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Abstract

How does the auditory system represent and perceptually categorize natural sounds? Here 

we apply multimodal noninvasive imaging to show that the spatiotemporal progression from 

acoustic to semantically dominated representations is consistent with a mixed and distributed 

hierarchical processing scheme. Combining magnetoencephalography (MEG) and functional 

magnetic resonance imaging (fMRI) responses to a large set of naturalistic sounds, we found 

superior temporal responses to passive listening beginning ~55 ms post-stimulus onset, spreading 

to extratemporal cortices by ~100 ms. Early regions were distinguished less by onset/peak latency 

than by functional properties and overall temporal response profiles. Early acoustically-dominated 

representations trended systematically toward semantic category dominance over time (after ~200 

ms) and space (beyond primary cortex). Semantic category representation was spatially specific: 

vocalizations were preferentially distinguished in temporal and frontal voice-selective regions and 

the fusiform face area; scene and object sounds were distinguished in parahippocampal and medial 

place areas. Our results are consistent with real-world events being coded via an extended auditory 

processing hierarchy, in which acoustic representations give rise to multiple streams specialized by 

category, including areas typically considered visual cortex.
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INTRODUCTION

Hearing feels immediate and automatic. Within a few hundred milliseconds, the human 

auditory system spectrally decomposes incident acoustic energy, then computationally 

segregates (Traer and McDermott, 2016; Teng et al., 2017; Kell and McDermott, 2019), 

localizes (Ahveninen et al., 2006, 2014), and semantically categorizes (Murray et al., 2006; 

Charest et al., 2009; De Lucia et al., 2010) its sources, providing a rich representation of 

physical objects and events in our surroundings. Despite considerable progress in identifying 

the neural underpinnings of these transformations (Rauschecker and Scott, 2009; Bizley and 

Cohen, 2013; McDermott, 2018; Yi et al., 2019), the structural and functional organization 

of semantically meaningful auditory representation in human listeners remains an open 

question.

Because semantic classes of sound events are correlated with their acoustic properties 

(Theunissen and Elie, 2014), the resulting brain responses are themselves correlated 

(Norman-Haignere and McDermott, 2018) and thus ambiguously interpretable when not 

controlled (e.g., Engel et al., 2009; Ogg et al., 2020). Additionally, most studies using 

individual neuroimaging techniques differentiate responses across anatomical regions 

(Giordano et al., 2013; Kell et al., 2018; Norman-Haignere and McDermott, 2018) or over 

time (Murray et al., 2006; Brodbeck et al., 2018; Daube et al., 2019; Ogg et al., 2020) but 

cannot reveal the full spatiotemporal and representational dynamics needed to characterize 

a processing stream (Rauschecker and Scott, 2009; Bizley and Cohen, 2013). Consequently, 

it is often equivocal how physical events map to the brain responses they elicit, and 

whether those responses better reflect stimulus features or higher-level semantics. Here, 

we address these challenges via similarity-based fusion of human magnetoencephalography 

(MEG) and functional magnetic resonance imaging (fMRI) (Cichy et al., 2014, 2016b; 

Khaligh-Razavi et al., 2018; Henriksson et al., 2019; Mohsenzadeh et al., 2019; Cichy and 

Oliva, 2020). We combined the spatiotemporal resolution of responses in both imaging 

modalities within the representational similarity analysis (RSA) framework (Kriegeskorte 

et al., 2008; Kriegeskorte and Kievit, 2013) and modeled low- (acoustic) and high- 

(semantic) level representations within those responses, operationalizing representational 

level as the relative strength of the semantic category vs. acoustic models. In this way 

we integrated spatiotemporal measures of neural activity with spatiotemporal changes in 

the representational content of that activity. We found that semantic dominance of neural 

representations increased systematically over time; that its spatial progression over regions 

of interest (ROIs) correlated with those ROIs’ peak response latencies; and that distinct 

high-level frontal, temporal, medial and occipital regions rapidly coded distinct semantic 

categories, dissociable from overall acoustics. Our results suggest that external objects and 

events, initially transduced as acoustic representations, are categorized along an extended 

auditory processing hierarchy comprising category-specific streams within and beyond 

temporal cortex, including typically visual category-selective areas. Further, our data fusion 

approach is broadly amenable to uncovering the dynamics of auditory coding under a wide 

variety of stimuli and listening conditions.
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RESULTS

Human participants (n = 16) listened to 80 different monaural real-world sounds, presented 

diotically in random order for 500 ms every three seconds, while MEG and fMRI data 

were acquired in separate sessions. Stimuli were drawn from a large collection comprising 

sounds from animate (human and animal vocalizations) and inanimate (objects and scenes) 

sources (Fig. S1A-D). To dissociate acoustic from semantic category attributes, we equated 

root-mean-square intensities and spectrogram correlation distances across categories (see 

Methods, Fig. S1E-F for details). Prior to the fMRI and MEG neuroimaging sessions, 

participants listened to each sound accompanied by a written description (see Table S1), so 

that the interpretation of each individual sound was not ambiguous. No explicit category 

information was provided. Participants were instructed to focus attentively on each sound for 

the duration of the trial and responded via button press to oddball sounds (200 ms pure tones 

presented in pairs, separated by 100 ms silence) presented an average of every ten trials. All 

participants performed at or near ceiling on this vigilance oddball task (mean hit rate 98.44% 

± 1.38%, d’ = 5.71 ± .57).

MEG-fMRI Fusion Reveals a Spatiotemporally Ordered Cascade of Neural Activation

To generate a spatiotemporally unbiased view of neural responses to sounds, we applied 

whole-brain searchlight-based fMRI-MEG fusion (Cichy et al., 2014, 2016b; Khaligh-

Razavi et al., 2018; Mohsenzadeh et al., 2019; Cichy and Oliva, 2020; Wardle et al., 2020), 

relating temporal neurodynamics in MEG with spatial BOLD activity patterns in fMRI. In 

brief, MEG and fMRI brain responses were decoded separately by pairs of conditions, and 

the resulting decoding matrices then correlated within the RSA framework (Kriegeskorte et 

al., 2008). To this end, we first applied multivariate pattern analysis (MVPA) to MEG data 

in trial epochs spanning −200 to +3000 ms relative to stimulus onset. At each time point in 

the epoch, stimulus conditions were decoded pairwise, with classification accuracy indexing 

dissimilarity, to construct representational dissimilarity matrices (RDMs) (Kriegeskorte and 

Kievit, 2013; Cichy et al., 2014, 2016b). This yielded 3201 MEG RDMs of size 80 × 

80 (1 per millisecond in the epoch; 1 experimental condition per sound) per subject. For 

fMRI, we computed RDMs for each voxel (Kriegeskorte et al., 2008) via a whole-brain 

searchlight approach (Haynes and Rees, 2005; Kriegeskorte et al., 2006; Cichy et al., 

2016b), using 1 – Pearson correlation as the pairwise dissimilarity metric, yielding a total 

of 40122 fMRI RDMs (1 per voxel, also of size 80 × 80) per subject. Finally, we correlated 

the group-averaged MEG RDMs at each time point with subject-specific fMRI RDMs 

(Spearman’s ⍴; see Eq. 2, Methods), then thresholded and cluster-corrected the resulting 

correlations (cluster-definition threshold p < 0.001, cluster size threshold p < 0.05; see 

Figure 1a and Methods for further details). This yielded a series of whole-brain maps 

representing MEG-fMRI correspondences across time, each serving as a frame in a “movie” 

spanning the epoch (see Movie S1, Fig. 1).

Significant fusion correlations appear in voxels along Heschl’s Gyrus and the superior 

temporal gyrus (STG) starting 55–60 ms post-stimulus onset, spreading laterally along the 

superior temporal plane by ~80 ms, anteriorly and posteriorly thereafter to reach pre-frontal, 

ventral occipitotemporal, and medial regions by ~130–140 ms (see Figure 1b, axial slices at 
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z = 10 and −10 mm) before fading below significance by 1500 ms. Whole-brain fusion thus 

illustrates an orderly spatiotemporal progression of responses from early sensory cortices 

to higher-level and extratemporal regions, broadly consistent with processing streams in 

hierarchical organization (Rauschecker and Scott, 2009).

