Skip to main content
. 2023 Oct 12;9:e1626. doi: 10.7717/peerj-cs.1626

Algorithm 5. Heart disease prediction using Gaussian Naïve Bayes.

Input: EHR Data
Output: Boolean Status
asyncpredictHeartDisease(patientData){
    constpredictorVariables[]={patientData.age,patientData.sex,patientData.cp,patientData.trestbps,patientData.chol,patientData.fbs,patientData.restecg,patientData.thalach,patientData.exang,patientData.oldpeak,patientData.slope,patientData.ca,patientData.thal};
    constXTrain,YTrain = train_test_split(data,analyzevalue,proximatevalue)
   let Ytrain = Xtrain.map((item)=>item["target"]);
    letYtest=Xtest.map((item)=>item["target"]);
    varmodX_Train=[], modX_Test=[];
       CXTrain.forEach((key)=>{xTra.push(Xtrain[i][key]);});
       modX_Train.push(xTra);
    model=newGuassianNB()
    model.train(XTrain,Ytrain);
    letprediction=model.predict(modX_Test);
    result=prediction;
   return result;
}