (5–8). These EVs me-
diate cross talk between cells within WAT but can also
exert systemic effects on distant organs. For example,
adipocyte-derived extracellular vesicles (AdEVs) can ei-
ther impair or enhance insulin sensitivity in hepatocytes
and muscle cells (9,10), and they can also increase pan-
creatic b-cell production of insulin (11). However, the
mechanisms that regulate the release of EVs by adipo-
cytes are not fully understood.

In this issue of Diabetes, Huang et al. (12) report that
lipolysis leads to activation of the DNA repair enzyme
p53 to stimulate release of AdEVs. They demonstrate that
the lipolysis-inducing compounds forskolin and isoproter-
enol lead to the release of EVs by 3T3-L1 adipocytes. In-
terestingly, this process was not EV specific, as inducing

lipolysis also stimulated the release of many free proteins,
such as fatty acid binding protein 4 (FABP4). Secretion of
free proteins and AdEVs is suppressed by the p53 inhibitor
pifithrin-a or when expression of p53 is reduced by
shRNA-mediated knockdown. Consistent with this result,
serum from p53-deficient mice had reduced EV particle
counts and decreased levels of FABP4. Gain-of-function
studies showed that activation of p53 led to the release of
more AdEVs and FABP4 from adipocytes. Nutlin, a com-
pound that indirectly activates p53, also led to the release
of more AdEVs. Since p53 is classically involved in DNA
damage repair, the authors used doxorubicin to induce
DNA damage and found that this treatment led to the re-
lease of more AdEVs in a p53-dependent manner. Interest-
ingly, in mice with ERCC1 haploinsufficiency, which causes
increased DNA damage that goes unrepaired, p53 expres-
sion is upregulated, and this is associated with increased
FABP4 in serum in male but not female mice, a sex depen-
dency that warrants further investigation. Overall, these
studies indicate that lipolysis activates p53 to induce release
of AdEVs in vitro and in vivo (Fig. 1), and the findings are
consistent with those from prior studies showing that diet-
induced obesity is associated with increased DNA damage,
p53 activation, and release of proinflammatory factors that
promote WAT inflammation and insulin resistance (13).

The mechanisms by which p53 regulates the release of
AdEVs are not yet clear. As was shown previously in HeLa
cells (14), the authors identified a potential role for mam-
malian target of rapamycin (mTOR). They showed 1) that
p53 activation with nutlin or doxorubicin inhibits mTOR
activity and S6 phosphorylation at serines 240/244 and
235/236 and 2) that inhibition of mTOR complex 1
(mTORC1) with torin or rapamycin leads to increased re-
lease of AdEVs. While numerous studies have identified
how p53 and genotoxic stress regulate the activity of
mTORC1 (15), it is not clear how mTORC1 regulates the
production or release of AdEVs. It has been shown that
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mTORC1 physically interacts with Rab27a, a small GTPase
that is required for exosome secretion (14); however, Rab27a
function is only one part of the highly complex and coordi-
nated process of EV biogenesis. It was demonstrated that the
AdEVs released after lipolysis tend to be 130–400 nm in di-
ameter, with predominant EV subsets that are 130, 180, 331,
and 380 nm, on average. These subsets contain a diverse set
of proteins that lack secretion signals and are typically local-
ized to the cytoplasm and organelles such as the nucleus and
mitochondria. However, AdEVs released after p53 activation
tend to be smaller. This result suggests the p53-mTORC1
pathway may regulate the release of a subset of smaller
AdEVs and that there are likely other pathways that regulate
the release of larger AdEVs.

There are many questions that remain unanswered about
the functional relevance of AdEVs released in response to li-
polytic stimuli. One open area for investigation is whether li-
polysis and p53 activation lead to selective packaging of
contents into AdEVs. Huang et al. (12) use only a small
number of markers, such as TSG101 and CD63, to charac-
terize AdEVs, but they provide proteomic data on condi-
tioned media, indicating that AdEVs can contain numerous
proteins, including those localized to mitochondria. Whether
p53 is involved in packaging certain types of cargo, such as
mitochondria, within AdEVs prior to release is a particularly
interesting question in light of recent studies that report that
AdEVs containing oxidatively damaged mitochondria are de-
livered to tissue-resident macrophages for degradation (16)
but can also be released into the circulation for delivery to dis-
tant organs, such as the heart, to protect against ischemia-
reperfusion injury (5,17). While these observations suggest
that AdEVs, including those that contain mitochondrial
components, can have beneficial effects locally and

systemically, in some circumstances AdEVs can contribute
to pathology in obesity (18). It remains unknown whether
the lipolysis-p53-mTORC1 pathway identified by Huang
et al. (12) regulates the release of specific subsets of AdEVs,
whether this pathway regulates AdEV production in the endo-
lysosomal system or at the plasma membrane, or whether
these AdEVs confer beneficial and/or deleterious effects on
WAT or on distant organs. Further research into these topics
may reveal previously unknown biological pathways that can
be targeted therapeutically to treat metabolic diseases such as
obesity.
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Figure 1—Lipolysis and DNA damage promote the release of EVs by adipocytes in a p53-dependent manner. Lipolytic stimuli activate p53 and
promote the release of lipid-rich AdEVs. DNA damage and pharmacologic activation of p53 suppress the activity of mTORC1, which relieves
the inhibition on free protein release and the packaging and/or release of AdEVs. The resultant AdEVs contain various types of cargo, including
cytosolic, nuclear, andmitochondrial proteins. Conversely, genetic deletion or inhibition of p53 leads to impaired release of AdEVs and other se-
creted free proteins. The mechanisms by which mTORC1 regulates p53-dependent release of adipocyte-derived proteins and EVs are not yet
well defined. b3AR, b-3 adrenergic receptor. Created with BioRender.com.
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