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SUMMARY

Maintenance of protein homeostasis degrades with age, contributing to aging-related decline 

and disease. Previous studies have primarily surveyed transcriptional aging changes. To define 

the effects of age directly at the protein level, we perform discovery-based proteomics in 10 

tissues from 20 C57BL/6J mice, representing both sexes at adult and late midlife ages (8 and 18 

months). Consistent with previous studies, age-related changes in protein abundance often have 

no corresponding transcriptional change. Aging results in increases in immune proteins across all 

tissues, consistent with a global pattern of immune infiltration with age. Our protein-centric data 

reveal tissue-specific aging changes with functional consequences, including altered endoplasmic 

reticulum and protein trafficking in the spleen. We further observe changes in the stoichiometry of 

protein complexes with important roles in protein homeostasis, including the CCT/TriC complex 

and large ribosomal subunit. These data provide a foundation for understanding how proteins 

contribute to systemic aging across tissues.

In brief

Organismal aging drives pleiotropic changes in tissue and cellular homeostasis. By quantifying 

the proteomes of 10 tissues, including three brain sections, in aging mice, Keele et al. explore 

the regulation of proteins and protein complexes with age. They observe cross-tissue and tissue-

specific age- and age-by-sex-based remodeling of proteomes.
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INTRODUCTION

Aging results in a progressive decline in physiological function with increased risks of 

disease and death.1 Gene expression studies have revealed age-related changes in transcripts 

that are shared across tissues and others that are tissue specific,2–4 as well as transcripts 

that contrast healthy and diseased aging in humans.5 However, these studies are unable 

to directly ascertain age-related changes in proteins. Untargeted, quantitative proteomics 

studies can reveal how proteins change with age, which can confirm findings from gene 

expression, but more importantly, they can identify molecular aging signatures that occur 

independent of gene expression changes.

Previous proteomics studies have investigated aging-related changes in rodent tissues, 

including rats6 and mice.7–9 We previously investigated the effects of age and sex on gene 

expression and protein abundance in kidneys10 and hearts11 from genetically diverse mice. 

We found that differences in protein abundance between males and females in the kidney 

were largely mediated through their transcripts. In contrast, differences in protein abundance 

across ages were largely independent of their transcripts. A similar dynamic between sex 

and age differences was observed in heart, although fewer sex differences were present. 

From these studies, we concluded that many age-related changes in protein abundance are 

not due to corresponding changes in gene expression and that transcriptomics provides an 

incomplete picture of aging in kidney and heart. Multiple mechanisms could result in the 
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discordance of age-related changes in proteins compared with changes in their transcripts, 

including reduced proteasome activity12 and reduced ribosome occupancy13 with age.

A key question is whether this discordance of age-related changes between proteins and 

their transcripts is seen in most tissues. Furthermore, we are interested in which age-

related changes in proteins are shared across tissues and which are unique. Comparing the 

kidney and heart revealed common signatures of increased immune cell infiltration in both 

tissues for proteins and transcripts. We also observed tissue-specific changes, particularly 

among proteins. Changes in the kidney proteome correspond to functions specific to the 

substructures and cell subtypes of the nephron, including the podocytes and proximal tubule 

cells. In the heart, we observed age-related changes in fatty acid metabolism and autophagy. 

These tissue-specific changes relate to the unique biological functions and stressors of these 

tissues during aging.

To address these questions, we performed a survey of protein abundance across 10 

tissues (kidney, liver, fat, spleen, lung, heart, skeletal muscle, striatum, cerebellum, and 

hippocampus) collected from female and male C57BL/6J (B6) mice at 8 and 18 months 

of age. We performed multiplexed, quantitative mass spectrometry on bulk tissue samples 

and analyzed differences in protein abundance between age and sex, as well as sex-specific 

changes with age. We compared age and sex differences in proteins in our study with 

transcript changes in corresponding tissues that were reported by Schaum et al.2 We 

used enrichment analyses to assess how aging affects biological processes, as reflected 

by coordinated changes in proteins across and within tissues. Finally, we characterized 

aging-related changes in protein complexes, in terms of overall and relative abundance of 

member proteins. Our findings confirm that the discordance between age-related changes in 

proteins and gene expression occurs across multiple tissues. Our data survey a broad range 

of age-related changes in proteins that occur globally across tissues and others that are tissue 

specific.

RESULTS

We quantitatively profiled protein abundance across 10 tissues (Table S1) representing a 

range of organ systems (kidney, liver, fat, spleen, lung, heart, skeletal muscle, striatum, 

cerebellum, and hippocampus) from 20 B6 mice using tandem mass tags (TMTs) and 

real-time search (RTS) mass spectrometry.14 Animals represented an equal balance across 

males, females, and two age groups (8 and 18 months), with five animals per age-by-sex 

group (Figure S1A). Outlying samples were identified using principal-component analysis 

(PCA), resulting in the removal of one sample from liver, fat, spleen, lung, and skeletal 

muscle and two samples from striatum (STAR Methods). Outlying samples across tissues 

were not from the same mouse. Cumulatively, we detected 11,853 proteins across the 10 

tissues. We filtered the data to a high-confidence set of proteins (observed in both batches 

per tissue), resulting in 10,250 proteins used in further quantitative analysis (Figure 1 and 

S1B). Spleen had the highest number of analyzed proteins (6,556) and skeletal muscle 

had the lowest (2,353) (UpSet plot15 in Figure S1C). Many proteins were detected across 

multiple tissues. We observed 676 different cross-tissue detection patterns for proteins, with 

detection in all tissues being the most common (1,229), followed by proteins detected in 
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only spleen (1,003), and then in only the three brain tissues (425) (Figure S1C). Using gene 

set enrichment analysis16 (STAR Methods), the 425 proteins (compared with the overall set 

of 10,250 proteins observed across all tissues) were enriched for gene ontology (GO) terms 

related to synapses, which is consistent with brain biology and supports the quality of the 

protein data (Figure S1D).

To assess how different technical features of the experiment contributed to variation in the 

abundance of individual proteins, we jointly modeled data across tissues by fitting random 

effects models (STAR Methods) for each of the 1,229 proteins measured in all 10 tissues 

(Table S2). As expected, the protein abundance varies greatly with tissue/batch, which is 

confounded due to each tissue being measured in two separate runs, i.e., batches, of the 

mass spectrometer (Figure S1E). Our aim here is not to detect protein abundance differences 

between tissues, which would be invalid due to confounding, but rather to detect age-related 

change patterns across many tissues. One unique finding was 13 proteins that had abundance 

patterns that were consistent across the 10 tissues and highly specific to individual mice, 

including IGHG2C and four other immunoglobulins (Figures S1E–S1H). The 13 proteins 

(compared with the overall set of 1,229 proteins observed in all tissues) were enriched 

for GO terms related to adaptive immune response, suggesting cross-tissue responses to 

infections that are unique to each mouse.

Effects of age and sex on the abundance of individual proteins

Protein abundance can vary with age10,11,17 and between sexes.18–20 For each tissue, we 

characterized age and sex effects (Table S3) and declared differences to be significant based 

on false discovery rate (FDR) < 0.1 (Figures 2 and S2A, respectively; STAR Methods). The 

number of proteins with age effects varied greatly across the tissues, ranging from lung 

with the most (866) to striatum with none meeting statistical significance (partially due to 

loss of power from the removal of two animals). The number of proteins with sex effects 

varied across the tissues, from kidney with 2,175 to the three brain tissues with 10 or fewer. 