We further quantified the spatiotemporal distribution of the brain response by repeating 

the fusion approach in a region-of-interest (ROI) analysis, which yields a single fusion 

correlation time course for specific cortical regions, rather than each small searchlight 

volume. While we hypothesized a progression in which MEG-fMRI correspondence 

appears earliest in core auditory ROIs and travels systematically outward, the nature and 

organization of this progression remains unclear especially in early regions. We defined 

primary and nonprimary auditory anatomical ROIs spanning the STG and inferior frontal 

gyrus (IFG), and functionally defined occipital and temporal ROIs known to be category-

selective for faces, objects and scenes in vision as well as audition.

Specifically, the ROIs comprised the primary auditory cortex (PAC, comprising TE1.0 and 

TE1.1 in posteromedial and middle HG), TE1.2, planum temporale (PT) and planum polare 

(PP) (Morosan et al., 2001; Desikan et al., 2006; Norman-Haignere et al., 2013). From 

Pernet et al. (2015), we identified the voice-selective left inferior frontal gyrus (LIFG) 

region, and a modified temporal voice area (designated TVAx, with voxels overlapping 

with PT removed). We also selected the Parahippocampal Place Area (PPA, Epstein and 

Kanwisher, 1998), the Medial Place Area (MPA, Silson et al., 2016), the Fusiform Face Area 

(Kanwisher et al., 1997; FFA, Grill-Spector et al., 2004), and the Lateral Occipital Complex 

(Malach et al., 1995; LOC, Grill-Spector et al., 1999). Finally, we defined the Early Visual 

Cortex (EVC, MacEvoy and Epstein, 2011; Lowe et al., 2016) as a control region (see 

Methods for details).

Similarly to the whole-brain searchlight analysis, for each participant and ROI, we extracted 

voxelwise fMRI BOLD responses and computed an RDM from pairwise Pearson correlation 

distances. We then correlated each group-averaged ROI RDM with subject-specific MEG 

RDMs over time to generate an fMRI-MEG fusion correlation time course per ROI per 

subject. As shown in Fig. 2 and Table 1, statistically significant clusters (defined using 

sign-permutation tests, p < 0.01 cluster-definition threshold, p < 0.05 cluster threshold) 

were observed in all ROI fusion time courses except EVC. Early primary and non-primary 

auditory ROIs (PAC, PT, TE1.2, PP) exhibited similar peak latencies of ~115 ms post-

stimulus onset. Peaks in voice-selective regions (TVAx and LIFG) and MPA occurred at 

~200 ms, and ~300 ms or later in the other ventral and medial functionally defined regions 

(FFA, PPA, and LOC). The temporal dynamics of responses in these latter regions were 

markedly more sustained than in auditory areas, with significant correlations lasting for 

hundreds of milliseconds beyond the stimulus duration of 500 ms (see Fig. 2B inset). We 

further characterized the timing of the processing cascade by comparing the MEG–fMRI 

fusion time course first peaks between PAC and the other ROIs (see Table 1, latency 

difference). Compared with PAC, MEG–fMRI correspondence in representations emerged 

significantly later (at least 80 ms) in the voice-, face-, object-, and scene-selective regions. 

These results confirm that sound-evoked neural activity in higher cortical regions occurred 

later than in the early auditory regions, corroborating and quantifying the forward signal 
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propagation revealed in the whole-brain searchlight analysis. Finally, a brief period of 

significant fusion correlation reappeared in superior temporal ROIs between ~1050 and 

~1300 ms.

Systematic Trend From Acoustic to Semantically Dominated, Category-Specific Coding

While the fusion analysis indexes the propagation of spatiotemporal neural response 

patterns, it is agnostic to their representational content. A hierarchical account would predict 

that an auditory processing cascade initially encodes acoustic, then progressively higher-

level stimulus representations (Rauschecker and Scott, 2009; Bizley and Cohen, 2013).

Fig. 2C depicts ROI-wise RDMs and corresponding representational geometry visualized 

with multidimensional scaling (MDS) plots. How do these representations evolve from 

lower to higher-level regions, as well as over time? To capture this transition, we 

operationalized representational levels at two extremes: First, we constructed a Cochleagram 
RDM comprising euclidean distances between stimulus log-frequency cochleagrams (see 

Eq. 1, Methods, and Figs. 3 & S1) to model the hypothesized low-level similarity 

structure of auditory afferents arriving from the cochlea. Second, we devised a Category 
RDM hypothesizing a generalized high-level semantic category selectivity across all four 

categories: all within-category pairwise distances were set to 0, and all between-category 

distances to 1. The strength of these representational levels was indexed by computing 

Spearman correlations between the models and brain data.

While our stimulus set was designed to minimize confounds between these models (see 

Methods), we would not necessarily expect a given set of fMRI voxels or MEG sensor 

patterns to correlate only with one and not the other, both due to the intrinsic correlation 

between sound acoustics and categories (Theunissen and Elie, 2014) and the fact that 

neurons throughout primary and nonprimary auditory cortex are responsive to low- and 

higher-level sound properties (King and Nelken, 2009; Staeren et al., 2009). Additionally, 

our binary approach elides other potential stimulus feature models that may characterize 

intermediate processing (Ogg et al. 2020; Giordano et al. 2013). However, in a hierarchical 

processing stream, we would expect their respective contributions to vary systematically 

between regions over time, and our aim was to define endpoints of a continuum of 

category coding. Thus, we computed the difference between Category and Cochleagram 

model correlations (Fisher-z normalized to enable direct comparison) with MEG and fMRI 

patterns. This measure, which we term Semantic Dominance (SD), quantifies the relative 

weight of neural representations: a negative value indicates predominance of acoustic 

properties, and a positive value indicates predominance of semantic properties. A similar 

analysis has previously been applied to progressively percept-driven spatial coding along 

the visual hierarchy (Fischer et al. 2011). We first evaluated the Cochleagram and Category 

models (and SD) separately on temporal and spatial data, then in a combined fashion guided 

by the fusion analysis. The model correlation time courses were assessed for statistical 

significance using permutation-cluster analysis, as with the MEG-fMRI ROI fusion time 

courses shown in Fig. 2.

Cochleagram and Category models both correlated significantly with the whole-brain MEG 

signal (Fig. 3A). The correlation time courses reached significance at similar onset times 
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of ~80 ms; the period of significant Cochleagram model correlation was shorter and 

peaked earlier (127 ms; 95% confidence interval 119–178 ms) compared to the Category 

model, which peaked at 218 (209–259) ms and remained significant through ~1300 ms. 

Semantic Dominance was significantly negative from ~90–150 ms and significantly positive 

from ~200–350 ms. These results indicate a rapid onset of frequency-sensitive coding, a 

broad temporal regime of general semantic category-sensitive coding, and a clear temporal 

progression in which neural response patterns are more differentiable by semantic category 

than by their spectra after about 200 ms.

The Cochleagram model correlated significantly with all superior temporal fMRI ROIs 

(PAC, TE1.2, PT, PP, TVAx), with the PAC correlation significantly higher than the 

nonprimary ROIs (all p < 0.05 Bonferroni-corrected across STG; see Fig. 3B). Frontal 

(LIFG) and visually defined (FFA, PPA, MPA, LOC, EVC) ROIs showed no significant 

Cochleagram correlation. By contrast, the Category RDM correlated significantly with all 

ROIs except EVC (Fig. 3B).

To quantify the relationship between these results, we next tested for a systematic trend in 

representational level by computing a Spearman rank correlation between ROIs and their 

Semantic Dominance score. Our reasoning, adapted from a previous study of perceptual 

visuospatial coding (Fischer et al., 2011), was that the ROI ranks reflect our hypothesized 

ordering schemes, and that a significant positive correlation would indicate a systematic 

trend along the ranking dimension. We therefore assigned ranks based on independent 

spatial (functional anatomy) and temporal (fusion-derived peak latency) criteria. For 

the spatial analysis, we first differentiated primary auditory cortex based on convergent 

anatomical, histological and functional criteria (Morosan et al., 2001; Sweet et al., 2005), 

then ranked non-primary areas progressing along and beyond the supratemporal plane. We 

assigned PAC a rank of 1; TE1.2, PP, and PT (all adjacent to PAC) a rank of 2; TVAx 

(farther along the posterolateral STG) a rank of 3; LIFG a rank of 4; and FFA, PPA, 

MPA and LOC a rank of 5. (EVC was excluded, as no significant model correlations 

were found in that ROI.) See Fig. 3B The trend was significantly positive (ρ = 0.786, 

p = 0.0071), indicating that an independent anatomically based ranking closely tracks 

increasingly category-selective neural representations.

