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Background: Tick-borne encephalitis (TBE) is a dis-
ease which can lead to severe neurological symptoms, 
caused by the TBE virus (TBEV). The natural transmis-
sion cycle occurs in foci and involves ticks as vectors 
and several key hosts that act as reservoirs and ampli-
fiers of the infection spread. Recently, the incidence 
of TBE in Europe has been rising in both endemic and 
new regions. Aim: In this study we want to provide 
comprehensive understanding of the main ecologi-
cal and environmental factors that affect TBE spread 
across Europe. Methods: We searched available lit-
erature on covariates linked with the circulation of 
TBEV in Europe. We then assessed the best predictors 
for TBE incidence in 11 European countries by means 
of statistical regression, using data on human infec-
tions provided by the European Surveillance System 
(TESSy), averaged between 2017 and 2021. Results: 
We retrieved data from 62 full-text articles and identi-
fied 31 different covariates associated with TBE occur-
rence. Finally, we selected eight variables from the best 
model, including factors linked to vegetation cover, 
climate, and the presence of tick hosts. Discussion: 
The existing literature is heterogeneous, both in study 
design and covariate types. Here, we summarised and 
statistically validated the covariates affecting the vari-
ability of TBEV across Europe. The analysis of the fac-
tors enhancing disease emergence is a fundamental 
step towards the identification of potential hotspots of 
viral circulation. Hence, our results can support mod-
elling efforts to estimate the risk of TBEV infections 
and help decision-makers implement surveillance and 
prevention campaigns.

Introduction
Tick-borne encephalitis (TBE) is a zoonotic disease 
which affects human and animal central nervous sys-
tems with mild to severe long-term sequelae, which 
may be fatal [1,2]. It is caused by the TBE virus (TBEV), 
a Flavivirus with currently three main subtypes and two 
additional subtypes recently proposed [3]. They circu-
late in nature among ticks, mostly those belonging 
to the  Ixodes ricinus  complex, and in several wildlife 
hosts. The three main subtypes circulating in the 
European Union and European Economic Area (EU/EEA) 
are the European (Eu), Siberian (Sib) and Far Eastern 
(FE) subtypes [3]. The European subtype TBEV-Eu, 
the most common one, is mainly associated with the 
biphasic form of TBE which has no chronic forms and 
presents symptoms with severe neurological sequelae 
in up to 10% of human cases and a fatality rate rang-
ing from 1% to 2% [1]. Transmission to humans usually 
occurs after a tick bite, although food-borne infections 
after consumption of unpasteurised milk and dairy 
products from infected animals have been reported [4].

The geographical occurrence of TBEV is fragmented, 
with foci of infection (hotspots) that are difficult to 
identify and often vary in space and time [5]. Reporting 
of TBE cases in the EU/EEA is compulsory in 19 coun-
tries, voluntary in four (Belgium, France, Luxembourg 
and the Netherlands) and ‘not specified’ in one country 
(Croatia) [6], with 2,000 to 4,000 total cases reported 
yearly [7]. The European Centre for Disease Prevention 
and Control (ECDC) has reported increases in TBE 
incidence over the last years [6]. Major changes have 
been observed not only in the total number of reported 
cases, but also in the spatial distribution of the areas 
with active virus circulation, with the emergence of new 
TBEV foci in previously non-endemic countries [8-10].
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The disease is preventable by vaccination along with 
personal protective measures which reduce the contact 
with infected ticks. The implementation of prevention 
and mitigation actions by public health authorities 
requires detailed knowledge of the disease’s distri-
bution, which, in turn, needs a comprehensive under-
standing of the ecological factors driving the intensity 
of viral circulation and infection hazard.

In recent decades, growing attention has been devoted 
to assessing the factors driving TBEV circulation within 
the natural foci, with several studies aimed at iden-
tifying abiotic (e.g. [11-13]) or biotic (e.g. [5,14-17]) 
covariates. These include the analysis of the complex 
interactions between vectors and key vertebrate hosts 
that are strongly connected to the features of their local 
habitats. It is often difficult to establish the precise 
ecological conditions that favour TBE emergence and 
spread, a challenge that is reflected in the wide range 
of covariates that have been reported in the existing 
literature.