Comparison of sex and age effects across the tissues revealed generally more differences 

between sexes than between ages, most notably in kidney, liver, fat, and spleen. However, 

proteins with significant age effects outnumbered those with sex effects in lung, heart, and 

cerebellum (Figure S2B). The three brain tissues were distinctly buffered from differences 

based on age and sex. In total, 2,356 proteins had a significant age effect in at least one 

tissue, 5,125 had a sex effect, and 43 had an age-by-sex interaction effect (FDR < 0.1). We 

also identified proteins for which sex differences in abundance depended on age by testing 

for age-by-sex interaction effects (STAR Methods), detecting 21 in kidney, 6 in liver, 5 in 

fat, and 11 in skeletal muscle (FDR < 0.1) (Figures S2C–S2G). The skeletal muscle proteins, 

for which males had distinctly higher abundance than females in older mice, were associated 

with the endoplasmic reticulum lumen.

We jointly modeled individual proteins across multiple tissues (STAR Methods) to test 

whether the age or sex effects on proteins were consistent across tissues or unique to specific 

tissues (Table S3), declaring significance based on FDR < 0.1. Among the 7,745 proteins 

detected in more than one tissue, 643 had consistent age differences across the tissues in 

which they were quantified. For example, IKGC is an immunoglobulin that has increased 
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abundance in older mice for all tissues (cross-tissue age p = 1.1e–6; Figure 2B). We detected 

1,028 proteins with age effects that differed between tissues, representing proteins that had 

age differences in only some of the tissues or even age effects with differing directions, 

such as BCAT1 (age-by-tissue p = 1.8e–10), CES1D (age-by-tissue p = 1.1e–10), FBLN1 

(age-by-tissue p = 2.1e–8), and STAB1 (age-by-tissue p = 2.6e–8) (Figure 2C). These age-

related differences reflect tissue-specific features related to aging decline. For example, in 

kidney, there was reduced abundance of BCAT1, which promotes mitochondrial biogenesis 

and ATP production and has been shown to promote breast cancer formation when knocked 

down,21 and REN1, which has been shown to play a role in modulating vascular tone and 

tubular function in the kidney.22 For sex effects, we detected 1,006 proteins with consistent 

differences between sexes across tissues and 2,565 proteins with tissue specificity.

Most age-related changes in proteins show no corresponding change in their transcripts

To compare age effects on proteins to corresponding effects on transcripts, we obtained data 

from Schaum et al.,2 in which bulk RNA sequencing was performed across 17 tissues of 

mice from 10 age groups, ranging from 1 to 27 months. Each age group consisted of four to 

six C57BL/6JN (B6N) mice. Overlapping tissues between studies included kidney, liver, and 

heart. We selected the transcriptomics data from the 9 and 18 months age groups, which are 

closest to 8 and 18 months in this study’s proteomics data, and characterized the age and sex 

effects on transcripts (STAR Methods). We contrasted the age effects between proteins and 

their transcripts, and for comparison, we also compared the sex effects on proteins and their 

transcripts.

The age effects on proteins and transcripts are generally not consistent. In contrast, sex 

differences are highly concordant between proteins and transcripts, most notably in kidney 

(Figures 3A and 3B). The consistency of strong sex effects correlated between protein 

and transcript supports the validity of comparing data across distinct but related mouse 

strains23 with mice that were raised at different sites as part of different experiments. We 

observed a similar dynamic between age and sex differences in the kidneys of genetically 

diverse outbred mice.10 Genes with consistent age effects on transcripts and proteins in 

kidney include Vcam1 and Keg1 (Figures 3C and 3D). VCAM1 is an immunoglobulin 

that facilitates interactions between vascular and immune cells, and its increase with age 

has been associated with age-related disease in humans.24–26 We observed increases in 

VCAM1 abundance with age across multiple tissues (kidney, liver, fat, and cerebellum), 

which resulted in a significant cross-tissue age effect (cross-tissue age p = 1.59e–7). We note 

that the expression data suggest greater variation within ages and sexes than the protein data, 

which has more mice per age-by-sex group.

Heart had the least consistency between the age effects on proteins and on their transcripts 

(Figure 3E). It also had far fewer significant sex effects than kidney, consistent with our 

previous work,11 although they were still more consistent between proteins and transcripts 

than age effects (Figure 3F). Notable genes with consistent sex effects on proteins and 

transcripts are Ddx37 and Eif2s3x, which are encoded on the Y and X chromosomes, 

respectively. These findings validate the quality of the protein data by demonstrating the 

consistency of sex effects with transcript data. They also highlight the importance of 
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assessing aging-related changes among proteins, many of which are not observed at the 

transcript level.

Age-related changes in proteins are consistent across studies

We examined the consistency of age effects across several proteomics studies of murine 

aging. One of the comparison studies also used B6 mice,8 but with a smaller sample size of 

10 male mice that were evenly split between 4 and 20 months of age. This study included 

nine tissues, of which six were in common with ours. We also compared our results with 

those from a proteomics study of aging in genetically diverse outbred mice10,11; this study 

looked at kidney and heart tissues from 188 mice, with approximately equal representation 

across sexes and 6, 12, and 18 month age groups.

We computed the correlation of age effects between studies across all shared proteins as 

well as across proteins with effects that met statistical significance (FDR < 0.1) in our study. 

The strength of correlations was greater in comparisons between independent studies of B6 

mice than between B6 mice and genetically diverse mice (Figure 3G). All correlations are 

statistically significant, with the stringent comparison of heart between genetically diverse 

mice and B6 mice the weakest (r = 0.15; p = 0.022). In the genetically diverse mice,27 

higher levels of genetic variation compared with the isogenic B6 strain likely contribute 

to the reduced concordance. We also had an opportunity to examine technical variation in 

protein age effects estimated by either targeted or untargeted mass spectrometry on the same 

10 B6 mice8; these comparisons show the strongest correlations, indicating that biological 

factors as well as experimental ones influence the concordance of age effects across studies. 

Comparisons of kidney protein age effects between these populations are highlighted in 

Figures 3H–3J, along with consistent strong age effects across datasets (Table S4). These 

results demonstrate concordance of age-related changes in proteins across studies and reveal 

the extent to which technical, biological, and genetically driven variation contribute to 

cross-study consistency.

Immune-associated proteins change with age across all tissues

We clustered the 2,356 proteins that had significant age effects in at least one tissue after 

setting effects to zero in tissues in which proteins were not observed. Looking broadly 

across the clustered age effects reveals consistent immune-related differences between age 

groups across all 10 tissues (Figure 4A). Components of the innate immune system, most 

notably members of the complement cascade, such as C8A and C8B, were less abundant in 

all tissues of older mice. Immunoglobulins and other proteins related to humoral immunity 

were distinctly more abundant in older mice. Proteins involved in proteolysis, including 

immunoproteasomes like PSMB8, were also more abundant in older mice to varying degrees 

across the 10 tissues.