To test our temporally based ordering scheme, we repeated this analysis, this time ordering 

ROIs guided by their empirically determined fusion peak latencies (as shown in Table 

1/Fig. 2B). Previous work (Cichy et al., 2016b) suggests that correlation peak, rather than 

onset, latencies more closely track electrophysiologically measured neuronal dynamics. As 

before, the correlation (ρ = 0.685, p = 0.0288) indicates a significant positive trend in 

Semantic Dominance across ROIs ranked by an independent empirical metric of their fusion 

correlation peaks; i.e., neural responses become dominated by category-selective patterns 

over time.

While our rankings were guided by these criteria, they may reflect hidden factors or 

correlate spuriously with the brain data. Thus, to test our a priori anatomical and empirical 

ROI-fusion-derived ranking schemes against all possible ROI rankings, we compared 

our ROI-rank-vs.-Semantic-Dominance correlations from those schemes against a 20,000-
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sample bootstrapped distribution of rank correlations, each computed by assigning each 

ROI a randomly drawn rank between 1 and 10 (with replacement). The anatomical and 

fusion-timing-based correlations were higher than 99.5% and 98.3% of all bootstrapped 

values, respectively (Fig. 3C), indicating that our independently computed Semantic 

Dominance measure closely matches activation patterns in ROIs ranked by anatomical 

outward progression from PAC, as well as by the temporal sequence of peak fMRI-MEG 

correspondences in those ROIs.

The SD trend shows that pooled across multiple categories, semantic relative to acoustic 

selectivity increases over time and space. While a modular organization would predict SD 

to track category-selective maps and streams (Rauschecker and Scott 2009), auditory cortex 

could conceivably be responding to other high-level, non-semantically specific features 

as early acoustic selectivity wanes. If this were the case, we would expect ROIs to 

show similar or weaker correlations to subcategorical structures, and for responses to be 

nonsystematically distributed across ROIs. To disambiguate between these possibilities, 

we examined the specificity of semantic coding by partitioning the fMRI RDMs into 

pairwise between- and within-category portions. Category selectivity was indexed by 

between- minus within-category representational distances, averaged within categories. 

In this way we parcellated the generic Category model to investigate broad animacy 

selectivity (Voices & Animals vs. Objects & Scenes) as well as more granular sensitivity 

to differences between animate (Voices vs. Animals) and inanimate (Objects vs. Scenes) 

categories. As shown in Fig. 3D, Human and animal vocalizations were best differentiated 

(more than general animacy) in superior temporal and voice-selective ROIs ([Voices vs. 

Animals] minus Animacy z-transformed correlation differences, one-sample t-test against 

zero, Bonferroni corrected for 6 superior temporal and frontal ROIs, p < 0.05 for all), 

while inanimate environmental sounds were chiefly differentiated in scene-selective PPA 

and MPA, indicating functional specialization of auditory responses in these areas.

In sum, our results show that MEG responses began to correlate significantly with both 

Cochleagram and Category models at ~80 ms, that the Cochleagram model was dominant 

until ~200 ms, and that brain responses thereafter were dominated by the Category model. 

In fMRI responses, Cochlea-dominated coding in PAC, TE1.2, and PT, transitioned after PP 

and PT to Category-dominated coding, quantified by a significant positive trend in Semantic 

Dominance over an anatomical or fusion-peak-based ranking of ROIs, and characterized by 

distinct semantic subcategories coded in different regions.

DISCUSSION

Here we analyzed the spatial, temporal, and representational structure of cortical responses 

to naturalistic sounds in human listeners — how the auditory system categorizes the 

acoustic events of the physical world. We leveraged the temporal resolution of MEG 

and the spatial resolution of fMRI, fusing them within the RSA framework to track the 

processing cascade from early auditory cortex to frontal, ventral, and medial occipital 

regions. The whole-brain searchlight analysis revealed an orderly progression of neural 

activation originating in bilateral posteromedial temporal lobes and spreading anteriorly and 

posteriorly to extratemporal regions throughout much of the cortical volume. The timing 

Lowe et al. Page 7

Cogn Neuropsychol. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of MEG-fMRI correspondence in specific regions of interest bears this out concretely, 

with the earliest peak latencies in superior temporal ROIs (PAC, TE1.2, PT, PP), followed 

by voice- (LIFG, TVAx) and scene-selective (MPA) regions and reaching ventro-temporal 

and occipital category-selective regions (FFA, PPA, LOC), but not early visual cortex. 

The representational content of the response patterns was initially strongly biased toward 

low-level acoustic features, as indicated by strong correlations with the Cochleagram model 

of auditory nerve afferents, but increasingly dominated by high-level semantic categories, 

as indicated by correlations with the Category model RDM. The Semantic Dominance 

difference score indexed the systematic trend between these two representational extremes 

over time (significant sign reversal of SD over the MEG epoch) and space (significant 

positive trend of SD across fMRI ROIs). The ROI rankings modeling the SD trend 

were independently estimated from two metrics: a priori functional-anatomical layout 

and empirically determined MEG-fMRI fusion time courses. These rankings produced 

higher trend correlations than almost all possible rankings, supporting the robustness of 

our convergent temporal and spatial bases for quantifying the evolving nature of the 

processing stream. Finally, more granular interrogation of category selectivity revealed its 

spatial specificity, arguing against a generalized, distributed model of categorical sound 

representation. Taken together, our findings provide converging evidence for large-scale 

hierarchical organization of the human auditory stream through distinct levels of processing 

dissociable by space, time, and content.

An Integrative Approach to Identifying Attributes of Hierarchical Coding

A hierarchical processing model posits pathways that, in parallel, transform “low-level” 

sensory input serially into increasingly complex, abstract “high-level” representations. 

Consequently, it is reasonable to expect that the physical substrate of these pathways 

would have sequential properties as well: as the temporal dynamics of representations 

follow a low-to-high-level sequence, increasing distance from a low-level origin should 

track with higher-level representations, which are routed to distinct loci. These principles, 

operationalized for the auditory system (Rauschecker and Scott, 2009; Bizley and Cohen, 

2013; Kell et al., 2018), guided our interpretations of the data.

Our integrative approach addresses several methodological and conceptual barriers to 

resolving conflicting interpretations arising from the body of earlier work. First, the 

temporal specificity that MEG-fMRI fusion adds to spatially mapped brain responses allows 

us to directly test spatial hypotheses to which time is intrinsic, such as sequential processing 

streams carrying evolving levels of representation. In this way, the fusion analysis provides 

neural data at a level typically unavailable in humans. Even the human intracranial literature, 

while largely bearing out our results (Nourski, 2017), investigates higher-level processing 

narrowly with speech (Sahin et al., 2009; Steinschneider et al., 2014; Yi et al., 2019), in 

patients undergoing surgery for epilepsy, and does not provide the full-brain coverage of 

fMRI/MEG. Second, beyond enabling the fusion analysis, the RSA framework allows us 

to operationalize high- and low-level representations of a large naturalistic stimulus set 

spanning a range of commonly encountered sound classes. Third, the Semantic Dominance 

difference score analysis allows us to manage the confounds between acoustic and semantic 

properties of naturalistic sounds, and to test explicitly for spatial and/or temporal trends in 
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their relative contributions to neural response patterns (Fischer et al., 2011). Finally, the 

richness of a multimodal data set allows us to contextualize our findings against a wider 

variety of previous work spanning different methods.

Separating Levels of Representation

How should we interpret the transition from Cochleagram to Category model dominance? 

