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Abstract

Cardiac magnetic resonance (CMR) four-dimensional (4D) flow is a novel method for flow quantification potentially helpful
in management of mitral valve regurgitation (MVR). In this systematic review, we aimed to depict the clinical role of intra-
ventricular 4D-flow in MVR. The reproducibility, technical aspects, and comparison against conventional techniques were
evaluated. Published studies on SCOPUS, MEDLINE, and EMBASE were included using search terms on 4D-flow CMR
in MVR. Out of 420 screened articles, 18 studies fulfilled our inclusion criteria. All studies (n=18, 100%) assessed MVR
using 4D-flow intraventricular annular inflow (4D-flow ,;,,) method, which calculates the regurgitation by subtracting the
aortic forward flow from the mitral forward flow. Thereof, 4D-flow jet quantification (4D-flow;,) was assessed in 5 (28%),
standard 2D phase-contrast (2D-PC) flow imaging in 8 (44%) and the volumetric method (the deviation of left ventricle
stroke volume and right ventricular stroke volume) in 2 (11%) studies. Inter-method correlations among the 4 MVR quanti-
fication methods were heterogeneous across studies, ranging from moderate to excellent correlations. Two studies compared
4D-flow s to echocardiography with moderate correlation. In 12 (63%) studies the reproducibility of 4D-flow techniques in
quantifying MVR was studied. Thereof, 9 (75%) studies investigated the reproducibility of the 4D-flow p method and the
majority (n=7, 78%) reported good to excellent intra- and inter-reader reproducibility. Intraventricular 4D-flow s, provides
high reproducibility with heterogeneous correlations to conventional quantification methods. Due to the absence of a gold
standard and unknown accuracies, future longitudinal outcome studies are needed to assess the clinical value of 4D-flow in
the clinical setting of MVR.
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Background

Mitral valve regurgitation (MVR) is one of the most com-
mon valvular heart diseases in western countries and its
quantification is challenging due its complex geometry
[1]. An accurate assessment of MVR however is crucial
for patient risk stratification and optimal decision mak-
ing towards mitral valve surgery. Furthermore, with the
increasing availability of minimally invasive transcatheter
treatment options, such as mitral valve transcatheter edge-
to-edge repair (TEER), exact quantification of MVR sever-
ity and the identification of the underlying mechanism is
key for identifying patients who can benefit from less inva-
sive approaches and obviate the need for open heart sur-
gery [2]. Moreover, MVR in hypertrophic cardiomyopathy
(HCM) and primary valve disease such as mitral prolapse
is still a clinical challenge. In clinical routine, transtho-
racic and transesophageal echocardiography (TOE) are
the primary imaging modalities evaluating MVR and offer
the possibility to determine a large number of qualitative
(mitral valve leaflet and annular morphology, regurgitant
jet size and location) and (semi-) quantitative parameters
(vena contracta, regurgitate orifice, fraction and volume)
of MVR severity [3]. Nevertheless, the comprehensive
echocardiographic evaluation of MVR remains challeng-
ing due to the accurate and user dependent positioning of
the echo probe, which is prone to bias [3, 4], and Caval-
cante et al. [6] and Uretsky et al. [5S] have shown in their
studies that MVR assessed by cardiac magnetic resonance
imaging (CMR) is more reliable than echocardiography in
predicting patient outcomes after mitral valve repair.

Four-dimensional (4D) flow CMR is an emerging tech-
nology that combines the excellent soft-tissue deline-
ation of conventional CMR with the velocity-encoded
quantification of blood flow in three spatial directions
[7]. Therefore, in comparison to two-dimensional phase-
contrast (2D-PC) CMR, 4D-flow CMR is a potentially
more consistent method for flow quantification. 4D-flow
can assess blood flow not only across the large vessels
but also through cardiac valves and ventricles. Several
studies described an association of 4D-flow parameters to
hemodynamic characteristics, implicating that 4D-flow is
helpful in the evaluation of complex flow conditions such
as left ventricular outflow track (LVOT)-obstruction in
hypertrophic cardiomyopathy (HCM) [8], atrio-ventricular
septal defect repair [9-11], or after valvular heart surgery
[12]. Whether 4D-flow might also be used to accurately
assess MVR has been evaluated in a few studies [13]. The
aim of this systematic review was to identify the potential
clinical role of intraventricular 4D-flow in MVR. Further-
more, the reproducibility, technical aspects and compari-
son against conventional techniques were assessed.
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Methods