The consistency of age effects across tissues for immune-related proteins is striking, as 

highlighted by the adaptive immune response GO set (GO: 0002250) (Figure 5A). Even 

tissues with few statistically significant age effects, most notably striatum with none, 

show differences in the same direction, such as increased abundance of immunoglobins 

in older mice. We note that the abundance of the immunoproteasomes (PSMB8, PSMB9, 
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and PSMB10) is higher in older mice in the tissues with the most pronounced age-

related increases in immunoglobins, fat and cerebellum (Figures 5B and 5C). The 

immunoproteasomes are inducible components that replace the constitutive components 

(PSMB5, PSMB6, and PSMB7) in the 20S catalytic core of the proteasome. The 

immunoproteasome is more efficient at degrading ubiquitin-labeled proteins as antigens for 

presentation on MHC class I molecules, a key process in distinguishing between self and 

non-self in adaptive immunity.28 However, it is not a perfect marker of immune cells, as it is 

also expressed by non-immune cells during inflammation.29

The co-regulation of the overall proteasome complex, encompassing the catalytic core of 

the 20S proteasome, its 19S regulator, and the 11S regulator, is multifaceted. We have 

previously shown that the abundance of individual components and subcomplexes of the 

proteasome is influenced by genetic variation19 and age11 in genetically diverse mouse 

populations. In this B6 population, where genetic variation has been fixed (excluding 

spontaneous mutations specific to individuals), the subcomplex structure of the proteasome, 

most notably the 20S catalytic core and 19S regulator, is reflected in the correlations 

between complex members. The individual subcomplexes become more tightly correlated 

within themselves (and anti-correlated with each other) in the older mice in fat tissue (Figure 

5D). The correlation among the immunoproteasome components (and anti-correlation with 

their constitutive analogs) becomes more pronounced in the older mice, likely due to 

increased levels of immunoproteasome from immune cells. Changing immune cell-related 

tissue composition with age is further supported by the reduction in complement activation 

proteins with age.

Tissue-specific signatures of aging

Age effects reveal unique patterns specific to tissues (Tables S5 and S6). Spleen exhibits 

unique increases in abundance for proteins related to the endoplasmic reticulum (ER), such 

as the ER-associated degradation (ERAD) pathway, ER membrane complex (EMC), and 

COPI and COPII complexes (Figure 4C), suggesting potential changes to protein quality 

control30 in the spleen. The EMC enables the biogenesis of multipass transmembrane 

proteins and has been associated with pleiotropic phenotypes across organisms.31,32 COPI 

and COPII are involved in trafficking proteins between the ER and the Golgi.33 In addition 

to the immune signatures observed across all 10 tissues, we saw tissue-specific immune 

patterns, such as decreased abundance for proteins involved in leukocyte and lymphocyte 

activation in the spleens of older mice (Figure S3B) and increased abundance for proteins 

involved in a broad range of immune system-related GO categories in the fat of older 

mice (Figure S3C). We observed decreased abundance in older mice for proteins related 

to mitochondrial chain complex I and cellular respiration (Figure S3A) and increased 

abundance in older mice for proteins related to multiple metabolic processes (Figure S3D). 

Comparison of gene set enrichment results between tissues can highlight shared or distinct 

aging processes. For example, we compared kidney and heart, which revealed consistent GO 

categories like immunoglobulins (increasing with age) and heat shock proteins (decreasing 

with age) and inconsistent GO categories like the mitochondrial matrix and RNA processing 

(Figure 4D).
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Age and sex influence the abundance and stoichiometric balance of protein complexes

Individual members of protein complexes are often co-regulated to maintain stoichiometric 

balance of components.34–38 Biological factors can affect this balance, including genetics, 

sex, and age.6,11,18–20 More than one factor can influence a complex (or its subcomplexes 

or individual components), as demonstrated by the effects of both genetic variation and age 

on the proteasome.11,19 To measure a protein complex’s co-abundance, referred to here as 

cohesiveness, for each of 228 protein complexes39–41 across the 10 tissues, we used the 

median correlation across all pairs of complex members (Table S7; STAR Methods). We 

note that the cohesiveness of a complex could reflect its stoichiometric balance as well as 

cell-type heterogeneity. We observed some conservation of protein complex cohesiveness 

between tissues, most notably among the three brain tissues (r > 0.68, p < 2.2e–16; Figure 

S4).

We tested whether age or sex had consistent effects on abundance across the members 

of a protein complex (Table S7; STAR Methods), as would be expected if the entire 

protein complex were changing with age or sex. Examples include the previously mentioned 

COPI and COPII complexes in the spleen (Figure 4C). The number of protein complexes 

with a multiprotein age effect varied across the tissues, ranging from lung with 29 to 

skeletal muscle and hippocampus with none at FDR < 0.1 (Figure S5A). More complexes 

had consistent sex effects across proteins, ranging from spleen with 76 to striatum and 

cerebellum with none at FDR < 0.1 (Figure S5B).

Changes due to age or sex on protein complexes may be more subtle than a change in mean 

abundance across complex members. Cohesiveness of a protein complex can vary with age 

or sex. We first calculated the correlations among protein complex members for each age 

group and then looked for changes in overall correlation patterns with a paired t test (Table 

S7; STAR Methods). The same approach was used for sex. We used a stricter threshold of 

significance (FDR < 0.01) to focus on only the most significant effects. The association of 

age with cohesiveness of complexes varied across the tissues, ranging from 35 complexes in 

spleen to 3 in skeletal muscle at FDR < 0.01 (Figure S5C). For sex, spleen had the largest 

number of complexes with changes in cohesiveness (26), and fat, hippocampus, and striatum 

had the fewest with 6 each, all at FDR < 0.01 (Figure S5D). Ribosomes have been shown to 

lose stoichiometric balance with age in the brains of killifish,12 and we see similar signals 

across many of our tissues (Figure S5C), indicating that this previous finding generalizes 

across tissues and species.

For each complex, we counted the number of tissues for which a significant age and sex 

effect on abundance or cohesiveness was detected (Figures S5E–S5H). The co-distribution 

of age and sex effects differed between effects on abundance and effects on cohesiveness. 

Effects on abundance were more likely to be detected in smaller subsets of tissues, whereas 

effects on cohesiveness represent a distinct minority of complexes with both age and sex 

effects on cohesiveness across many tissues, such as the chaperonin-containing T complex 

(CCT complex) and cytoplasmic ribosomal large subunit (CRLS).
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CCT complex is more cohesive in older B6 mouse cerebellum

The CCT complex, also known as the tailless complex polypeptide 1 ring complex 

(TRiC), is required for folding proteins such as actin and tubulin. The CCT complex 

was significantly more cohesive in older mouse cerebellum than in younger (p = 2.0e–8; 

Figure 6). This signal is due to CCT6A, CCT2, CCT5, and, to a lesser extent, CCT3 

being anti-correlated with other complex members in younger mice but more correlated 

in older mice (Figure 6B). The significance of the change in individual correlations was 

determined using permutations (STAR Methods). The pattern of correlations reflects the 

physical structure of the CCT complex, which is composed of two octameric rings made 

from eight proteins (TCP1, CCT2, CCT3, CCT4, CCT5, CCT6A, CCT7, and CCT8)42,43 

(Figure 6E). Notably, the CCT6A and CCT2 components from the upper and lower rings are 

in physical contact with their matching protein. CCT5 and CCT3 are immediately adjacent 

to CC2 and CCT6A, respectively, in both rings. We have previously shown that genetic 

variation at Cct6a regulates other members of the CCT complex in genetically diverse 

mice.18,19 There is no complex-wide age effect on abundance (p = 0.87), and none of 

the proteins differ significantly in mean abundance between the two age groups (Figure 

6B). In older mouse cerebellum, members of the CCT complex are correlated with more 

non-CCT-complex members (1,364 genes with r > 0.75 in older mice and r < 0.25 in 

younger mice), which enrich for many GO categories related to its function in folding 

cytoskeleton proteins,44 such as the microtubule category (GO: 0005874) (Figures 6F and 

S6).