Our modeling analyses capture two endpoints of a neural processing cascade transforming 

a waveform to a semantically organized representation. Other models representing 

hypothesized processing stages could be operationalized, e.g., as neuronal responses to 

different acoustic properties (Rauschecker and Scott, 2009; Giordano et al., 2013; Ogg et 

al., 2020) components of complex sounds (Teng et al., 2017), anatomical location (Norman-

Haignere and McDermott, 2018), or layers of task-optimized neural networks (Kell et al., 

2018). The RSA framework and our analysis are adaptable to any of these approaches. 

Indeed, prior work has mapped multivariate MEG or fMRI responses (separately) to various 

spectrotemporal properties of natural sounds, but could not specify the extent to which 

those decoding results show the temporal emergence of object-level semantic labels vs. 

the evolving grouping of acoustic response properties, as the stimulus set’s semantic and 

acoustic properties were not independent (Ogg et al., 2020) or the data were not temporally 

resolved (Giordano et al., 2013). As with visual images (Oliva and Torralba, 2001), sounds 

in the natural world contain some categorical structure in their low-level features (Charest et 

al., 2009), which complicates the separation of acoustic- vs. category-based neural decoding. 

We guarded against this confound by preparing the stimulus set to contain minimal category 

structure so the Category RDM was less likely to spuriously capture acoustic differences 

(See Methods and Fig. S1). It was then additionally normalized relative to the Cochleagram 

RDM via the Semantic Dominance difference score. This approach allowed us to examine 

the same MEG or fMRI data for low- and high-level selectivity, and to quantify which 

selectivity dominates coding in a given area (and how that dominance changes). For 

example, PT and LIFG were each significantly sensitive to category and acoustic structure 

(Fig. 3B), but to opposite relative extents. PP and TVAx both correlated about equally 

well with Cochleagram and Category models, suggesting a kind of inflection point: while 

Cochleagram representations do persist beyond PAC, their strength decreases both (1) across 

regions relative to PAC, and (2) within regions relative to categorical coding.

Distributed and Hierarchical Coding Within and Beyond Superior Temporal Regions

In nonhuman primates, ascending auditory neurons respond to increasingly complex sound 

properties in distinct regions (Rauschecker et al., 1995; Kaas et al., 1999; Kaas and Hackett, 

2000; Rauschecker and Tian, 2000; Rauschecker and Scott, 2009; Bizley and Cohen, 2013), 

which has been interpreted as an analog to the multistage hierarchy (Felleman and Van 

Essen, 1991; Cichy et al., 2016a) of the visual system. Such a hierarchy in humans has 

principally been probed in the context of responses to acoustic- to semantic-level speech 

features (Rauschecker and Scott, 2009; Okada et al., 2010; Evans and Davis, 2015; Overath 

et al., 2015; de Heer et al., 2017; Brodbeck et al., 2018). However, compared to V1, primary 

auditory cortex (PAC) responses have undergone more processing (i.e., traversed more 

preceding synapses) (King and Nelken, 2009) and, in human listeners, are better modeled 

by intermediate rather than early layers of a task-optimized neural network (Kell et al., 
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2018). The underlying anatomy itself is more parallelized, with direct medial geniculate 

projections to PAC as well as non-primary areas (Kaas and Hackett, 2000; Hackett, 2011), 

and widespread overlapping selectivity for complex sounds along the superior temporal 

plane (King and Nelken, 2009; Staeren et al., 2009; Bizley and Cohen, 2013). Thus, the 

strong hierarchical modular view is challenged by distributed accounts of high-level audition 

(Formisano et al., 2008; Staeren et al., 2009).

Thus, a putative core-belt-parabelt tripartite hierarchy in early human audition remains 

the subject of ongoing debate. Our fusion time course results did not reveal significant 

peak latency differences between primary and early nonprimary ROIs (Fig. 2, Table 1), 

but spectral sensitivity was significantly reduced and category sensitivity increased outside 

PAC (Figs. 3B,D). Further, earlier offsets in PAC and PT and extended temporal profiles 

for TE1.2 and PP (see Fig. 2 inset) reflect distinct dynamics for posterior vs. anterior 

ROIs. Because the fusion analysis combines similarity structures rather than raw signal 

responses (which also combines noise from both imaging modalities), it may not capture 

some responses with very low SNR, or which are undetectable to one modality (Cichy and 

Oliva, 2020). Additionally, our stimuli were controlled for duration, mean intensity, and 

overall spectral structure, but their complexity and variety could contribute to some temporal 

smear in response onsets in both neurophysiological and M/EEG studies (Murray et al., 

2006; Steinschneider et al., 2014). These factors may also account for the absence of very 

fast onsets in the fusion signals, e.g. 10–20 ms in response to click trains in medial HG 

(MEG: Inui et al., 2006; Intracranial: Nourski et al., 2014). However, our earliest fusion 

latencies in posteromedial temporal voxels match intracranial neuronal onsets to speech 

syllables in middle HG (Nourski et al., 2014; Steinschneider et al., 2014), and fusion time 

courses in STG peak at similar latencies to analogous intracranial responses measured as 

high-gamma power (Nourski et al., 2014) or modeled as spatiotemporal receptive fields 

(STRFs) (Hamilton et al., 2018). In the latter work, neurons sensitive to sound onsets 

(shorter latency, earlier offsets) clustered posteriorly along the STG and neurons with 

sustained response profiles (slightly longer latency, substantially later offsets) clustered more 

anteriorly (Nourski et al., 2014; Hamilton et al., 2018). While our analysis may be unable 

to distinguish onset and peak differences, the overall temporal dynamics are remarkably 

consistent with those we found for PAC/PT and TE1.2/PP, and suggestive of a functional 

organization robust to different stimuli, recording methods, and analysis approaches. The 

overlapping onset and peak timing between PAC, TE1.2, PT, and PP may therefore reflect 

parallel processing, mediated by direct medial geniculate projections not only to core, 

but also belt and parabelt areas (Kaas and Hackett, 2000; Hackett, 2011), or multiply 

branching outputs from HG to other superior temporal areas (Nourski et al., 2014). Together, 

the evidence suggests a functional hierarchy in superior temporal ROIs whose temporal 

progression is not monotonically serial, but which has the highest spectral sensitivity 

(and lowest category sensitivity) in PAC and an anterior-posterior distinction in temporal 

response profiles as well as semantic dominance (Fig. 3). The negative Semantic Dominance 

score in the nonprimary regions (while still higher than in PAC) further suggests that the 

response profiles reflect stimulus acoustics more than their category, and thus represent an 

intermediate stage at which acoustics are being grouped, but semantic categories not yet 

assigned.
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Beyond superior temporal regions, fusion and model analyses show responses further 

separated by time, space, as well as content. The spatiotemporal progression of fusion 

responses tended toward progressively higher onset/peak latency and duration farther from 

PAC (Figs. 1, 2; Table 1), in accordance with the “multiple maps and streams” feature 

characteristic of a distributed hierarchy (Rauschecker and Scott, 2009). Superior temporal 

and extratemporal ROIs (LIFG, FFA) showed a clear sensitivity to stimulus animacy 

and, specifically, human vs. animal vocalizations (Fig. 2, 3D), in contrast to EEG work 

disputing the specialized processing of human vocalizations (De Lucia et al., 2010) Fusion 

correlations for LIFG and TVAx both peaked at ~200 ms, a nearly exact match to 

frontotemporal voice-selective ERP peaks (Charest et al., 2009) and consistent with the 

notion of a functionally specialized rapid voice- and speech-processing network (Belin et 

al., 2000; Pernet et al., 2015; de Heer et al., 2017; Norman-Haignere et al., 2019). Notably, 

response patterns in FFA, typically considered a visual face-selective region, distinguished 

animate vs. inanimate and human vs. animal sounds comparably to the classical voice-

processing network, with a later fusion peak but onset comparable to the superior temporal 

ROIs (Fig. 2B). Voices unconnected to specific identities typically elicit no or weak FFA 

activity at best (e.g. de Heer et al., 2017, in which FFA voxels responded to semantic but not 

spectral or articulatory aspects of speech); however, face and voice regions share functional 

and structural connectivity (Kriegstein et al., 2005; Blank et al., 2011), and nonvisual face-

related stimuli elicit FFA-colocalized responses in congenitally blind persons (Ratan Murty 

et al., 2020). Thus, the FFA selectivity (and rapid response compared to its anatomical 

neighbors) in our results may reflect its role in a person/identity-recognition mechanism 

with unified coding principles (Yovel and Belin, 2013) rather than voice processing per se.