Our aim was therefore to obtain a more accurate under-
standing of the relationships occurring between a set 
of ecological variables and the incidence of TBE in 
humans across Europe, and to select those with high-
est impacts. As the TBE range has recently expanded 
and may continue to spread westward [8-10], north-
ward [18-20] and to higher altitudes [21], we per-
formed our analysis at a continental scale, responding 
to the need for a broader and more comprehensive 
understanding of the ecological forces driving such 
changes. This knowledge provides essential input to 
modern modelling approaches, based on quantita-
tive disease data and a set of relevant covariates, 

which aim to predict the spatiotemporal risk of disease 
occurrence and its potential future spread.

Methods

Literature screening: search strategy and 
selection criteria
We performed a comprehensive literature search on 
TBE covariates following the principles of extending the 
PRISMA approach to scoping reviews [22]. Keywords 
were extracted from the MeSH database and EMBASE 
vocabulary, then integrated with text words found 
in relevant papers; see  Supplementary Table S1  for 
the search strategy and keywords. The search was 
performed on 21 July 2020. We used the CAS STNext 
platform to search the MEDLINE, EMBASE, BIOSIS, 
SCISEARCH and CABA databases. We also searched 
SCOPUS (via Elsevier) by adapting the search strategy 
to the database-specific characteristics. We included 
in our review primary research studies (i.e. studies 
generating new data), modelling studies proposing 
quantitative analysis using explanatory variables and 
data collections with abstract and full-text documents 
available in English, published after 1 January 2000. We 
excluded studies with no data or with duplicated data 
(patents, editorials, letters, modelling studies with no 
data). We also excluded records with no denominator, 
no identified reference population, unavailable full-
texts, and those that referred to data older than 2000 
or were gathered outside the European Union and 
European Economic Area (EU/EEA). See Supplementary 
Figure S1 for the PRISMA flow diagram.

Four collaborators (AR, GM, LB, VT) independently 
evaluated potentially relevant records based on titles 

What did you want to address in this study?
During the last decades, the number of tick-borne encephalitis (TBE) cases reported in Europe has increased, 
making TBE a growing concern for public health. It is difficult to identify TBE risk areas, as the circulation 
of the TBE virus depends on the interplay between numerous environmental and ecological conditions. Our 
aim was to summarise all the different aspects that enhance TBE spread and identify the main forces that 
affect the distribution of TBE human infections in Europe.

What have we learnt from this study?
TBE is a seasonal disease, dependent on tick abundance and activity. We found that TBE spread is favoured 
by the presence of key animal species, such as deer and rodents, in forested areas. We also discovered that 
specific climatic conditions, such as high precipitation during the driest months of the year, cold winters, 
small daily temperature variations and a steep decrease in late summer temperatures, increase the risk of 
TBE infections in humans.

What are the implications of your findings for public health?
The identification of all the environmental and ecological aspects that are influencing the risk of TBE across 
Europe is fundamental for the rapid assessment of potential TBE outbreaks. Hence, this study will be used 
to inform future risk mapping efforts in Europe and in the long run improve the targeting of prevention and 
control measures.

KEY PUBLIC HEALTH MESSAGE
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Table 1
Explanatory variables selected for statistical analysis of factors affecting the risk of tick-borne encephalitis, classified by data 
typea, EU/EEA, 2000–2021