Ribosomal large subunit complex is more cohesive in young female liver tissue

The CRLS was found to be significantly more cohesive in livers of younger mice (p = 

4.8e–57) and females (p = 2.7e–8) (Figures 7A and 7C). There was no complex-wide age 

effect on abundance (p = 0.86) or any significant age differences detected for individuals’ 

CRLS proteins (FDR < 0.1), whereas female liver had lower complex-wide abundance (p 

= 2.9e–6) and significantly lower abundance for 19 proteins (Figures 7B and 7D). This 

replicates our previous finding of decreased ribosomal protein abundance in female liver 

tissue from genetically diverse mouse populations.19,20 The co-occurrence of effects on 

individual protein abundance and complex-wide abundance and cohesiveness led us to 

examine the age-by-sex interaction effects on individual proteins, where 14 had age-by-sex 

differences (age-by-sex p < 0.05), with a consistent pattern of females having distinctly 

lower abundance in the younger mouse liver (Figure 7E). These differences contribute to the 

unique age-by-sex co-abundance patterns of the CRLS in the liver, which is more cohesive 

in young females compared with older females or males (Figures 7F and 7G). Notably, age 

and sex effects on the CRLS vary across the tissues; in lung there is a complex-wide greater 

abundance in older mice and little clear effect from sex (Figure S7).

DISCUSSION

We performed quantitative protein profiling across 10 tissues from the mouse reference 

strain, C57BL/6J. We characterized differences in protein abundance based on age, sex, 

and their interaction. We compared age-related changes observed in our study with 

transcriptomics and proteomics data from other studies of aged mice and observed broad 
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consistency, but also evidence of protein-specific and population-specific aging changes. 

Looking within and across tissues, we identified unique functional patterns of proteins 

that vary with age, including global changes to components of the immune system, tissue-

specific changes to cellular respiration and metabolism, and proteostasis. Furthermore, we 

examined how protein complexes differ based on age and sex in terms of complex-wide 

abundance and cohesiveness or correlation.

We detected a handful of proteins with age differences that varied between sexes (e.g., 

age-by-sex interaction effects). Tissues with prominent age-by-sex effects were kidney 

(CES1D, MIF, PSMC4), liver (GSTP1, GSTP3, NDRG1), fat (CHDH, CKA P4, RPL35), 

and skeletal muscle (HSPA5, CDNF, ADAMT S1). The age-by-sex effect patterns varied 

across proteins and tissues. In the kidney, macrophage migration inhibitory factor (MIF) had 

higher protein abundance in older males than in younger males, but an inverted response 

in females (younger females had more MIF protein). Other proteins like CES1D had no 

age-related abundance change in male kidneys, but a striking decrease in protein abundance 

in female kidneys. The age-by-sex effects in skeletal muscle were highly consistent across 

the 11 proteins, with females showing no age-related abundance changes compared with 

males having an increased abundance with age. These findings highlight diverse cellular and 

tissue responses driven by age-by-sex effects and emphasize the need for studies to include 

both sexes to provide a complete picture of aging.

The primary aging pattern shared across all tissues is an increase in immunoglobulin 

proteins, implicating the immune system in the aging process. This parallels immune-aging 

signatures in transcriptomics,2 and the strongest immune signal for both proteins and 

transcripts occurs in fat tissues. Even in tissues like striatum and hippocampus that had 

very few proteins with significant age differences, specific immune proteins increased 

in abundance with age, consistent with the other tissues. Given that the data represent 

bulk tissue samples, age effects within a tissue may be driven by changes in cellular 

composition with age. These patterns suggest that, with age, changes in the adaptive immune 

response occur, potentially due to increased presence of immunoglobulin-producing cells, 

to varying degrees across tissues. This is further supported by matching increases in the 

immunoproteasomes.

In addition, we observed immune-related aging patterns that were specific to tissues, which 

further highlights changes to the immune system as a signature of aging. In the spleen, 

which has a unique role in the immune system compared with the other tissues in this 

study, we saw reduced abundance with age for proteins involved in leukocyte activation, 

particularly T cells (including ITGB7, SLFN1, SATB1, FOXP1, FOXO1, SIT1, and THY1). 

We note that many of these proteins were primarily quantified in spleen. Fat also exhibited 

unique increases with age for immune-related proteins. Together these findings point to 

dynamic immune system changes across tissues.

Previous studies have demonstrated that protein complexes can be co-regulated by biological 

factors, such as sex, diet, and genetics.18–20 We assessed how age and sex affect complex-

wide abundance and cohesiveness, replicating our previous finding of reduced ribosomal 

protein abundance in female liver.19 We note an excess of age differences across tissues 
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for protein complexes, in terms of both cohesiveness and abundance, related to proteostasis, 

which is hypothesized to contribute to aging,45–48 including ribosomes,49 proteasomes, and 

the CCT complex. Similar changes to the cohesiveness of these protein complexes were 

observed in genetically diverse mice.11 We also note that the direction of change was not 

necessarily consistent across tissues for a complex, nor was it possible to distinguish loss 

of stoichiometric balance with age from changes in tissue compositions, as is likely the 

case for the immunoproteasome. Nevertheless, our findings reveal changes to and potential 

disruption of proteostasis with age that vary across tissues.

Further studies are needed to understand the mechanisms underlying the large-scale aging 

dynamics of proteins discovered here, many of which are independent of age-related 

changes in transcription. A broader time series of age groups, similar to the gene expression 

study of Schaum et al.,2 would provide a higher-resolution picture of how protein abundance 

changes with age. Such a study could characterize non-linear trends of aging, which could 

then be compared between groups of age-co-regulated proteins or even with aging trends in 

gene transcripts. For example, we observed relatively few age and sex effects at the protein 

level across the murine brain sections profiled (hippocampus, striatum, and cerebellum), 

which is overall consistent with other studies based on two age groups.2,8 Therefore, future 

studies could improve the resolution of aging at the level of proteins by including B6 mice 

older than late midlife, which could reveal new temporal changes in brain proteins.

Lifespan has been shown to vary across mouse strains,50 which suggests that age-related 

protein changes may also vary. Our comparisons of age-related changes in proteins across 

different mouse populations are consistent with some population-specific differences. Age 

differences seen in B6 mice were more consistent with another study of B6 mice than with 

genetically diverse mice. Nevertheless, overall, tissue-specific changes in proteins during 

aging are significantly correlated between populations. There are key differences across 

these studies, including the numbers and ages of the mice, which can have an impact on how 

the age effect is estimated. Compared with sex differences in kidney, the most consistent 

effect type between transcripts and proteins across populations, age differences are small and 

thus more subject to error, particularly when comparing across studies.

Without corresponding gene expression data from the same samples, it is experimentally 

challenging to distinguish whether aging changes in proteins observed in bulk tissue reflect 

consistent changes across the cells that make up a tissue or changes in tissue composition. If 

gene expression data were available, tissue deconvolution51 of bulk tissue RNA sequencing 

would be possible using single-cell data from overlapping tissues from a resource, such 

as Tabula Muris,3 to estimate cell-type proportions per sample. The relationship between 

cell-type proportions and age could then be tested to identify proteins with age effects that 

correspond to changes in tissue composition.

Even in the absence of gene expression data, there are hints that some aging effects on 

proteins reflect changes to tissue composition with age. For example, increased levels of 

immunoproteasomes and decreased levels of complement cascade proteins across multiple 

tissues could be explained by a changing balance of immune cells with age. Estimation 

of cell-type identity through integration of reference single-cell RNA sequencing with 
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bulk protein abundance rather than gene expression is challenging because fewer genes 

are measured at the protein level, likely resulting in less information distinguishing cell 

types. Furthermore, single-cell gene expression and mass spectrometry proteomics are less 

comparable. Single-cell proteomics data for samples could more directly elucidate age 

changes in proteins at a cellular level. However, these approaches are newly developing52–54 

and pose both technical and analytical challenges to overcome, such as extreme data 

sparsity.