Two independent reviewers (i.e., authors YS and BB)
conducted a systematic review on the database SCOPUS,
MEDLINE and EMBASE database by reading the titles
and abstracts [14]. To capture the full spectrum of 4D-flow
CMR in MVR quantification, a search matrix with the fol-
lowing combinations of keywords was applied for English
original articles, from 2010 until 2021: ((4D) OR (four-
dimensional)) AND (flow) AND ((cardiac magnetic reso-
nance imaging) OR (cardiovascular magnetic resonance
imaging) OR (magnetic resonance imaging) OR (CMR)
OR (MRI)) AND ((mitral valve) OR (left atrioventricular))
AND (regurgitation) OR (insufficiency). Inclusion criteria
were the employment of 4D-flow CMR in the evaluation of
MVR published in a full-text article until December 2021.
The search was done at January 2022. This review was con-
ducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) state-
ment for reporting systematic reviews [15]. Due to the small
number of studies and high heterogeneity in their methodol-
ogy, a meta-analysis was not conducted.

Results

The initial search query yielded 420 articles. Based on the
mentioned eligibility criteria, 29 articles remained poten-
tially relevant to the current study (Fig. 1). After carefully
reviewing the full manuscripts and excluding the studies
using computational fluid dynamic (CFD) assessment (n=3)
or not assessing the MVR using 4D-flow methods (n=28), a
total of 18 studies were included in this systematic review,
investigating the application of 4D-flow CMR in MVR.
Most studies included (n=12, 67%) were published after
2018, whereas 6 (33%) were studies published in or before
2017.

Study characteristics and aims

Baseline characteristics of the study cohorts, aim of the stud-
ies, publication year, and 4D-flow quantification methods
are depicted in Table 1. The main objectives behind these
studies were (1) to assess the accuracy and reproducibility of
using 4D-flow CMR for quantifying MVR volume (n=12,
67%), (2) to investigate the association of characteristics of
the MVR jet with hemodynamic parameters (n=3, 17%),
and (3) to evaluate LV kinetic energy in patients with under-
lying cardiac disease and MVR (n=3, 17%). Additionally,
11 studies (61%) compared patients with underlying cardiac
disease and MVR to healthy volunteers for internal valid-
ity assessments. Across studies, underlying cardiac diseases
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such as mitral valve prolapse (MVP) [16], atrial fibrillation
(AF) [17], and HCM [18] were included.

MVR quantification methods

MVR volume quantification methods require the assess-
ment of stroke volume (SV) either by volumetrically using
cine CMR images or by calculation from phase-contrast
data. Figure 2 summarizes all the MVR volume quanti-
fication methods. (1) The “4D-intraventricular annular
inflow method” (4D-flow ,yy;) calculates the regurgitant
volume by subtracting the SV derived from aortic for-
ward flow (SV,,,) from the SV derived from the forward
flow through the mitral valve (SV)y), both derived from
a single 4D-flow CMR dataset (available in n =18 studies,
100%). The SV, ,, and SVy are calculated by integrating
flows derived from the phase-contrast CMR images over
the duration of one cardiac cycle. Additionally, (2) the
clinical “2-dimensional phase-contrast standard method”
(2D-PCy,n4ara) 15 used to indirectly measure the MVR vol-
ume by subtracting the SV derived from PC imaging of
SV Ao from volumetrically assed LV SV from cine CMR
images (n=8 studies, 44%). The LV SV is calculated by

subtracting LV end-diastolic volume (EDV) from LV end-
systolic volume (ESV) as derived from short axis cine
images of the heart. The remaining methods are (3) “the
volumetric method”, which calculates the deviation of the
LV SV and right ventricular SV from cine CMR images
in 2 (11%) studies, and (4) the 4D-flow;,, method directly
quantifying the flow and regurgitant volume of the regur-
gitant jet using 4D-flow CMR in 5 (28%) studies. No study
assessed the MVR volume with (5) the “2D-PC mitral
valve method” (2D-PCy;y), which quantifies the MVR
volume by subtracting SVy,;y from LV SV using 2D-PC
and cine CMR images, analogous to the 2D-PCy, 4arq
method. It is important to note, that all quantification
approaches, with the exception of the 2D-PC, 4., method
and 4D-flow;,, method, require adaptation when significant
aortic regurgitation is present. The replacement of the SV
of the ascending aorta (AAo) or aortic valve (AoV) by the
“net forward flow” through the AAo or AoV (calculated
as the SV minus the volume of aortic regurgitation) allows
proper quantification of MVR in these cases. Additionally,
it is important to note that these methods have limited util-
ity when there is interventricular shunting.
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2D-PCqy,n4ara method: 2D-PC,,, method: Volumetric method:
MVR volume [ml] = LV SV[mI] = SV s [mI] || MVR volume [ml] = SV, [ml] = SVs0[mI] | MVR volume [ml] = LV SV[mI] — RV SV[ml]