Description of predictors (names) Unit of measure References of articles
Climatic
Mean winter temperature (T_winter) °C [14,82]
Autumnal cooling rate (ac_rate) Not applicable [54,69]
Spring warming rate (sw_rate) Not applicable [48,71,83]
Annual mean temperature (BIO1a) °C [14,59-61,84,85]
Annual mean diurnal temperature range (BIO2a) °C [61,84]
Isothermality (BIO3a) % [60-62,84]
Temperature seasonality (BIO4a) % [61,84]
Minimum temperature of coldest month (BIO6a) °C [60-62]
Mean temperature of wettest quarter (BIO8a) °C [60-62]
Mean temperature of driest quarter (BIO9a) °C [59-62]
Mean temperature of warmest quarter (BIO10a) °C [60-62]
Mean temperature of coldest quarter (BIO11a) °C [60-62]
Annual total precipitation (BIO12a) mm [17,49,60-62,84]
Precipitation seasonality (BIO15a) % [60-62,84]
Total precipitation of wettest quarter (BIO16a) mm [60-62]
Total precipitation of driest quarter (BIO17a) mm [60-62]
Total precipitation of warmest quarter (BIO18a) mm [60-62]
Total precipitation of coldest quarter (BIO19a) mm [60-62]
Annual mean relative humidity (RH) % [59,71]
Mean saturation deficit (SD) mmHg [48,50,86]
Environmental
Mean elevation (Elev) m a.s.l. [60,69,84,87]
Percentage of forested area (CLC_31) % [49,55,59-61,63,71-76,84,87,88]
Percentage of area with low vegetation (CLC_32) % [49,61,84]
Percentage of agricultural land (CLC_2) % [13,59,73,76,84]
Percentage of urban area (CLC_1) % [59,75,84]
Percentage of area covered by snow (SnowIce) % [75,86]
Length of forest roads (For_length) km [63,88]
Enhanced difference vegetation index (EVI) Not applicable [49,61,75,87,89]
Vertebrate hosts
Cervids (Capreolus capreolus, Cervus elaphus, Dama dama) probability of 
presence (host_cervids) Not applicable [15-17,54,56,57,63-65,71]

Rodent (Apodemus flavicollis) probability of presence (host_af) Not applicable [15, 51,54,83,85]
Rodent (Myodes glareolus) probability of presence (host_mg) Not applicable [15,51,54,58,83,85,90]

CLC: Corine land cover; EU/EEA: European Union and European Economic Area.
a Bioclimatic predictors are named following the WordClim coding. Predictors’ names are reported in brackets.
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and abstracts. We then retrieved and read full texts of 
selected articles to assess their eligibility according to 
our inclusion and exclusion criteria and screened the 
references of selected publications to check for further 
sources of literature. We also added relevant articles 
published after the literature search was performed, 
up to 31 December 2021, by carrying out an additional 
search on PubMed. Finally, we used a pre-piloted data 
extraction spreadsheet to create our literature-based 
dataset and we selected covariates adopted in at least 
two articles for further analysis.

Epidemiological data
We analysed TBE case-based data provided by the 
European Surveillance System (TESSy) and released by 
ECDC. Each record included the date of disease onset, 
the importation status and the most probable place of 
infection. Coded values for variables with geographical 
information followed the European nomenclature of ter-
ritorial units for statistics (NUTS). When available, the 
probable place of infection was provided at the NUTS-3 
level, corresponding to small regions for specific diag-
nosis, according to Regulation (EC) No 1059/2003 [23].

Of all the TBE cases recorded in TESSy, we included 
only the laboratory-confirmed cases reported from 1 
January 2017 up to 31 December 2021, since most coun-
tries did not report the place of infection before 2017. 
Patients infected outside their country of residence or 
whose location of exposure was unknown or provided 
at low spatial resolution, were excluded. We included 
countries that reported at least 10 cases between 
2017 and 2021 and notified the place of infection at 
NUTS-3 level for at least 75% of the cases. The coun-
tries selected according to these criteria were: Czechia, 
Finland, France, Germany, Hungary, Italy, Lithuania, 
Poland, Slovakia and Sweden. We also included data 
reported from Austria although at a lower spatial res-
olution (corresponding to NUTS-2 regions, i.e. basic 
regions for the application of regional policies) as the 
spatial extent of NUTS-2 units in Austria is compara-
ble to the NUTS-3 regions of the other countries. For 
each region  i  we computed the average annual TBE 
incidence  Yi  , expressed as the number of cases per 
100,000 inhabitants, over the period 2017 to 2021. 
The total population in each spatial unit was extracted 
using gridded population count datasets (100 m spa-
tial resolution) provided by WorldPop [24].

Figure 1
Main characteristics of included studies on factors affecting the risk of tick-borne encephalitis, EU/EEA, 2000–2021 (n = 62)

EU/EEA: European Union and European Economic Area.

We selected thirty-one covariates adopted in at least two articles for further analysis (Table 1).
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Covariate data
We collected raw data from various sources to compute 
the covariates identified through literature screening. 
The type of covariates considered were grouped into 
three different main categories, such as climatic, envi-
ronmental and vertebrate host-related variables.