Based on our prior studies, we sought to evaluate the effect of aging on proteins across 

a wide range of tissues in the reference mouse strain to assess the concordance of age 

effects on proteins and their transcripts across tissues, as well as to identify global and 

tissue-specific patterns of aging at the protein level. This study functions as a quantitative 

protein resource for the aging-focused research community. We provide our data and 

corresponding processed results as an interactive Shiny application, available online at http://

aging-b6-proteomics.jax.org, allowing proteins of interest to be easily queried. This tool can 

be used to confirm or replicate findings from previous studies in mice (BCAT1) or other 

models (VCAM1 in humans and REN1 in aging rat kidney) and generate hypotheses for 

future studies of aging.

Limitations of the study

Sample size (n = 20) is a key limitation of this study. We are primarily powered to detect 

fairly large differences between groups (age and sex); more subtle differences are likely to 

be undetected. The aging changes revealed by this study cover the span from adult to late 

midlife in mice and thus do not necessarily reflect biomedically relevant changes that occur 

only at late stages of life. All tissue samples were exhausted in generating these proteomics 

data, and thus further relevant -omics data (e.g., transcripts) cannot be collected for these 

specific mice.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Devin Schweppe (dkschwep@uw.edu).

Materials availability—None generated, see Date and code availability for more 

information on proteomics data.

Data and code availability

• The mass-spec proteomics data for all samples reported here have been deposited 

in ProteomeXchange (http://www.proteomexchange.org/) via the PRIDE partner 

repository (ProteomeXchange: PXD034029). All statistical analyses were 

performed using the R statistical programming language (v4.0.3)59.

• All starting data, key forms of processed data, and the analysis pipeline 

to process the data, run analysis, and produce the reported findings 

have been made publicly available at figshare (https://doi.org/10.6084/
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m9.figshare.19765849). The processed data are also interactively viewable 

through an Shiny application, which is available online (http://aging-b6-

proteomics.jax.org) or can be downloaded from GitHub (https://github.com/

gkeele/Aging_B6_Proteomics_RShiny) and run locally through RStudio (https://

posit.co).

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice—Female and male C57BL/6J mice (stock JR#000664) were obtained from The 

Jackson Laboratory. Animals were maintained on pine shavings and given a standard rodent 

diet (LabDiet 5KOG) and acidified water in a pathogen free room (health report included 

in figshare repository). The room was maintained at 21°C with a 12-hour light/dark cycle 

(6am to 6pm). At the time of tissue collection (at 8 and 18 months of age) animals were 

euthanized by cervical dislocation. Kidney, liver, fat (inguinal adipose), spleen, lung, heart, 

skeletal muscle (quadriceps), striatum, cerebellum, and hippocampus tissues were collected 

from each animal. Whole organs were used for kidney, liver, spleen, lung, and heart. All 

animal experiments were performed in accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals (National Research Council) and were 

approved by The Jackson Laboratory’s Animal Care and Use Committee.

METHOD DETAILS

Sample preparation for proteomics analysis—Tissue samples were dounce 

homogenized and resuspended in lysis buffer (8M urea, 150 mM NaCl, Roche protease 

inhibitor tablets) and cells were lysed by sonication (procedure). Lysates were cleared by 

centrifugation (15 min at 20,000×g) and protein concentrations were measured using Pierce 

BCA assay kits. Proteins were then reduced with dithiothreitol (5mM for 30 minutes at 

room temperature) and alkylated with iodoacetamide (15mM for 60 minutes in the dark). 

The alkylation reaction was quenched by adding an additional aliquot of DTT. For each 

sample, 100ug of protein was aliquoted and diluted to a final concentration of 1mg/mL. The 

bridge channel included equal amounts protein from each tissue for all 20 mice as 20μg 

per mouse split into two bridge samples (100μg each) and added to each of two plexes per 

tissue. Proteins were digested using LysC (Wako, overnight, room temperature, moderate 

agitation) followed by trypsin (6 hr, 37C, 200rpm). The resulting peptides were then labeled 

with individual TMT (Thermo) reporters (1.5 hours at room temperature) and the reaction 

was quenched with hydroxylamine (5% in water for 5 minutes). Labeled peptides were 

mixed into a set of two plexed for each tissue analysis. After labeling and mixing, peptide 

mixtures were desalted using C18 seppak cartridges (1mg, Waters). Desalted peptides were 

then fractionated using basic-pH reverse phase chromatography60. Briefly, peptides were 

resuspended in Buffer A (10mM ammonium bicarbonate, 5% acetonitrile [ACN], pH 8) and 

separated on a linear gradient from 13% to 42% Buffer B (10mM ammonium bicarbonate, 

90% acetonitrile [ACN], pH 8) over an Agilent 300Extend C18 column using an Agilent 

1260 HPLC equipped with single wavelength detection at 220nm). Fractionated peptides 

were desalted using Stage-tips60 prior to LC-MS/MS analysis.
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Mass spectra data analysis—Peptides were separated prior to MS/MS analysis using 

an Easy-nLC (Thermo) equipped with an in-house pulled fused silica capillary column 

with integrated emitter packed with Accucore C18 media (Thermo). Separation was carried 

out with 90-minute gradients from 96% Buffer A (5% ACN, 0.125% formic acid) to 30% 

Buffer B (90% ACN, 0.125% formic acid). Mass spectrometric analysis was carried out 

on an Orbitrap Fusion Lumos (Thermo). Multiplexed analysis of samples was done using 

real-time search data acquisition14, based on canonical SPS-MS3 acquisition. Briefly, a 

survey MS1 scan was used to identify potential peptide precursors (R = 120000, Mass 

range: 400–2000 m/z, max Inject time: 50ms, AGC: 200000, RF lens: 30%). The top 10 

precursors were selected for fragmentation and analysis in the ion trap (Dynamic exclusion: 

120s at 10ppm, CID collision energy: 35%, max inject time: 120ms, AGC: 20000, scan 

rate: rapid, isolation width: 0.5 m/z). Real-time spectral matching was carried out using the 

Comet search algorithm61. If, and only if, a peptide was matched with high confidence, the 

instrument would then acquire an additional SPS-MS3 scan for quantification of relative 

abundances (R = 50000, HCD NCE: 65, max inject time: 200ms).

Raw spectral information was converted to mzXML format using Monocle62, and 

spectra were matched using the Comet search algorithm comparing against the 

ENSEMBL_GRCm39 database61,63. Peptides and proteins were filtered to a 1% using rules 

of protein parsimony61.

QUANTIFICATION AND STATISTICAL ANALYSIS

Protein abundance estimation from peptides—Samples from each tissue were run 

across two tissue-specific batches. For each tissue, the abundance level for proteins was 

estimated as a scaled sum of their component peptides. For protein j from tissue k of mouse 

i, the abundance is calculated as yijk = ∑M yimk
′ 1imk

θik
 where M is the set of peptides that map 

to protein j, yimk
′  is the intensity of peptide m from tissue k of mouse i, 1imk is the indicator 

function that peptide m was observed in tissue k of mouse i, and θik = ∑p yip
′

maxi ∈ k(∑p yi
′)  is the 

within-batch scaling factor64 for mouse i in tissue k, representing the ratio of the sum 

of all peptide intensities for mouse i to the maximum sum total for the 11 samples in 

the batch of mouse i for tissue k, B ik . To standardize quantities across the two batches, 

abundances were ratio normalized to a pooled sample that was included in both batches: 

yijk = log2
yijk + 1

yb ik jk + 1  where b ik  is the bridge sample from the batch of mouse i for tissue k.