LV SV =LEDV-LESV || SVaso[ml] = [ flow,, dt SVy[ml] = [ flowyyy dt

End-systole

End-diastole

3Ch cine.

SVaso[ml] = [ flow,, dt LV SV =LEDV - LESV RV SV = REDV - RESV

End-systole

SAX cine

End-diastole, End-diastole

4D-flow,,,, method:

MVR volume [ml] = SV, [mI] — SV yo:[ml]

4D-flow; ., method:

jet
MVR volume [ml] = directly measured with the software

SVMv[m” = I ﬂOWMV dt
T

SVyvorlml] = [ flowyyor dt

4D phase coptrast

Systole

4D phase comraft (4D4 m - 4D phase contrast (4D-flow)
7 i

et

Early-Systole

Fig.2 Illustration of MVR quantification methods. 2D-PC, q.a»
CMR flow gold standard (Left Ventricle Stroke Volume [LV
SV]—Stroke Volume derived from Aortic Forward Flow [SV,a.1);
2D-PCyyy, directly quantifying flow through Mitral Valve (Stroke
Volume derived from Mitral Valve Flow [SVy]—Stroke Volume
derived from Aortic Forward Flow [SVj,,1); Volumetric (Left Ven-

yielded higher MVR volumes as compared to CMR tech-
niques (mean difference of 15.8 ml) [16].

Discussion

The findings of the current systematic review on 4D-flow for
quantifying MVR volume are as follow: the reviewed studies
demonstrated that 4D-flow 4, was the most common used
quantification method in the setting of MVR and that the
number of articles published are increasing in the recent five
years. Moderate to strong agreement between different MVR
quantification methods was depicted and reproducibility is
generally high, and most authors concluded that 4D-flow 5,
has the highest reproducibility across MVR quantification
methods. So far, no study linked 4D-flow MVR quantifica-
tions to clinical outcomes.

tricle Stroke Volume [LV SV]—Right Ventricle Stroke Volume [RV
SV]); 4D-flow »p; (Stroke Volume derived from Mitral Valve Forward
Flow [SVyy]—Stroke Volume derived from Aortic Forward Flow
[SVapols or [SVyyor]); 4D-flow..; AoPC, Aortic Forward Flow; EDV,

Jel’
Left Ventricle End Diastolic Volume; ESV, Left Ventricle End Sys-
tolic

Comparison of different MVR quantification
methods

Due to its widespread availability, simplicity, and afford-
ability, echocardiography by visual assessment and PISA
method, remains the most popular modality to evaluate
MVR severity. However, echocardiography has some con-
straints such as variable velocity assessment caused by beam
alignment with non-optimal flow convergence, dynamic
changes in orifice, limited acoustic window and operator
experience. Further, in cases of multiple regurgitant orifices
the PISA method is limited. Additionally, when complex
flow patterns or complex vessel geometries are present, the
calculation of mean velocities and net flow is frequently
based on assumptions about the vessel's cross-sectional area
or flow profile, which can lead to inaccurate flow quantifica-
tions, especially as the regurgitant orifice is not round, but
rather oval or irregular in shape [7]. As a result, estimated
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Table 3 Inter- and intra-reader
4D-flow 5y reproducibility data

Intra-reader reproducibility Inter-reader reproducibility

for the included studies in this

Fidock et al. [20]
systematic review

Juffermans et al. [25]
Spampinato et al. [16]
Blanken et al. [22]
Jacobs et al. [19]
Pruijssen et al. [8]
Kamphuis et al. [26]
Feneis et al. [23]

Calkoen et al. [9]