Interestingly, only extratemporal regions, typically considered part of the visual ventral 

stream, distinguished between inanimate (scene and object) categories of sounds, with 

representations consistently correlating with semantic properties but only weakly or not at 

all to acoustic properties (Fig. 3B,D). Traditionally sensory-specific areas have long been 

implicated in cross-sensory processing (Kriegstein et al., 2005; Kim and Zatorre, 2011; 

Vetter et al., 2014; Smith and Goodale, 2015; Jung et al., 2018); however, in this case, the 

regions were activated in the absence of any visual stimulation or association with a visual 

cue, ruling out a multisensory integrative or paired associative process. Auditory objects 

and scenes have resisted easy analogical transfer from their visual counterparts, both as 

fundamental concepts (Griffiths and Warren, 2004) and as experimental constructs, due to 

differences in the spatiotemporal structures of images vs. sounds (Teng et al., 2017).

Consequently, could these category-specific representations in visually selective regions 

simply result from visual mental imagery? Substantial work documents the involvement of 

early visual cortex in mental imagery (Kosslyn et al., 1995, 2003); participants instructed 

to imagine sound scene categories without visual stimulation generate category-specific 

EVC representations (Vetter et al., 2014). Yet we found no evidence for category selectivity 

specifically, or MEG-fMRI correspondence generally, at any time points in EVC (Figs. 

2,3, Movie S1). Still, imagery may occur without EVC activation, generating higher-order 

representations (Reddy et al., 2010). These representations emerge much later compared to 

feedforward signals. Cued visual imagery of faces and houses becomes decodable in brain 

dynamics after ~400 ms, peaking at ~1000 ms (Dijkstra et al., 2018); even brief, highly 
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overlearned stimuli like auditory letter phonemes elicit visual imagery responses peaking at 

~400 ms or later (Raij, 1999; Raij et al., 2000). By contrast, MEG-fMRI fusion latencies in 

most of the ROIs in our study peaked before 300 ms, with LOC peak latency at 377 ms; 

the outermost bounds of the 95% confidence intervals were 410 ms for LOC and 400 ms 

for MPA (Fig. 2B, Table 1). In fact, MPA peaked relatively early, at ~200 ms, a time scale 

for rapid auditory scene-object distinction on par with that of voice processing. The stimuli 

themselves were 500 ms in duration; a semantic understanding and resultant unprompted 

crossmodal imagery would be unlikely to arise and peak while the sound was still being 

presented to the listener. The fusion analysis did show a brief re-emergence of activity 

in nonprimary STG regions from ~1100–1300 ms (Fig. 2), but only the Category model 

correlated significantly with whole-brain MEG at that point. Given the regions and temporal 

regime (over 500 ms after offset of a 500 ms stimulus), this may reflect imagery related to 

the task instructions to attend carefully to each stimulus (Dijkstra et al., 2018).

Our overall results are therefore consistent with the accumulating evidence for a functional 

primary/nonprimary distinction in humans, inconsistent with an imagery account of higher-

level representations in traditionally visual areas, and extend previous work by tracing out 

a distributed acoustic-to-semantic processing hierarchy from primary auditory, nonprimary 

auditory, and multiple high-level extratemporal cortical regions.

Limitations and Future Directions

RSA-based M/EEG-fMRI fusion is constrained by some fundamental and practical 

limitations (Cichy and Oliva, 2020). For example, as described above, its central assumption 

of isomorphism between neuromagnetic and BOLD responses is most likely to reveal 

aspects of neural signals accessible to both imaging modalities, and to raise the combined 

signal-to-noise threshold relative to each modality alone. In our study, we mitigated these 

limitations by testing our hypotheses via a combination of unimodal and multimodal 

analyses (Figs. 2,3). Additionally, the correlation of whole-brain MEG data with a single 

static map of fMRI data means that, theoretically, the dynamics of similar representations 

in two different regions cannot be distinguished. However, this issue can be overcome with 

carefully designed experimental paradigms and stimulus sets: our present study specifically 

maximized differences in representations of the stimulus set, both between low- and high-

level patterns as well as different category-specific patterns. Finally, care must be taken 

when formulating and interpreting model RDMs, which may index features other than those 

intended, as with other modeling approaches (e.g. Daube et al. 2019; Norman-Haignere and 

McDermott 2018).

These constraints notwithstanding, the fusion approach, primarily applied to visual systems 

to date, has proven a powerful way to elucidate spatiotemporal features of visual processing 

such as V1-Inferior-Temporal (IT) timing and evolution (Cichy et al., 2014, 2016b), scene 

layout encoding timing in occipital place area (OPA) (Henriksson et al., 2019), ventral-

dorsal dynamics (Cichy et al., 2016b), task and attentional modulations (Hebart et al., 

2018; Salmela et al., 2018), dissociable object size and animacy selectivity (Khaligh-Razavi 

et al., 2018), model- or behaviorally based similarity (Cichy et al., 2016a, 2019), and 

feedforward-feedback interplay (Mohsenzadeh et al., 2018) when viewing visual objects. 
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The versatility of its framework is readily generalizable to outstanding questions in auditory 

neuroscience (Cichy and Teng, 2017). For example, in the present study, we interrogated the 

generalized structure governing the neural representation of auditory category information; 

future variations on that paradigm could examine, e.g., task-contingent modulations of 

timing and stimulus representation in responses, representations drawn from behavioral 

tasks, or complex manipulations within a single domain such as speech (e.g. O’Sullivan 

et al., 2019), in which spatiotemporally resolved data has previously been available 

only via rare, invasive clinical procedures (Sahin et al., 2009; Nourski, 2017; Yi et al., 

2019). Similarly, in probing the proposed dual “what” and “where” auditory pathways 

(Rauschecker and Tian, 2000; Bizley and Cohen, 2013), multilevel response patterns to a 

large stimulus set that includes spatial as well as semantic manipulations could identify 

distinct and overlapping components of the processing streams from complex real-world 

stimuli, including dynamics of crosstalk between streams. Further, the attentional, grouping, 

and segregation processes mediating auditory scene analysis (Shamma et al., 2011; Teng et 

al., 2017) could be parcellated with fine-grained spatial and temporal resolution. In all these 

cases, RSA-based M/EEG-fMRI fusion provides a powerful, conceptually straightforward 

integrative framework especially well suited for rich, naturalistic stimulus sets that probe 

multiple dimensions of the physical world.

METHODS

Participants

Sixteen right-handed, healthy volunteers with normal or corrected-to-normal vision and 

no hearing impairments (8 male, age: mean ± s.d. = 28.25 ± 5.95 years) participated in 

the experiment. The study was conducted in accordance with the Declaration of Helsinki 

and approved by the MIT Committee on the Use of Human Experimental Subjects. All 

participants completed one MRI and one MEG session. All participants provided written 

consent for each of the sessions.

Stimuli

An initial set of 200 naturalistic monaural sounds was resampled to 44.1 kHz, root-mean-

square normalized, and trimmed to 500 ms duration, including 10 ms linear rise and fall 

times. We computed cochleagrams for each sound using Matlab code (Brown and Cooke, 

1994; Ma, 2008) that emulates the filtering properties of the human cochlea by transforming 

time-domain signals into a time-frequency representation of the average firing rate of 

auditory nerve fibers. Specifically, each waveform was divided into 1-ms bins and passed 

through a gammatone filterbank (64 sub-bands, center frequencies 0–20,000 Hz). We then 

selected 80 sounds, 20 in each of four semantic categories, minimizing within-category 

repetition (i.e., of multiple sounds from the same objects or animals). To test for categorical 

structure in low-level features, we first created a matrix comprising all pairwise euclidean 

distances between stimulus cochleagrams. Each distance d between stimuli p and q was 

computed as the square root of absolute squared differences, summed across frequency and 

time bins m and n:
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d p, q = ∑
i = 1

m
∑
j = 1

n
qij − pij

2
(1)

Categorical membership distances were then computed by contrasting the average between- 

and within-category matrix subsections. These distances were compared to a null 

distribution of category membership distances (corrected significance threshold p < 0.05), 

generated by randomly shuffling rows and columns of the matrix 10,000 times, each time 

computing the pseudo-category membership distances under the null hypothesis that the 

category labels are interchangeable. Using this procedure, the final stimulus set was adjusted 

such that no significant categorical differences were observed in the pattern of pairwise 

distances. A similar test on a spectrogram-based matrix revealed no significant categorical 

structure. A 2-d MDS-based visualization of the sounds’ representational geometry is shown 

in Supplemental Figure S1. The full 80 × 80 pairwise euclidean distance matrix, normalized 

to the range of distances, was used as the Cochleagram model for model-brain correlation 

analyses seen in Fig. 3.