Filtering out low quality proteins and samples—We filtered out proteins that were 

only observed in one of the two batches for a tissue because we found single batch proteins 

could be influential in downstream analysis. After protein abundance estimation and removal 

of single batch proteins, we performed PCA65 to identify tissue samples that were clear 

outliers across many proteins. We removed one sample from liver (young male), fat (young 

male), spleen (old male), lung (young male), and skeletal muscle (old female). Two samples 

were removed from striatum, both old female mice.
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Testing for age, sex, and age-by-sex interaction effects on proteins within 
tissues—We tested for significant differences based on age, sex, and age-by-sex using 

ordinary least squares (OLS) regression. For each protein j observed in tissue k, we fit the 

following model:

yi = μ + βoldxi
old + βfemalexi

female + βbatcℎxi
batcℎ + εi Equation 1

where μ is the intercept, βold represents the effect of being in the old group, βfemale represents 

the effect of being female, βbatcℎ represents the effect of being in second batch, xi
old, xi

female, and 

xi
batcℎ are indicator variables that mouse i is old, female, or in batch2, respectively, and εi is 

the error for mouse i, modeled as εi ∼ N 0, σ2  and σ2 is the variance of the noise. To test for 

an age effect, we used analysis of variance (ANOVA), comparing the model in Equation 1 

to a model excluding the age term and recorded the age effect coefficients, standard errors, 

and p-values. Similarly, we tested for a sex effect by comparing the Equation 1 model to a 

model excluding the sex term and again recorded sex effect coefficients, standard errors, and 

p-values. Finally, we assessed age-by-sex differences by adding an age-by-sex interaction 

term to the model which was then compared to the Equation 1 model with ANOVA and 

recorded the age-by-sex p-value. We estimated the FDR using the Benjamini-Hochberg 

(BH) method66 for each effect type, producing age, sex, and age-by-sex q-values. This 

process was used each of the 10 tissues.

When plotting data (not effect parameters), we first regressed out the effect of batch to 

make the signal from age or sex clearer. We fit the model in Equation 1 and then calculated 

yi = y‾i − βbatcℎxi
batcℎ, where βbatcℎ is the estimated coefficient for the second batch, for all proteins 

j across all tissues k.

Testing for consistent and unique age and sex effects on proteins across 
tissues—We tested whether age and sex effects on a protein were similar or distinct across 

tissues for all proteins detected in more than one tissue using linear mixed effects models 

(LMM) fit in the Ime4 R package55. For each protein j, we fit the following model:

yik = μ + βoldxi
old + βfemalexi

female + tissue k + ui + εik Equation 2

where tissue k  represents the effect of tissue k, ui is a random term specific to mouse i, 
modeled as ui ∼ N 0, τ2 , τ2 is the variance component underlying the mouse-specific effect, 

and all other terms as previously defined. A batch effect was not included because tissue and 

batch are highly confounded (batch pairs specific to each tissue), and we are not interested 

in the marginal effect of either tissue or batch. We tested for a consistent age effect across 

tissues by comparing the model in Equation 2 to reduced model excluding the age effect 

with ANOVA using Satterthwaite’s approximation for an LMM67,68, implemented in the 

ImerTest R package56. We next looked for age effects that were unique to tissues or were 

even flipped by testing an age-by-tissue term by comparing the model in Equation 2 to an 

expanded model that included the interaction term. The same approach was used to test for 

consistent sex effects across tissues and tissue-unique and flipped sex effects. To account for 

multiple testing across proteins, we again estimated q-values using the BH method66.
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Modeling how factors contribute to variation in proteins measured in all 10 
tissues—To evaluate how various technical and biological factors contribute to variation 

in the abundance of individual proteins, we fit an LMM with variance components for each 

factor for all proteins measured in all 10 tissues. For each protein j, we fit the following 

model:

yik = μ + βoldxi
old + βfemalexi

female + ui
Mouse + ut i

Tag + ub i
batcℎ + εik Equation 3

where ui
Mouse is a random term specific to mouse i (20 levels), ut i

Tag is a random term for 

TMT tag t of mouse i (10 levels), ub i
batcℎ is a random term for TMT batch b of mouse 

i (20 levels), and all other terms as previously defined. Each random effect is modeled 

as u i
factor N(0, τfactor

2 ). Proportion of variation explained by each factor was calculated as 

V arPfactor = τfactor
2

τMouse
2 + τTag

2 + τBatcℎ
2 + σ2 . For point and interval estimates of the random terms, best 

linear unbiased predictors (BLUPS) and 95% predictive intervals were used.

Testing for age and sex effects on transcripts within tissues—We obtained 

transcriptomics data reported in Schaum et al 20202, which represent 17 tissues and 10 age 

groups (1 to 27 months) from the closely related C57BL/6JN (B6N) mice. Each age group 

consisted of samples from four males and two females, except for 24 and 27 months, which 

only had the four males. We filtered the data to the 9 and 18 months-old age groups, which 

most closely match our age groups of 8 and 18 months. We then tested for and characterized 

age and sex effects (log fold change) on gene expression within each tissue. We used the 

DESeq2 R package57 to fit models similar to Equation 1 (excluding the batch covariate), 

but now using a negative binomial generalized linear model (GLM) to accommodate that 

the data are gene counts. Age and sex effects on proteins and transcripts were compared 

based on aligning Ensembl gene IDs. When plotting the data to illustrate effects, we first 

used DESeq2’s variance stabilizing transformation69 across samples from all tissues and age 

groups.

Age and sex effects on proteins from previously published murine proteomics 
data—We obtained proteomics data from hearts11 and kidneys10 from genetically diverse 

DO mice. These studies included three age groups (6, 12, and 18 months-old). Rather 

than re-estimating age and sex effects from the individual-level data, we used the publicly 

available effects summaries from the studies. For age, the effect represents a regression 

coefficient corresponding to age fit as a continuous variable.

We also obtained proteomics data from nine tissues from 10 B6 males8. These data included 

both targeted (Tomahto) and untargeted mass-spec proteomics. We estimated age effects 

from the individual-level data (for both targeted and untargeted) use ANOVA, using a model 

similar to Equation 1 but without a sex or batch term.

Protein complex annotations—To define the set of protein complexes to assess, 

we used the annotations from Ori et al 201640, which were manually curated from 

their in-house data along with resources like the CORUM database39 and COMPLEAT 

protein complex resource41. We first filtered out proteins that did not have an orthologous 

Keele et al. Page 16

Cell Rep. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ENSEMBL protein ID in mouse, and then filtered out protein complexes that did not have 

four or more proteins observed in one of the tissues. This resulted in 228 protein complexes 

across the 10 tissues.

Summarizing protein complex co-abundance—We quantified how co-abundant, i.e., 
cohesive, a protein was with its complex40 as the median Pearson correlation coefficient 

between it and other complex members. An overall summary for the complex was then 

taken as the median across all the individual medians, an approach we used previously19. We 

calculated cohesiveness only for protein complexes with more than three member proteins 

observed for a given tissue.

Testing for consistent age and sex effects on abundance across a protein 
complex—We tested for consistent age and sex effects on protein complexes with more 

than three observed members by jointly modeling all proteins. For each protein complex c
observed in tissue k, we fit the following LMM for proteins j ∈ Jc:

yij = μ + βoldxi
old + βfemalexi

female + ui
Mouse + uj

Protein + εij Equation 4

where Jc is the set of proteins in complex c, uj
Protein is a random term for protein j, modeled as 

uj
Protein ∼ N(0, τProtein

2 ), τProtein
2  is the variance component underlying proteins, and all other terms 

as previously defined. We tested for an age or sex effect by comparing the model in Equation 

4 to either a model excluding the age or sex term, respectively, through ANOVA, again with 

Satterthwaite’s approximation67,68, producing a p-value. FDR was again estimated using the 

BH method66 across protein complexes and tissues, for age and sex separately.