Excellent Good
(CCC=0.96) (CCC=0.86-0.96)
N/A Moderate to Excellent
(ICC 0.53-0.97)
Excellent Excellent
(ICC=0.98) (ICC=0.92-0.94)
N/A Moderate
r=0.72)
Excellent Excellent
(ICC=0.97-0.98) (ICC=0.94-0.96)
Good Moderate
(ICC=0.83) (ICC=0.73)
Excellent Excellent
(ICC=0.98) (ICC=0.97)
Excellent Good to Excellent

(ICC=0.98-0.99)

Good to Excellent
(ICC>=0.77)

(ICC=0.87-0.93)

Good to Excellent
(ICC> =0.85)

r, sample correlation coefficient; CCC, concordance correlation coefficient; ICC, interclass correla-
tion coefficient; N/A, no value indicated. (r> 0.9, excellent correlation; r = 0.7-0.89, strong correlation;
r=0.4-0.7, moderate correlation; r = 0.1-0.39, weak correlation) (ICC > 0.9, excellent correlation; ICC =
0.75-0.89, good correlation, ICC = 0.5-0.74, moderate correlation; ICC <0.5, poor correlation).

echo velocity values have a moderate correlation with CMR
quantitative measurements. Moreover, among CMR 4D-flow
quantification methods might provide additional informa-
tion with higher reproducibility and robustness in borderline
moderate to severe MVR.

2D-PC CMR has become the reference gold standard for
clinical aortic forward and backward flow (regurgitation)
quantifications because of its high spatial and temporal res-
olution, simplicity in acquisition and post-processing, and
good prognostic and diagnostic outcome data [27]. How-
ever, when used for MVR analysis, 2D-PC overestimates the
MVR volume by 15% when compared to 4D-flow ,,; [28]
and is prone to errors because of the two different types of
acquisition, 2D-PC and cine images [27]. Besides, concomi-
tant valve disease might impact the accuracy of these meas-
urements. Additionally, the 2D-PC imaging plane should be
orthogonal to the flow direction, as stated by Vermes et al.
in their study that the misalignment of the 2D-PC imaging
plane prevents measuring the aortic peak velocity precisely
and reduces the accuracy of flow measurements [29]. The
CMR volumetric method based on one cine image acquisi-
tion allows a fast and easy assessment of MVR volumes and
is a good method for quantifying solitary MVR. However, it
is an indirect MVR quantification method, which has poor
precision and high segmentation variability for right ven-
tricle SV, and cannot be used in other valves incoherencies
[27].

4D-flow CMR acquisitions allow for post-procedural
adaptation of the angle and the position of the evaluation

planes. 4D-flow has been used frequently for aortic diseases
[30, 31], however, using the method in mitral valve disease
is more complicated due to the saddle shape and significant
through-plane motion of the mitral valve. To directly quan-
tify the regurgitation jet volume with 4D-flow;,,, proper cine
image acquisitions and retrospective valve tracking (RVT)
are required. Another advantage of 4D-flow quantifica-
tion methods is their ability to enable direct valve track-
ing throughout the cardiac cycle, which is not feasible with
2D-flow imaging due to the motion of the valve annulus.
This direct measurement capability is a significant advantage
for assessing mitral regurgitation and allows for high repro-
ducibility that might be superior to that of 2D PC methods
[13, 23]. Nevertheless, the preferable MVR quantification
method by CMR still has to be determined by systematic
comparisons of reproducibility and robustness in intra- and
inter-reader variability. Moreover, kinetic energy and wall
shear stress are some advanced novel 4D-flow intraventricu-
lar hemodynamic parameters. For example, Gupta et al. [18]
reported that left atrial kinetic energy assessed by 4D-flow
is associated with LV obstruction in HCM patients. Whether
these novel parameters maybe of advantage and may pro-
vide additional information in MVR with a potential clinical
impact has to be evaluated in the future. Furthermore, there
is no gold-standard MVR grading system by 4D-flow CMR,
and the cut-off values are usually decided by the experts at
each center. The consensus statement on assessing MVR
by CMR suggested a grading system presented in Table 5
[27], however, further studies are required to compare the
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Table 4 Inter- and intra-modality correlation between 4D-flow 51y, and other MVR quantification methods