Experimental design and procedure

Participants were familiarized with the sounds prior to the neuroimaging sessions. Each 

sound was accompanied simultaneously with a written description, such as ‘a horse 

neighing,’ ‘a trumpet playing,’ ‘a male shouting angrily,’ and ‘howling wind through a 

city’ (see Table S1). Participants could repeat playing a sound until they were familiar 

with it. This procedure was completed twice during a monitored setting, and once prior to 

each experimental session. During the neuroimaging experiment, lighting was dimmed, and 

participants were instructed to keep their eyes closed at all times. Each sound was presented 

diotically through earphones (i.e., the same waveform in both channels). In detail, for each 

MEG and fMRI session, participants completed 16 (MEG) or 12–14 (fMRI) runs, each 

lasting 330 s. Each sound was presented once in each run in random order, and sounds were 

randomly interleaved with twenty null (no sound) trials and ten oddball (target detection; 

monotone double beep) trials. Each sound trial (including oddball trials) consisted of a 500 

ms sound presentation followed by 2500 ms of silence preceding the next trial. Optseq2 

(https://surfer.nmr.mgh.harvard.edu/optseq/; Greve, 2002) was used to generate, optimize, 

and jitter the presentation of all trials, including null and oddball-detection trials, and 

therefore some trials contained extended periods of silence preceding the next sound. During 

the neuroimaging experiment, participants were instructed to press a button in response to 

the target (oddball) so that their focus was maintained during the entire sound trial. Null and 

oddball trials were excluded from the main analysis.

MEG acquisition

We acquired continuous MEG signals from 306 channels (204 planar gradiometers, 102 

magnetometers, Elekta Neuromag TRIUX, Elekta, Stockholm) at a sampling rate of 1 kHz, 

filtered between 0.03 and 330 Hz. Raw data were preprocessed using spatiotemporal filters 

(Maxfilter software, Elekta, Stockholm) and then analyzed using Brainstorm (Tadel et al., 

2011). MEG trials were extracted with 200 ms baseline and 3 s post-stimulus (i.e., 3,201 
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ms length), the baseline mean of each channel was removed, and data were temporally 

smoothed with a low-pass filter of 30 Hz. A total of 16 trials per condition was obtained for 

each session and participant.

Multivariate analysis of MEG data

To determine the amount of sound information contained in MEG signals, we employed 

multivariate analysis using linear support vector machine classifiers (SVM; http://

www.csie.ntu.edu.tw/~cjlin/libsvm/; Chang and Lin, 2011). The decoding analysis was 

conducted independently for each participant and session. For each time point in the trial, 

MEG data were arranged in the form of 306-dimensional measurement vectors, yielding N 

pattern vectors per time point and stimulus condition (sound). We used supervised learning, 

with a leave-one-out cross-validation approach, to train the SVM classifier to pairwise 

decode any two conditions. For this, we first randomly assigned the trials to N = 4 trial 

subgroups and sub-averaged the trials within each subgroup. For each time point and pair 

of conditions, N − 1 pattern vectors comprised the training set and the remaining Nth 

pattern vectors the testing set, and the performance of the classifier to separate the two 

conditions was evaluated. The process was repeated 100 times with random reassignment 

of the data to the subgroups; the overall decoding accuracy of the classifier (chance level 

50%) was the mean of those 100 iterations. The decoding accuracy was then assigned to a 

matrix with rows and columns indexing the conditions classified. The matrix is symmetric 

across the diagonal, with the diagonal undefined. This procedure yielded one 80 × 80 

representational dissimilarity matrix (RDM) of decoding accuracies constituting a summary 

of representational dissimilarities for each time point. Iterating across all time points in the 

epoch yielded a total of 3,201 MEG RDMs.

fMRI acquisition

Magnetic resonance imaging (MRI) was conducted at the Athinoula A. Martinos Imaging 

Center at the MIT McGovern Institute, using a 3T Siemens Trio scanner (Siemens, 

Erlangen, Germany) with a 32-channel phased-array head coil. We acquired structural 

images using a standard T1-weighted sequence (176 sagittal slices, FOV = 256 mm2, TR 

= 2530 ms, TE = 2.34 ms, flip angle = 9°). For the experimental task, we conducted 12–14 

runs per participant in which 456 volumes were acquired for each run (gradient-echo EPI 

sequence: TR = 750 ms, TE = 30 ms, flip angle = 54°, FOV read = 210 mm, FOV phase 

= 100%, ascending acquisition, gap = 10%, resolution = 3 mm isotropic, slices = 44). For 

the localizer task, two runs were acquired for each participant with 440 volumes per run 

(gradient-echo EPI sequence: TR = 1000 ms, TE = 30 ms, flip angle = 54°, FOV read = 210 

mm, FOV phase = 100%, ascending acquisition, gap = 10%, resolution = 3 mm isotropic, 

slices = 44).

Multivariate analysis of fMRI data

fMRI data were processed and analyzed using BrainVoyager QX 2.8 (Brain Innovation, 

Maastricht, the Netherlands). Data preprocessing included slice acquisition time correction, 

3D motion correction, temporal filtering (linear trend removal and high-pass filtering set at 

3 cycles/run), and Talairach space transformation (Talairach and Tournoux, 1988). For each 

participant and session separately, data were realigned and slice-time corrected, and then 
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coregistered to the T1 structural scan acquired in the first MRI session. fMRI data was not 

spatially smoothed. We then modeled the fMRI responses to the 80 sounds with a general 

linear model (GLM). The onsets and durations of each stimulus presentation (excluding 

null and oddball trials, which were omitted from further analysis after preprocessing) 

were entered into the GLM as regressors and convolved with a hemodynamic response 

function. Movement parameters entered the GLM as nuisance regressors. For each of the 80 

conditions, we converted GLM parameter estimates into t-values (z-scored) by contrasting 

each condition estimate against the implicitly modeled baseline.

Next, we conducted a searchlight analysis to reveal similarity structures in locally 

constrained fMRI activity patterns. For each voxel v in the brain, we extracted fMRI 

patterns in its local vicinity (a 4-voxel radius) and calculated condition-wise dissimilarity (1 

− Pearson’s R), resulting in an 80 × 80 fMRI representational dissimilarity matrix (fMRI 

RDM). Repeating this analysis voxelwise across the whole brain yielded 40122 RDMs.

Representational Similarity Analysis and MEG–fMRI Searchlight/ROI Fusion

To relate neuronal temporal dynamics with their spatial loci, we used representational 

similarity analysis (Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013; Cichy et al., 

2014, 2016b) to link MEG and fMRI signal patterns. The basic idea is that if two sounds 

are similarly represented in MEG patterns, they should also be similarly represented in fMRI 

patterns. Our overall approach was to index pairwise (dis)similarity between sounds via 

SVM decoding accuracy for MEG (Guggenmos et al. 2018); Pearson correlation distance for 

fMRI (Kriegeskorte and Kievit 2013; Cichy and Oliva 2020); euclidean distance for acoustic 

models (Ogg et al., 2020; Sainburg et al., 2020); assigned binary membership for categorical 

selectivity; and between-minus-within item averages for subcategories. Correspondence 

between fMRI, MEG, or model representational dissimilarity matrices (RDMs) is then 

assessed by Spearman rank-order correlation:

ρSpear = rR X , R Y (2)

where ρ is the Spearman correlation, r is the Pearson correlation coefficient, and 

R(X) and R(Y) are the respective rank-transformed values in the RDMs being 

compared. In representational (dis)similarity space, MEG and fMRI patterns thus become 

directly comparable; correlating them yields a spatiotemporally resolved map of neural 

representations, depictable as a series of spatial maps over time or, equivalently, a series of 

time courses over anatomical regions (see Fig. 1A for illustration).