We used satellite images acquired by the moderate res-
olution imaging spectroradiometer and supplied by the 
National Aeronautics and Space Administration (NASA) 
with a resolution of 5.6 km as a source of land surface 
temperature and vegetation status as provided by the 
enhanced difference vegetation index (EVI). We down-
loaded the following products from the NASA Land 
Processes Distributed Active Archive Center: MOD11C1 
Daily Land Surface Temperature and Emissivity [25], 
MOD11C3 Monthly Land and Surface Temperature and 
Emissivity [26] and MOD13C2 Vegetation Indices 16-Day 
[27]. We computed cumulative precipitation data 
from the European Centre for Medium-Range Weather 
Forecast’s fifth generation of European ReAnalysis 
(ERA5)-Land dataset and derived monthly time series 
of spatially enhanced relative humidity for Europe at 30 

arc seconds resolution from ERA5-Land data [28]. We 
calculated bioclimatic predictors following the formu-
lae stated in the World Climate database [29] and com-
puted averaged autumnal cooling and spring warming 
rates from 2017 to 2021 by applying a linear regression 
to the average daily temperature against the Julian day 
in the period 1 August to 31 October and 1 February to 
30 April, respectively [30].

We extracted proportions of land cover classes from the 
2018 Corine Land Cover database, with a resolution of 
0.25 km. We calculated the total length of forest roads 
from raster maps of road density (km road per km2), 
which were derived from linear road features extracted 
from OpenStreetMap datasets with a 1 km resolution. 
We derived estimates of snow and ice cover percent-
ages from the 1 km consensus land-cover product [31]. 
Mean elevation was taken from the 1-km Global Multi-
resolution Terrain Elevation dataset [32].

To account for the distribution of hosts across Europe, 
we used 1-km data about the probability of pres-
ence of selected critical reservoir species  (Apodemus 

Figure 2
Mean tick-borne encephalitis incidence in the 380 NUTS regions selected for analysis, EU/EEA, 2017–2021

EU/EEA: European Union and European Economic Area; TBE: tick-borne encephalitis.

Inset: distribution of the log-transformed TBE incidence (log(Yi)).
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flavicollis, Myodes glareolus) and a single variable that 
describes the probability of presence of cervid species 
(Dama dama, Cervus elaphus, Capreolus capreolus) that 
have been reported to be the most important ampli-
fier hosts for  I. ricinus  with respect to other ungulate 
species [33]. These variables were originally produced 
using spatial modelling techniques based on random 
forest and boosted regression trees [34,35].

We computed each covariate by averaging the raw val-
ues for the same spatial level as the available incidence 
data (NUTS-3 or NUTS-2). We also averaged covariate 
time series over the whole study period.

Statistical analysis
Firstly, we performed single-variable analysis aimed 
at investigating the association between each covari-
ate x and TBE incidence Yi . The response variable Yi was 
log-transformed before analysis to normalise the distri-
bution [36], and we included a random effect on the 
reporting country to consider potential differences 
among national notification systems. We defined sec-
ond-order linear mixed models, one for each explana-
tory variable x, of the form:

log (Yi ) = a0 + a1 xi + a2 xi 
2 + c + ε

Where a0 , a1 and a2 are the model coefficients, c is the 
random effect on the reporting country, and  xi  indi-
cates the explanatory variable (Table 1). For each 

Table 2
Results of the single-variable analysis on factors affecting the risk of tick-borne encephalitis, ordered by AIC, EU/EEA, 
2000–2021