4D v correlation with

2D-PCygandard Volumetric Echo (PISA) 4D-flow;
Fidock et al. [20] Inter-modality correlation Strong Strong N/A Strong
(r=0.82-0.90) (r=0.89-0.92) (r=0.85-0.93)
Intra-Reader Reproducibility Good Good N/A Excellent
(CCC=0.8) (CCC=0.88) (CCC=0.91)
Inter-Reader Reproducibility Good Good N/A Moderate
(CCC=0.85-0.95) (CCC=0.84) (CCC=0.57-0.60)
Spampinato et al. [16] Inter-modality correlation Strong N/A Moderate Strong
(r=0.74) (r=0.63) (r=0.76)
Blanken et al. [22] Inter-modality correlation Moderate N/A N/A N/A
(r=0.53)
Inter-Reader Reproducibility Excellent N/A N/A Excellent
(r=0.91) (r=0.95)
Jacobs et al. [19] Inter-modality correlation Moderate N/A N/A Strong
(rho=0.69-0.70) (rho=0.80)
Intra-Reader Reproducibility Excellent N/A N/A Excellent
ICcCc=0.97) Icc=0.97)
Inter-Reader Reproducibility Excellent N/A N/A Excellent
(ICC=0.96) ICC=0.94)
Feneis et al. [23] Inter-modality correlation Good to Excellent N/A N/A Excellent
(ICC=0.80-0.95) (ICC=0.94)
Calkoen et al. [10] Inter-modality correlation Moderate N/A Moderate N/A
(r=0.65) (rho=0.51)
Hsiao et al. [24] Inter-modality correlation N/A Excellent N/A N/A
(rho=0.92)

(1) 2D-PC

standara> (2) VOlumetric, (3) echocardiography (PISA), and (4) 4D-flowy,,. r, sample correlation coefficient; CCC, concordance correla-

tion coefficient; rho, population correlation coefficient; ICC, interclass correlation coefficient; N/A, no value indicated. (r > 0.9, excellent cor-
relation; r = 0.7-0.89, strong correlation; r=0.4-0.7, moderate correlation; r = 0.1-0.39, weak correlation) (ICC >0.9, excellent correlation;
ICC = 0.75-0.89, good correlation, ICC = 0.5-0.74, moderate correlation; ICC <0.5, poor correlation).

cut-off values for different quantification methods directly
with outcomes.

Limitations of 4D-flow CMR in MVR

Across the reviewed studies, several limitations of 4D-flow
CMR require attention, such as long acquisition time [11],
using static time-averaged cine images for segmentations
[8,9, 11, 16, 18, 19, 26], difficulties in capturing the exact
position of the peak MVR jet [10, 18, 19, 22], low temporal
resolution in comparison to other CMR sequences, such as
cine bSSFP [8, 20, 32], and the presence of image artifacts
in patients with implanted devices [12].

Segmenting 4D-flow images based on time-averaged cine
images requires an extra acquisition leading to misalign-
ment between 4D-flow data and the cine images due to heart
and patient movements [33]. Unfortunately, the blood-tissue
contrast in 4D-flow is very low, which is why an accurate
LV segmentation is difficult to perform on the 4D-flow data

@ Springer

directly. Current approaches such as in Corrado et al. [34]
register automated cine segmentations onto the 4D-flow data
for faster analysis. Others, such as in Bustamante et al. [35]
use atlas-based segmentations, that means a general segmen-
tation mask is registered onto the 4D-flow CMR data and
adapted to the scan. That atlas-based segmentation methods
have been used to also train a U-net for direct LV segmen-
tation of cardiac 4D-flow [36]. Prior research has shown
that placing the atrioventricular plane at the position of the
peak inflow velocity rather than at the height of the valvular
plane improves the accuracy of 4D-flowp, flow velocity
estimation [9].

In Garcia et al. [37] a machine learning tool was devel-
oped to automatically detect evaluation planes follow-
ing the mitral valve motion in cine data, which then were
interpolated onto 4D-flow data. The need for a measuring
plane perpendicular to valvular inflow likely extends to jet
planes, which may explain the relatively poor correlation
between mitral regurgitation fraction measurements using
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the volumetric, 4D-flow;,;, and 4D-flow 5y, techniques [19].
Moreover, the limited temporal resolution reduces the over-
all 4D-flow SNR [32] and affects the velocity profile quality