To compute whole-brain MEG-fMRI fusion maps, for each time-specific group-averaged 

MEG RDM, we calculated the similarity (Spearman’s ρ) to each subject-specific fMRI 

searchlight’s fMRI RDM, yielding a 3-D map of MEG–fMRI fusion correlations. Repeating 

this procedure across the whole brain for each millisecond yielded a MEG–fMRI 

correspondence “movie” indexing spatiotemporal neural dynamics of cortical auditory 

responses (see Movie S1).

To compute MEG-fMRI fusion time courses for ROIs, we extracted voxel responses within 

each ROI and computed the condition-specific pairwise Pearson distances to create a 
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single fMRI ROI RDM per subject. Next, we averaged ROI RDMs over subjects and 

then computed Spearman’s ρ correlations between each group-averaged ROI RDM and 

subject-specific whole-brain MEG RDMs over time to yield fMRI-MEG fusion time courses 

for each ROI per subject. Final time courses were computed by averaging across subjects.

Note that the whole-brain analysis averaged subject-specific fMRI data with the group 

average MEG RDMs, while the ROI fusion analysis averaged subject-specific MEG data 

with the group average fMRI RDMs. Given that the same set of subjects are available 

from MEG and fMRI data, both these approaches are valid. In each case the correlations 

are bounded by the noise ceiling in the subject-specific data. Thus, the best practice is to 

group-average the data in the noisier modality (Cichy et al., 2014, 2016b; Mohsenzadeh et 

al., 2019).

Regions of Interest

Middle Heschyl’s gyrus (HG; TE1.0), posteromedial HG (TE1.1), anterolateral HG (TE1.2), 

the planum polare (PP), and the planum temporale (PT) were first identified from anatomical 

volume masks derived from probabilistic volume maps (Morosan et al., 2001; Desikan et al., 

2006; Norman-Haignere et al., 2013). The primary auditory cortex (PAC) was defined as a 

subdivision of HG including the middle and posteromedial branches (TE1.0 and TE1.1). The 

temporal voice area (TVA) was identified from probabilistic volume maps of voice-sensitive 

areas (vocal > non-vocal contrast) along the human superior temporal gyrus (Pernet et 

al., 2015) and was further restricted to exclude voxels overlapping with PAC, PP, PT, and 

TE1.2; to reflect this exclusion it is referred to as TVAx here. The left inferior frontal gyrus 

was identified from spatial coordinates provided by Pernet et al. (2015) and converted to 

Talairach space using the Yale BioImage Suite Package (Lacadie et al., 2008). For details on 

the functional localization of these ROIs, see Supplemental Fig. S2.

For our visually defined ROIs, data from an independent functional visual localizer was 

analyzed using a general linear model (GLM), accounting for hemodynamic response 

lag (Friston et al., 1994). Each participant took part in two runs of the visual localizer 

task. A 7.1-min functional localizer consisting of photographs of various scenes, faces, 

common objects, and tile-scrambled images was used to localize the parahippocampal 

place area (PPA), medial place area (MPA), lateral occipital complex (LOC), fusiform 

face area (FFA) and an area of early visual cortex (EVC). PPA was defined as a region 

in the collateral sulcus and parahippocampal gyrus (Epstein and Kanwisher, 1998) whose 

activation was higher for scenes than for faces and objects (false discovery rate, q < 0.05; 

this threshold applies to all functional regions localized in individual observers; identified 

in fifteen participants). MPA (Medial Place Area; see Silson et al., 2016) was a functionally 

defined region overlapping with retrosplenial cortex– posterior cingulate–medial parietal 

cortex whose activations were higher for scenes than for faces and objects (identified in 15 

participants). In accordance with Grill-Spector et al. (2000), LO, a subdivision of the lateral 

occipital complex (LOC), was defined as a region in the lateral occipital cortex near the 

posterior inferotemporal sulcus, with activation higher for objects than scrambled objects 

(identified in 15 participants). The fusiform face area (FFA) was identified as a region in the 

extrastriate cortex whose activations were higher for faces than scenes or objects (Kanwisher 
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et al., 1997) (identified in 14 participants). Finally, a control region, early visual cortex 

(EVC), was identified as an area of peak activity over the posterior occipital cortex (contrast: 

scrambled images > objects; identified in 15 participants) (MacEvoy and Epstein, 2011; 

Lowe et al., 2016). Following the identification of these functionally defined regions within 

participants, probabilistic maps were created using the BrainVoyager QX VOI analysis tool 

to evaluate the spatial consistency of each region across participants, and converted to 

volume masks over an averaged brain in Talairach space.

Visualization of category structure using multidimensional scaling

To visualize underlying patterns contained within the complex high-dimensional structure 

of the 80 × 80 MEG decoding matrix, we used multidimensional scaling (MDS) (Kruskal 

and Wish, 1978) to plot the data into a two-dimensional space of the first two dimensions 

of the solution, such that similar conditions were grouped together and dissimilar conditions 

far apart. MDS is an unsupervised method to visualize the level of similarity contained in 

a distance matrix (correlation distance in Fig. 2C; euclidean distance between cochleagrams 

in Fig. S1), whereby conditions are automatically assigned coordinates in space so that 

distances between conditions are preserved.

Quantification of relative model fits and trends

To quantify the relative strengths of the Cochleagram and Category model fits, and 

operationalize the trends of those fits over space and time, we first linearized the RDM 

model fit estimates by applying a Fisher-z transformation to the correlation coefficients. We 

could thus directly compare the Δz difference scores (Semantic Dominance; SD) between 

Category and Cochleagram fits within each ROI in the fMRI data, as well as the whole-brain 

MEG data (Rosenthal and Rosnow, 1991; Fischer et al., 2011). Performing this analysis 

within data sets (ROIs or whole-brain MEG) held various factors constant, such as number 

of voxels, local SNR, etc., that would otherwise confound direct comparisons. The resulting 

relative difference score was then tested for trends across time (MEG) and space (ROIs). For 

whole-brain MEG, we compared the SD time course against zero, testing for significance 

using the methods described above.

For ROI-based analyses, we assigned each ROI a rank reflecting its position in a 

hypothesized sequence, then computed a Spearman rank correlation ⍴ between ROIs and 

their SD Δz-score to assess the direction and significance of the trend toward neural coding 

dominated by categorical vs. acoustic (cochleagram) information (α = 0.05). The SD trend 

analysis was conducted with two ROI rank assignments based on hypothesized spatial and 

temporal criteria. First, to assign ranks based on functional anatomy, we differentiated 

primary auditory cortex based on convergent anatomical, histological and functional criteria 

(Morosan et al., 2001; Sweet et al., 2005), then ranked non-primary areas progressing from 

PAC along and beyond the supratemporal plane. We assigned PAC a rank of 1; TE1.2, PP, 

and PT (all adjacent to PAC) a rank of 2; TVAx (farther along the posterolateral STG) a 

rank of 3; LIFG a rank of 4; and FFA, PPA, MPA and LOC a rank of 5. EVC was excluded, 

as no significant MEG-fMRI fusion time points or RDM model correlations were found 

in that ROI. To test our temporally based hypothesis, we repeated the analysis, this time 

assigning ROI ranks guided by MEG-fMRI fusion peak latencies. Finally, to assess how 
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well our anatomical and fusion-guided rank correlations tracked the evolution of Semantic 

Dominance compared to all possible such correlations, we generated a 20,000-sample 

bootstrapped distribution of ROI-Semantic Dominance rank correlations, assigning ROIs 

a randomly drawn rank from 1 to 10 (with replacement) for each sample and comparing the 

empirical correlations against that distribution.