Predictors
Best 

model 
type

a0
p value 

(a0) a1
p value 

(a1) a2
p value 

(a2) R2 m R2 c AIC

T_winter Q 0.27 0.34 −0.23   < 0.001 −0.01   < 0.001 0.23 0.61 995.29
Elev Q 0.36 0.40 2.31   < 0.001 −1.18   < 0.001 0.09 0.75 1,001.24
SD L 0.14 0.63 −.77   < 0.001 Not applicable 0.18 0.61 1,004·07
BIO11 Q 0.28 0.32 −0.24   < 0.001 −0.02   < 0.001 0.18 0.58 1,010.20
BIO6 Q 0.30 0.31 −0.17   < 0.001 −0.01   < 0.001 0.13 0.59 1,015.75
BIO10 Q 0.44 0.17 −0.21   < 0.001 −0.03   < 0.001 0.13 0.59 1,018.76
CLC_31 L −0.66 0.10 2.43   < 0.001 Not applicable 0.07 0.65 1,029.83
BIO17 Q 0.34 0.41 0.01   < 0.001 0.00003 0.01 0.05 0.69 1,031.70
RH Q 0.51 0.14 0.14   < 0.001 −0.04   < 0.001 0.09 0.61 1,036.87
BIO12 Q 0.31 0.47 0.002   < 0.001 −0.000001 0.04 0.04 0.71 1,037.94
CLC_1 L 0.43 0.25 −2.15   < 0.001 Not applicable 0.04 0.64 1,039.15
BIO18 Q 0.27 0.49 0.01   < 0.001 −0.000001 0.001 0.04 0.68 1,040.89
BIO1 Q 0.32 0.33 −0.13   < 0.001 −0.008   < 0.001 0.07 0.58 1,046.00
BIO16 L 0.23 0.60 0.004   < 0.001 Not applicable 0.03 0.70 1,047.13
BIO19 L 0.32 0.43 0.005   < 0.001 Not applicable 0.03 0.68 1,050.77
host_cervids Q −2.70   < 0.001 11.72   < 0.001 −10.68   < 0.001 0.04 0.67 1,055.19
BIO9 Q 0.24 0.51 −0.04   < 0.001 −0.003 0.04 0.03 0.60 1,058.42
ac_rate Q −12.88 0.001 −153.39   < 0.001 -440.51   < 0.001 0.03 0.63 1,061.64
sw_rate L −1.86 0.01 10.41   < 0.001 Not applicable 0.03 0.59 1,061.94
host_af L −0.79 0.09 1.76   < 0.001 Not applicable 0.04 0.62 1,062.34
BIO3 Q −0.001 0.99 −0.08 0.04 0.04   < 0.001 0.03 0.61 1,064.14
CLC_2 Q −0.35 0.43 3.70 0.001 −4.35   < 0.001 0.01 0.62 1,064.42
host_mg Q −2.31 0.02 8.95 0.003 −7.40 0.001 0.02 0.62 1,065.69
BIO15 L 0.21 0.56 −0.02 0.004 Not applicable 0.01 0.60 1,066.50
CLC_32 L 0.02 0.95 4.36 0.01 Not applicable 0.01 0.63 1,067.48
EVI L −1.12 0.09 4.19 0.01 Not applicable 0.01 0.63 1,068.05
BIO4 L 0.18 0.60 0.8 0.02 Not applicable 0.02 0.59 1,068.84
BIO2 L 0.21 0.56 −0.13 0.02 Not applicable 0.01 0.61 1,069.33
SnowIce L 0.19 0.61 55.52 0.03 Not applicable 0.01 0.63 1,069.93
BIO8 L 0.27 0.46 −0.03 0.03 Not applicable 0.01 0.61 1,070.12
For_length L 0.21 0.57 0.0002 0.56 Not applicable 0.01 0.61 1,074.28

a0: intercept; a1: coefficient of linear term; a2: coefficient of quadratic term; AIC: Akaike information criterion; CLC: Corine land cover; EU/EEA: 
European Union and European Economic Area; L: linear model; Q: quadratic model; R2m: marginal R2; R2 c: conditional R2.

Significant coefficients are presented in bold. See Table 1 for a description of the predictors.
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variable  xi  we tested both linear (L) and quadratic (Q) 
models. Quadratic models (Q) were selected as better 
models than linear (L) ones when the quadratic term 
proved to be significant (p value < 0.05). All explanatory 
variables, except those spanning an interval of 0–1 
(EVI, land cover percentages, presence of hosts, rates 
of autumnal cooling and spring warming) were centred 
around their mean to avoid collinearity between linear 
and squared terms.