Testing for age and sex effects on protein complex cohesiveness—Age or sex 

could affect how tightly co-abundant a protein complex is. We evaluated whether age or sex 

had a consistent effect on the correlation structure of the complex using a paired t-test. For 

example, with age, we calculated all the pairwise correlations between members for both 

age groups for a given complex within a tissue: rold, rYoung , resulting in a t-test p-value and 

effect. This process was repeated based on sex. The BH method66 was again used to estimate 

FDR and produce t-test q-values for both age and sex. We used a more stringent significance 

threshold of FDR < 0.01 because correlation coefficients are non-standard quantities to 

model with a t-test.

Testing changes in correlation between pairs of proteins with permutations—
To test whether individual pairwise correlations between protein complex members differed 

based on age or sex, we used permutations. When testing for an age difference, we swapped 

mouse identifiers among males and among females, thus maintaining the effect of sex 

and potentially avoiding anti-conservative permutation p-values. When testing for a sex 

difference, we swapped labels while maintaining the age groups. We estimated empirical 

p-values as 1
p ∑ρ l(|rmn | > rmn

p ) where P  is the number of permutations, I .  is an indicator 

function, rmn  is the observed absolute Pearson correlation coefficient between proteins m
and n, and rmn

ρ  is the absolute Pearson correlation coefficient for permutation p. We set P  to 

100,000.
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Gene set enrichment analyses—We used both set-based and score-based gene set 

enrichment analyses and confirmed that they often conferred with each other. We used the 

clusterProfiler R package16 for set-based analysis, in which we defined gene sets based 

on various criteria, such as all genes from a given tissue that have significant age or sex 

effects on protein abundance compared to all genes analyzed in the tissue. We also evaluated 

tissue-specific gene sets defined by the direction of the significant age or sex effect for given 

tissues or based on how genes clustered according to age effects across the tissues. For the 

score-based analysis, we used the fgsea R package58 paired with GO pathways from the 

msigdbr R package70. For each tissue, we input all analyzed genes with scores as the age 

or sex coefficients from Equation 1, standardized by their standard errors. We compared GO 

findings between pairs of tissues by intersecting tissue-specific results based on pathway ID 

and gene ID.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Quantified 10,250 total proteins across 20 mice ages 8 and 18 months

• Quantified 200 anatomical proteomes across 10 tissues and at two ages

• Immune, proteostatic, and metabolic protein abundances change with age

• Altered protein complex stoichiometry and substrates correlate with age
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Figure 1. Quantitative proteomics study on the effects of age and sex on protein abundance 
across 10 tissues from B6 mice
(A) Using sample multiplexing, 10 anatomical proteomes (adipose tissue, striatum, 

hippocampus, cerebellum, kidney, spleen, lung, heart, liver, skeletal muscle) were profiled 

across age- and sex-matched mice (n = 20).

(B) Age (top) and sex (bottom) differences for protein abundance from kidney (left) 

and heart (right) tissues, depicted as volcano plots. Differences in protein abundance are 

summarized as regression coefficients (x axis) and corresponding −log10(p value) (y axis). 

Points are colored based on statistical significance (FDR < 0.1) and direction of effect. 

Counts of proteins with significantly higher abundance in 18- and 8-month-old mice are 

included. Dashed vertical lines at 0 included for reference.

(C) Examples of proteins in kidney tissue with significant age-by-sex differences (FDR < 

0.1).

(D) Age differences detected across the 10 tissues (FDR < 0.1), represented as a heatmap. 

Differences are summarized as regression coefficients.

Keele et al. Page 24

Cell Rep. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Proteins with age-related differences in abundance across 10 tissues
(A) Proteins with age differences in abundance, represented as volcano plots. Differences 

in protein abundance are summarized as regression coefficients (x axis) and corresponding 

−log10(p value) (y axis). Points are colored based on statistical significance (FDR < 0.1) and 

direction of effect. Counts of proteins with significantly higher abundance in older mice and 

younger mice are included. Dashed vertical lines at 0 included for reference. Proteins with 

sex differences in abundance are shown in Figure S2.

(B) The immunoglobulin IGKC has consistent increased abundance in older mice across all 

10 tissues.

(C) Proteins with significant age differences that vary between tissues: BCAT1, CES1D, 

FBLN1, and STAB1.
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Figure 3. Age- and sex-related protein differences show varying levels of consistency with 
previously published transcriptomics and proteomics datasets
(A and B) Comparisons of (A) age- and (B) sex-related differences in proteins with 

transcripts in kidney. Points are colored based on statistical significance (FDR < 0.1) 

in proteins and transcripts. Correlation (r) between protein differences and transcript 

differences and dashed vertical and horizontal lines at 0 included for reference. Counts 

of genes with significant differences included as bar plots in the bottom right quadrant.

(C) Vcam1 significantly increases with age in terms of both transcripts (top) and proteins 

(bottom). Transcript data represent 10 age groups compared with 2 age groups for proteins.
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(D) Keg1 expression had significant age and sex differences (top), whereas its protein had 

a matching sex effect (bottom). The age effect did not meet significance at FDR < 0.1, but 

the direction is consistent with transcripts. Transcript data represent 10 age groups compared 

with 2 age groups for proteins.

(E and F) Comparisons of (E) age- and (F) sex-related differences in proteins with 

transcripts in heart. Points are colored based on statistical significance (FDR < 0.1) 

in proteins and transcripts. Correlation (r) between protein differences and transcript 

differences and dashed vertical and horizontal lines at 0 included for reference. Counts 

of genes with significant differences included as bar plots in the bottom right quadrant.

(G) Correlations between protein age differences across tissues comparing three mouse 

sample populations. The number of genes being summarized by the correlation is on the 

x axis. Circle points represent correlations across all overlapping genes. Triangle points 

represent correlations across overlapping genes that had a significant age difference (FDR 

< 0.1) in this study’s B6 mice. Dashed lines connect correlations from the same tissue 

and study comparison. Horizontal line at 0 included for reference as the upper limit of 

correlation. Numbers associated with each point indicate the number of proteins associated 

with each comparison.

(H–J) Comparisons of protein age-related differences in kidney between (H) this study’s 

cohort of B6 mice and genetically diverse mice, (I) this study’s cohort of B6 mice 

and another smaller cohort of male B6 mice, and (J) targeted and untargeted protein 

measurements from the smaller cohort of male B6 mice, representing a technical replication. 

Proteins with consistent strong age effects (same sign in both datasets and absolute Z scores 

within each population greater than 2) across two studies are outlined in black. Correlation 

(r) between protein differences and dashed vertical and horizontal lines at 0 included for 

reference. Black best fit lines also included for reference.
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Figure 4. Cross-tissue and tissue-unique patterns of aging
(A) Age-related differences detected across the 10 tissues (FDR < 0.1), represented as a 

heatmap. Differences are summarized as regression coefficients. Hierarchical clustering of 

the proteins (columns) reveals sets of proteins with age difference patterns across tissues and 

unique to specific tissues.

(B) Proteins with age differences that are shared across tissues are enriched for immune-

related GO categories. Additional tissue-unique patterns are highlighted in Figure S3.

(C) The proteins with age differences in a specific tissue can be enriched in GO categories, 

with spleen highlighted here for proteins with higher abundance in older mice. Abundance 

differences with age for proteins analyzed in spleen are represented as volcano plots. 
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Differences in protein abundance are summarized as regression coefficients (x axis) and 

corresponding −log10(p value) (y axis). The ERAD pathway (GO: 0036503), EMC, COPI, 

and COPII proteins are highlighted. Highlighted proteins with significant differences (FDR 

< 0.1) have larger point size. Proteins with age p < 0.05 are labeled.