Statistical Testing

Nonparametric statistical tests were used to assess significance. To obtain a permutation 

distribution of maximal cluster size, we randomly shuffled the sign of participant-specific 

data points 1000 times, averaged the permuted data across participants each time, and 

determined 4-D clusters by spatial and temporal contiguity at the cluster-definition threshold 

(cluster definition threshold p < 0.001; cluster size threshold at p < 0.05). Storing the 

maximal cluster statistic (size of cluster with each voxel equally weighted) for each 

permutation sample yielded a distribution of the maximal cluster size under the null 

hypothesis. We report clusters as significant if they were greater than the 95% threshold 

constructed from the maximal cluster size distribution (i.e., cluster size threshold at P = 

0.05). A similar statistical test method was used for time-series data (fMRI-MEG ROI 

fusion), but clusters were determined in 1D at a cluster-definition threshold of p < 0.01 and 

cluster-size threshold of p < 0.05.

For statistical assessments of time-series peak and onset latencies, we performed 

bootstrapping tests. To estimate an empirical distribution over peak and onset latencies of 

time courses, the subject-specific ROI fusion time series were bootstrapped (5000 times) 

and the 95% confidence interval was defined on the empirical distribution. For peak-to-peak 

latency comparisons, we obtained the 1000 bootstrapped samples of two peaks and rejected 

the null hypothesis if the 95% confidence interval of the peak latency differences did not 

include zero.

ROI-based analysis in functionally defined auditory regions.

Independent functional data was used to localize three auditory regions of interest. This data 

was taken from the final run of each fMRI session for each participant, and these runs were 

not included in the experimental analysis. Primary auditory cortex (PAC) was identified 

bilaterally in fourteen participants as a region of peak activity (contrast: oddball > null) 

located over Heschl’s gyrus. Following Pernet and colleagues (2015), the posterior cluster 

of the temporal voice area (TVA) was identified bilaterally in twelve participants as a region 

of peak activity (contrast: vocal > non-vocal) located over the middle/posterior superior 

temporal sulcus. Similarly, a voice area within the extended voice processing network was 

identified in nine participants as a region of peak activity (contrast: vocal > non-vocal) over 

the left inferior frontal gyrus (LIFG). Probabilistic mapping was then used to create volume 

masks over an averaged Talairach brain using BrainVoyager QX.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Spatiotemporal propagation of auditory neural responses indexed by MEG-fMRI 
fusion.
A. Overview of MEG-fMRI decoding and RSA-based fusion. i) Brain responses acquired 

in separate sessions per subject were extracted for MVPA by time points t (whole-brain 

MEG sensor values, top) or anatomical regions r (fMRI voxelwise t-values, bottom); r 

may represent successive searchlight volumes, as illustrated here, or anatomical regions of 

interest, as shown in Figs. 2 and 3. ii) RDMs computed using SVM decoding accuracy 

(MEG, top) or Pearson correlation distance (fMRI, bottom) to index pairwise dissimilarity 
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between stimulus conditions. iii) RDMs B. Main cortical regions involved in the searchlight-

based fMRI-MEG fusion. Illustration on two axial slices (z = 10 and −10 mm) at select time 

points. There are significant neural representations beginning over the auditory cortex and 

spreading towards pre-frontal, ventral and medial regions. Color-coded voxels indicate the 

strength of MEG-fMRI RDMs correlations (Spearman’s ⍴, scaled between 0 and maximal 

observed value, n = 16, cluster definition threshold p < 0.001, cluster threshold p < 0.05). 

See the full-brain fusion in Movie S1.
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Figure 2. ROI-based MEG-fMRI fusion time courses.
A. Eleven regions of interest (ROIs) spanning temporal, frontal, and occipital lobes were 

selected to examine auditory responses, including the primary auditory cortex (PAC), 

TE1.2, planum temporale (PT), planum polare (PP), temporal voice area (TVAx), left 

inferior frontal gyrus (LIFG), fusiform face area (FFA), parahippocampal place area (PPA), 

medial place area (MPA), lateral occipital area (LOC), and early visual cortex (EVC). B. 
ROI-specific fusion time courses (color-coded to match ROI illustrations in A) indexing 

correlation between whole-brain MEG and a single RDM representing each fMRI ROI. Gray 
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vertical line denotes stimulus onset at t=0 ms. Solid color-coded bars below time courses 

represent significant time points, observed for all regions except EVC; black triangles 

indicate respective peak latencies. Inset magnifies 0–500 ms regime (the duration of the 

stimulus) for clarity. All statistics, P<0.01, C<0.05, 1000 permutations. C. Visualization 

of category and exemplar selectivity patterns across ROIs. RDMs and their corresponding 

multidimensional scaling visualization (in the first two dimensions) in the 11 fMRI ROIs. 

Each of the 80 stimuli is color-coded by category, as shown in the lower right panel. 

Dissimilarity scale normalized to maximum within each ROI.
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Figure 3: Emerging category vs. acoustic selectivity across time and ROIs.
A. Temporal dynamics in MEG responses: Cochleagram (blue) and Category (red) model 

RDMs shown in insets encode hypothesized similarity structures of acoustic and semantic 

neural stimulus representations. Pairwise Cochleagram model dissimilarities are indexed by 

the euclidean distance between stimulus log-frequency spectra; for the Category model, all 

between-category pairs were assigned a value of 1 and within-category pairs a value of 0. 

Plot shows Fisher z-normalized correlation time courses between models and whole-brain 

MEG data. Cochleagram and Category peaks at 127 (CI 119–178) ms and 217 (CI 209–259) 
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ms, respectively. Yellow trace is Semantic Dominance (SD) difference score, Δz = zCategory 

– zCochleagram. Negative SD = acoustically dominated responses; positive SD = semantic 

category-dominated responses. Color-coded bars indicate significant temporal clusters for 

each trace (dark bar is significantly negative SD, i.e. significantly stronger Cochleagram vs. 

Category model correlation). B. Model correlations with RDMs computed from fMRI ROI 

data. Color code same as in A. Bar plots depict the subject-averaged measure in each ROI; 

error bars = standard error of the mean (SEM). Numbered gray-shaded partitions indicate 

ranks assigned to ROIs according to anatomical position. Color-matched asterisks indicate 

significantly positive correlation; black horizontal bars and bisecting asterisks indicate 

significant correlation differences between pairs of STG ROIs. C. Histogram of 20,000 

bootstrapped ROI-SD trend rank correlations compared with empirical correlations from our 

anatomical (magenta; 99.5%ile) and fusion-derived (cyan; 98.3%ile) ROI rank assignments. 

D. Semantic subcategory distinctions in fMRI ROIs. Subject-averaged bar plots indicate 

distinction between category animacy (purple), human vs. animal vocalizations (orange), 

and objects vs. scenes (green). Plotting conventions and statistics same as in B. Black 

horizontal bars and bisecting asterisks indicate significant correlation differences between 

models within STG/IFG ROIs. Bonferroni corrected one-tailed t-tests, asterisks indicate 

significance at p < 0.05.
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Table 1.

Mean first-peak latency for MEG-fMRI correlation time courses for 10 ROIs and comparison of peak latencies 

of PAC versus ROIs for interval [−200, 1000] ms. All values are group MEG correlated with and averaged 

across fMRI subjects (n=16) with 95% confidence intervals in brackets. Latency differences from PAC and 

significance were determined by bootstrapping (5000 times) the sample of participants (1000 samples). 

Cluster size threshold p < 0.05, significance threshold p < 0.01.

Region of Interest Peak latency (ms) Latency difference (ms) Significance (P value)

PAC (TE1.0 & TE1.1) 115 (100, 191) - -

TE1.2 117 (111, 207) 2 n.s

Planum Temporale (PT) 115 (103, 197) 0 n.s

Planum Polare (PP) 117 (110, 207) 2 n.s

Temporal Voice Area (TVAx) 199 (188, 251) 84 0.006

Left Inferior Frontal Gyrus (LIFG) 196 (188, 380) 81 0.003

Fusiform Face Area (FFA) 298 (200, 368) 183 0.0006

Parahippocampal Place Area (PPA) 293 (219, 380) 178 0.004

Medial Place Area (MPA) 199 (196, 400) 84 0.001

Lateral Occipital Complex (LOC) 377 (169, 410) 262 0.008
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