Afterwards, we used multiple linear regression to select 
the explanatory variables with the highest predic-
tive power for TBE incidence (multivariable analysis). 
We built a full model considering all covariates with a 
significant (p value < 0.05) coefficient  a1  in the models 
previously described. For this subset, quadratic terms 
(coefficient a2 ) were also included if significant in the 
single-variable analysis. All selected variables were 
examined for multicollinearity by computing Pearson’s 
r pairwise correlation coefficients and variance infla-
tion factors [37]. Among highly correlated variables, we 
kept the ones with lowest Akaike information criterion 
(AIC) in single-variable analysis. We then computed 
all possible submodels and ranked them according to 
their AIC score. We finally selected the best parsimoni-
ous model with lowest AIC among a set of candidates 
with approximately equal performances (ΔAIC < 2) 
[38]. Model assumptions were verified by checking the 
model’s residuals for any pattern or dependency [39]. 
We obtained p values according to the Satterthwaite 
method [40]. All analyses were carried out using R 
v.4.1.2 [41] and packages dplyr [42], exactextractr [43], 
raster [44], lme4 [45], lmerTest [46] and MuMIn [47].

Results

Literature screening
After applying our selection criteria, we retrieved 
relevant information from 62 full-text articles 
(see  Supplementary Figure S1 and Table S2  for the 
PRISMA flow diagram and list of articles). Most studies 

focused on central-eastern countries, such as Germany 
(16 studies) and Czechia (18 studies) (Figure 1A). The 
types of covariates considered were predominantly 
related to climate (46 studies), environment (37 stud-
ies) and competent and incompetent hosts (22 stud-
ies). We also included articles considering vector–host 
related data (12 studies), but as we selected covariates 
that were adopted in at least two articles for further 
analysis, none of the parameters used in such stud-
ies met this criterion (Figure 1B). The methodological 
approaches ranged from local surveys to more complex 
large-scale spatial models aimed at TBE risk assess-
ment (Figure 1C). 

Epidemiological and statistical analysis
In the period 2017 to 2021 a total of 12,289 confirmed 
cases with known place of infection were reported 
to ECDC from 371 NUTS-3 and nine NUTS-2 European 
regions from the 11 countries included in the study. 
The 4-year mean incidence across the considered NUTS 
ranged between 0.04 and 45.66, with an average (of all 
mean values) of 3.74 per 100,000 inhabitants (Figure 
2).

The single-variable analysis proved that the distribu-
tion of the mean log-transformed TBE incidence trans-
mission in Europe was significantly related to almost 
all factors, except for the total length of forest roads 
(For_length) (Table 2).

After checking for pairwise correlations 
(see Supplementary Figure S2 for the correlation matrix 
of covariates), we kept 22 covariates for multivariable 
analysis (see  Supplementary Table S3  for the list of 
candidate models). Finally, eight covariates were 
selected in the best parsimonious model (Table 3). 
The model was characterised by a reasonably good fit 
(marginal R2 = 0.28, conditional R2 = 0.66, AIC = 921.56), 
higher than any of the fits obtained in single-variable 
analysis. Visual inspection of residual plots did not 
reveal any obvious deviations from normality.

Table 3
Results of multi-variable analysis of factors affecting the risk of tick-borne encephalitis, EU/EEA, 2000–2021

Description of predictors (names) Predictors Coefficient 95% CI t value p value
Model intercept Intercept −4.83 −5.9 to −3.76 −4.50 < 0.001
% of forest cover in the area CLC_31 0.89 0.48 to 1.29 2.20 0.03
Autumnal cooling rate ac_rate −10.93 −14.3 to −7.57 −3.25 0.001
Mean winter temperature T_winter −0.19 −0.22 to −0.17 −7.59 < 0.001
Total precipitation of the driest quarter BIO17 0.005 −0.31 to −0.19 4.08 < 0.001
Mean diurnal temperature range BIO2 −0.25 0.004 to 0.006 −4.16 < 0.001
Probability of presence of Apodemus flavicollis host_af 2.04 1.51 to 2.57 3.83 < 0.001
Probability of presence of Myodes glareolus host_mg −1.89 −2.44 to −1.34 −3.41 < 0.001
Probability of presence of cervids host_cervids 9.77 7.55 to 11.98 4.41 < 0.001
Squared probability of presence of cervids host_cervids2 −8.89 −10.86 to −6.93 −4.52 < 0.001

CI: confidence interval; EU/EEA: European Union and European Economic Area.
Estimated regression coefficients, 95% confidence intervals, t values, and p values for the best parsimonious model. Standard deviation of 

the random effect for ‘Country’ = 0.80. Observations = 380. Countries = 11. Marginal R2 = 0.28, conditional R2 = 0.66. AIC = 921.56.
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To better grasp how each predictor selected in the best 
model was related to the distribution of human TBE 
incidence in Europe, we computed conditional predic-
tions for the log-transformed TBE incidence (log(Yi  )) 
(Figure 3); all variables were kept at their average 
value, except for the one shown in each specific graph.