[20] and the measured KE [38].
4D-flow acquisition parameters

4D-flow scanning parameters are dependent on many fac-
tors, such as the vendor, sequence, and patient’s hemody-
namics, as indicated by the 4D-flow consensus statement [7].
The VENC (in cm/s) is often set to be 10% higher than the
highest predicted velocity to achieve an acceptable veloc-
ity-to-noise ratio (VNR) and avoid aliasing. It is typically
about 150 cm/s for MVR quantifications, ranging from 120
to 550 cm/s in the evaluated studies. Aliasing occurs when
the VENC value is less than the highest flow velocity, and a
high VENC results in a reduced VNR. The FOV of 4D-flow
ideally covers the whole heart with the aortic arch. How-
ever, it is sufficient to cover the region of interest to decrease
scan time, which in the case of MVR quantification is the
left ventricle and left atrium. Since the spatial and temporal
resolutions impact the accuracy of the flow acquisition, it is
best to set them to the highest resolution if there is no time
constraint. The temporal resolution is recommended to be
lower than 40 ms as stated in the consensus [7], with a range
of 21-86 ms. All the reviewed studies used retrospective
ECG triggering to cover the whole cardiac cycle and avoid
sequence interruptions. However, novel 4D-flow acquisitions
use cardiac self-gating techniques [7]. All studies also used
respiratory gating to decrease breathing artifacts and scan
duration by positioning the navigator on the liver-diaphragm
interface. Also, the flip angle varies from 5° to 15°. Overall,
it can be concluded that variations in 4D-flow image quality
might not be related to technique itself, rather to an inappro-
priate use of imaging parameters. A consensus of 4D-flow
parameters for MVR is still needed.

As opposed to 2D-PC CMR, the 4D-flow analysis uses
RVT to quantify eccentric regurgitation jets and correct
for annular valve plane motions [10, 13, 26, 28]. In the net
forward flow evaluation through cardiac valves, RVT has
demonstrated greater accuracy with lesser variance when
compared to 2D-PC CMR methods [10, 26, 28]. A multi-
center study on assessing the consistency of automated RVT

demonstrated that valvular flow measurement can be inde-
pendent of local CMR scanners and protocols [25].

Even though the optimal setting for MVR quantification
remains to be determined, currently used scanners and pro-
tocols, still allow for a consistent acquisition of 4D flow
sequences [25].

Outlook on clinical implications

Data on the clinical value of MVR quantification by 4D-flow
CMR is scarce and based on small observational studies. To
the best of our knowledge, no study exists that links MVR
characteristics determined by 4D-flow CMR to the long-
term outcome or hard clinical endpoints such as mortality or
heart failure events, or remodeling after mitral valve replace-
ment. Conflicting data from large randomized clinical trials
on the value of transcatheter mitral valve edge-to-edge repair
[39, 40] underline the urgent need for a reproducible and
robust quantification of MVR severity that correlates with
outcomes and can be used to guide therapeutic decisions
[41].

Limitations

When interpreting the results of this review, it is important
to consider several limitations. The results presented show
the current role of 4D-flow CMR in the assessment of MVR,
which is currently based on descriptive, observational, and
primarily retrospective data. The generalizability of our
conclusions is reduced by the heterogeneity of the reviewed
studies. Without considering factors such as the included
study cohorts (healthy controls vs. patients with various
cardiac diseases) [10, 12, 22, 32], the severity and mecha-
nism of MVR, and various image acquisition techniques and
analysis software packages, and the lack of a gold-standard,
it is impossible to compare the values we provided for repro-
ducibility and inter-modality correlation across studies. Fur-
ther, how the use of contrast agent, the dosage and timing
impacts on 4D flow quality is not yet conclusive and needs
future evaluation. In addition to the mentioned limitations
in the reviewed studies, it is noteworthy to consider the low
availability of proper sequences and software in centers and

Table 5 Mitral valve

. . Type of MR Grading of severity
regurgitation (MVR) grading
system recommended by Mild Moderate Severe Very severe
the consensus statement
on assessing MVR by Primary MRRF <20% MRRF =20-39% MRRF =40-50%; MRRF >50%
cardiovascular magnetic MVR >55-60 ml
resonance imaging (CMR). Secondary MVR <30 ml MVR =30-60 ml MVR > =60 ml N/A

Adapted from consensus Garg
et al. [27]

MR, mitral regurgitation fraction
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a lack of clinical expertise restricting the broad adoption of
clinical 4D-flow CMR [23].

Conclusions

Intraventricular 4D-flow ,;y; is the most used 4D-flow
method in quantifying MVR among the reviewed studies
providing high reproducibility with heterogeneous corre-
lations to conventional quantification methods. Due to the
absence of a gold standard, future longitudinal outcome
studies need to assess the clinical value of different 4D-flow
methods and compare its predictive value to established
methods.
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