(D) Comparison of age differences between kidney and heart with highlighted GO 

categories that are consistent (left) and inconsistent (right) between the tissues. Proteins 

with a significant age difference (FDR < 0.1) in kidney or heart are shown. Proteins with 

significant differences (FDR < 0.1) in both tissues have a larger point size.
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Figure 5. Increased immunoglobulin abundance is a signature of aging detected in all 10 tissues
(A) Proteins with age differences in abundance, represented as volcano plots. Differences 

in protein abundance are summarized as regression coefficients (x axis) and corresponding 

−log10(p value) (y axis). Points are colored based on being a member of the adaptive 

immune response GO category (GO: 0002250) and direction of effect. Highlighted proteins 

with significant differences (FDR < 0.1) have larger point size. Dashed vertical lines at 0 

included for reference.
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(B) Volcano plots for cerebellum, fat, and spleen, with immunoglobins and 

immunoproteasomes (PSMB8, PSMB9, and PSMB10) highlighted.

(C) Age differences summarized across the immunoproteasomes (y axis) and 

immunoglobins (x axis) for all 10 tissues. Points represent mean differences and bars 

represent standard errors. Horizontal and vertical dashed lines at 0 included for reference.

(D) Pearson correlations from the proteasome in younger (top) and older (bottom) mouse 

fat. Rows and columns are ordered to reflect key subcomplexes of the proteasome, which are 

labeled. The immunoproteasomes and their matching constitutive analogs are highlighted 

with black squares.
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Figure 6. CCT complex is more stoichiometrically balanced in older mouse cerebellum
(A) Comparison of age-related differences and p values in complex cohesiveness (top) with 

complex-wide abundance (bottom) in cerebellum. CCT complex is highlighted. Dashed 

vertical lines at 0 included for reference. Horizontal line at p = −log10(0.05) included to 

indicate statistical significance.

(B) Volcano plot for age differences in individual protein abundance for cerebellum with 

CCT-complex members highlighted with color based on direction of effect. Counts of 
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proteins with significantly higher abundance in older mice and younger mice are included 

(FDR < 0.1). Dashed vertical lines at 0 included for reference.

(C) Pearson correlations from the CCT complex in younger (left) and older (right) mouse 

cerebellum. Black and gray squares highlight patterns in the correlation matrix that mirror 

the structure of the CCT complex.

(D) Histograms of pairwise correlation coefficients between CCT-complex members with 

each other (top) and other proteins (bottom). Vertical red dashed lines represent median 

correlations.

(E) The CCT complex is composed of two identical octomeric rings. The CCT2 (β) and 

CCT6A (ζ) from each ring are in physical contact with their twin. Outline of proteins 

matches correlation structure previously highlighted.

(F) GO categories enriched in proteins that are more correlated with CCT-complex members 

in older mouse cerebellum than in younger. The microtubule GO category (GO: 0005874) is 

explored further in Figure S6.
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Figure 7. CRLS in liver shows age-by-sex differences in complex-wide abundance and 
stoichiometry
(A) Comparison of age-related differences and p values in complex cohesiveness (top) with 

complex-wide abundance (bottom) in liver. CRLS is highlighted. Dashed vertical lines at 

0 included for reference. Horizontal line at p = −log10(0.05) included to indicate statistical 

significance.

(B) Volcano plot for age differences in individual protein abundance for liver with CRLS 

members highlighted with color based on direction of effect. Counts of proteins with 

significantly higher abundance in older mice and younger mice are included (FDR < 0.1).
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(C) Comparison of sex-related differences and p values in complex cohesiveness (top) with 

complex-wide abundance (bottom) in liver. CRLS is highlighted. Dashed vertical lines at 

0 included for reference. Horizontal line at p = −log10(0.05) included to indicate statistical 

significance.

(D) Volcano plot for sex differences in individual protein abundance for liver with CRLS 

members highlighted with color based on direction of effect. Counts of proteins with 

significantly higher abundance in females and males are included (FDR < 0.1).

(E) CRLS proteins with age-by-sex differences in abundance in liver (age-by-sex p < 0.05).

(F) Pearson correlations from the CRLS, stratified by age (left, younger; right, older) and 

sex (top. male; bottom, female) in mouse liver.

(G) Histograms of pairwise correlation coefficients from the CRLS, stratified by age (left, 

younger; right, older) and sex (top, male; bottom, female) in mouse liver. Vertical dashed 

lines represent median correlations.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant 
proteins

TMT10plex Isobaric Label Reagent Set plus 
TMT11-131C Label Reagent, 1 × 5 mg (per 
tag)

Thermo Fisher A34808

Lys-C, Mass Spectrometry Grade Wako Chemicals Barcode No. 4987481427648

Sequencing Grade Modified Trypsin Promega V5113

cOmplete™ Protease Inhibitor Cocktail Roche 4693116001

Iodoacetamide Millipore Sigma I1149-25G

DL-Dithiothreitol Millipore Sigma D0632-10G

Critical commercial assays

Pierce BCA Protein Assay Kit Thermo Fisher 23227

Deposited data

C57BL/6J untargeted proteomics (10 
tissues, 20 mice, males and females, 2 age 
groups)

ProteomeXchange (http://
www.proteomexchange.org)

PXD034029

C57BL/6JN transcriptomics (17 tissues, 9 
age groups)

Schaum et al.; Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo/)

GSE132040

C57BL/6J targeted and untargeted 
proteomics (9 tissues, 10 male mice, 2 age 
groups)

Yu et al.; ProteomeXchange (http://
www.proteomexchange.org)

PXD017385

Processed data (e.g., proteins, peptides) 
for C57BL/6J, C57BL/6JN, and DO 
populations and code to generate all results 
and figures

https://doi.org/10.6084/m9.figshare.19765849 N/A

RShiny viewer of C57BL/6J aging 
proteomics data

http://aging-b6-proteomics.jax.org; 
https://github.com/gkeele/
Aging_B6_Proteomics_RShiny

N/A

Experimental models: Organisms/strains

Mouse: C57BL/6J The Jackson Laboratory JAX:000664

Mouse: C57BL/6JN Charles River Laboratories N/A

Mouse: J:DO The Jackson Laboratory JAX:009376

Software and algorithms

lme4 Bates et al.55 https://cran.r-project.org/web/packages/lme4/
index.html; RRID: SCR_015654

lmerTest Kuznetsova et al.56 https://cran.r-project.org/web/packages/
lmerTest/index.html; RRID: SCR_015656

DESeq2 Love et al.57 https://bioconductor.org/packages/release/
bioc/html/DESeq2.html; RRID: SCR_015687

clusterProfiler Yu et al.16 https://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html; RRID: 
SCR_016884

fgsea Korotkevich et al.58 https://bioconductor.org/packages/release/
bioc/html/fgsea.html; RRID: SCR_020938
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REAGENT or RESOURCE SOURCE IDENTIFIER

R The R Project https://www.r-project.org; RRID: 
SCR_001905

Shiny https://cran.r-project.org/web/packages/shiny/
index.html; RRID: SCR_001626

Other

Protein complex annotations Ori et al.40 http://doi.org/10.1186/s13059-016-0912-5

Waters 100mg Sep-Pak Waters WAT036820

Orbitrap Fusion Lumos Thermo Fisher IQLAAEGAAPFADBMBHQ

Zorbax 300 Extend C18 column Agilent 770995-902

1260 Infinity II LC System Agilent
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