Our results show that higher TBE incidence in humans 
was linked to higher percentages of forested area and 
high precipitation in the driest quarter. Higher rates 
of autumnal cooling, a steep decrease in late summer 
temperatures, colder winters and smaller variations in 
daily temperatures values were also related to higher 
TBE incidence. Critical hosts species appear to have 
different impacts: disease incidence increased with 
the probability of presence of  A. flavicollis, while it 
decreased in areas characterised by the presence of M. 
glareolus. We found a parabolic relationship between 
human incidence and the probability of presence of 
cervids (C. capreolus, D. dama, C. elaphus) (Figure 3).

Discussion
Tick-borne encephalitis is an increasing concern for 
European public health. The risk of infection depends 
on the co-occurrence of a set of ecological factors that 

have not been completely identified yet. Our literature 
screening revealed substantial heterogeneity in the 
selected studies. This diversity depends on the differ-
ent goals of the studies, mostly focused on local inves-
tigations of TBEV in ticks [21,48-53] and hosts [54-58]. 
Broader modelling studies assessing the geographi-
cal distribution of the pathogen are rarer and usually 
based on climatic predictors [59-62]. Overall, we iden-
tified 31 covariates, and the single-variable analysis 
proved how TBE incidence was significantly affected 
by almost all of them. This result is in accordance with 
the available literature and provides additional confir-
mation of previous published analyses. Assessing the 
drivers shaping disease distribution is a fundamental 
step needed to successfully model disease risk. Eight 
factors proved to be the most effective for explaining 
the distribution of TBE incidence in Europe.

Firstly, it is essential to consider the presence of com-
petent and non-competent tick-feeding hosts and the 
features of their habitat. Competent TBEV reservoir 
hosts are mainly small rodents and insectivores that 
support both virus circulation and feeding ticks, while 
non-competent hosts act as amplifiers of the vector 
population. All host-related variables were selected as 
relevant predictors in the best parsimonious model, 

Figure 3
Best model conditional predictions of factors affecting the risk of tick-borne encephalitis, EU/EEA, 2000–2021

EU/EEA: European Union and European Economic Area.

Line: average, blue area: 95% confidence interval, dots: observed data. Actual covariate values are shown in the maps.
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underlining the importance of considering the pres-
ence of critical species when modelling the risk of 
emergence of new TBE hotspots. This is usually accom-
plished using local game animal density data as a 
proxy for host density [16,17,63-66]. However, it is dif-
ficult to retrieve such standardised information at the 
European scale, and these assessments are generally 
focused on non-competent hosts. In this study we used 
the probability of presence of rodents and cervids and 
validated their impact on the distribution of TBE inci-
dence. These datasets could, therefore, serve as good 
predictors in future studies aimed at assessing the risk 
of disease outbreaks in vast geographical areas.

Rodents such as  A. flavicollis  and  M. glareolus, the 
most common and widespread species inhabiting, 
often sympatrically, forested areas, play a pivotal role 
in the enzootic cycle of TBEV. They are well known sus-
ceptible hosts capable of transmitting the virus to the 
feeding ticks both systemically, developing viraemia, 
and non-systemically, via co-feeding [67]. Interestingly, 
we found a positive relationship between TBE inci-
dence and  A. flavicollis, but a negative one with  M. 
glareolus. One possible explanation could be the fact 
that M. glareolus acquires resistance to tick infestation 
[68], therefore hampering the co-feeding mechanism 
which is allegedly the most efficient mechanism con-
tributing to TBEV circulation.

In addition to rodents, ungulates also play a major 
role in TBEV epidemiology [15,17,51,69,70] as they are 
able to amplify tick abundance by acting as hosts to 
adult stages and by moving them over long distances. 
At the same time, as non-competent hosts, they can 
divert tick bites from competent hosts (dilution effect), 
causing a decrease of TBEV prevalence in ticks after a 
certain threshold density is reached [15,51]. Our results 
confirm this statement, as TBE incidence is lower in the 
regions characterised by low probability of presence 
of cervid species, then increases to reach a peak and 
finally decreases again in areas where the probability 
of occurrence is at its maximum.

The total proportion of forested areas (such as broad-
leaved, coniferous and mixed forest) was also found to 
be a good predictor for TBE incidence, with a positive 
impact on disease occurrence in humans. Forest areas 
provide suitable habitat and resources for ungulates, 
rodents and ticks, thus promoting their encounter 
rate and boosting the risk of occurrence of human TBE 
cases [55,71-76]. Moreover, human activity and behav-
iour can act in synergy with ecological and environ-
mental factors by increasing the chances of exposure 
to infected ticks, as people engaged in recreational or 
occupational activities in forests are at increased risk 
of tick encounters and bites [77,78]. The time spent in 
mixed forest for recreational purposes (of ≥ 10 h/week) 
has been positively associated with an increased TBE 
risk, and so were other activities such as harvesting 
forest foods and being employed as a forester or non-
specialised worker [77].

Tick-borne encephalitis is a seasonal disease, depend-
ent on tick abundance and activity, which in turn is 
strongly affected by climatic conditions. We tested sev-
eral variables related to temperature, precipitation and 
relative humidity in the full model and found four fac-
tors as the best predictors, namely the rate of autum-
nal cooling, the mean temperature registered in winter, 
the mean diurnal temperature range, and the total pre-
cipitation of the driest quarter.

At the continental scale, areas characterised by rapid 
temperature drops in late summer and early autumn 
are generally affected by higher values of TBE inci-
dence, while at the local scale, the impact of daily 
temperature variations on the prevalence of TBEV in 
ticks based on field data showed contrasting results. 
For example, there was no evidence of any effect of a 
rapid autumnal temperature decrease on the minimum 
infection rate of nymphs in the following spring in a 
TBE focus in Germany [79]. Such results were obtained 
by computing the decadal mean daily maximum air 
temperature in spring and autumn. On the other hand, 
the autumnal cooling rate (computed as in Randolph et 
al. [30]) proved to be a crucial ecological driver for co-
feeding transmission of TBEV and for the maintenance 
of a TBE hotspot in northern Italy [54,69]. Autumnal 
cooling plays a key role in TBEV epidemiology [47] as a 
steep decrease in late summer temperatures induces a 
behavioural diapause that favours a synchronous lar-
val and nymphal activity the following spring, an event 
that is generally considered one of the most critical 
factors in TBEV transmission [30,54,69].

We hypothesise that the positive correlation between 
high TBE incidence and low winter temperature could 
be biased by the high incidence of cases registered 
between 2017 and 2021 in countries that exhibit low 
temperatures in winter, such as Austria, Czechia, 
Finland, Lithuania and Sweden. From an ecological 
perspective, this result can be explained by the fact 
that cold winter temperatures induce diapause in ixo-
did ticks, sheltering them from unfavourable climatic 
conditions and supporting their overwintering survival 
[80]. On the other hand, TBE incidence decreases in 
regions characterised by strong daily temperature 
variations. Such changes in temperature may affect 
questing behaviour of ticks and thus the probability of 
contact with hosts and their survival [11,50]. The total 
precipitation of the driest quarter is another key indi-
rect factor that can influence tick behaviour and sur-
vival. Hence, higher precipitation might lead to lower 
tick mortality and continued tick questing during the 
driest months of the year, but also ensure that ticks in 
shelters survive to later activity periods [81].

Conclusion
TBEV distribution is shaped by the interplay of mul-
tiple climatic, environmental and ecological factors 
that exert a crucial role in the life cycle of ticks and 
TBEV circulation. Through our approach, we provided 
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insights into the combination of covariates that appear 
to be crucial in affecting TBEV occurrence, defined 
their main data sources and established their interrela-
tion with human TBE incidence at a large scale, con-
sidering the countries that notified TBE cases to ECDC 
at the highest possible spatial detail. The early identi-
fication of potential health threats derived from TBEV 
circulation is fundamental to improve timely detection 
and awareness of infectious disease events at the ear-
liest stage of their emergence. Hence, this study could 
inform future modelling efforts aimed at assessing TBE 
risk across Europe and support competent authorities 
in deploying One Health integrated actions in existing 
and new potential risk areas.
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