Skip to main content
. 2023 Oct 20;10:727. doi: 10.1038/s41597-023-02620-2

Table 3.

Comparison of different cross-validation methods and different performance metrics (column) for different models on a single sensor (row).

Sensors Model k-fold leave-recordings-out leave-one-subject-out
Acc F1 Acc F1 Acc F1
{LW} CNN-LSTM 0.36 (±0.03) 0.31 (±0.04) 0.36 (±0.04) 0.3 (±0.03) 0.36 (±0.04) 0.31 (±0.02)
{LW} ResNet 0.34 (±0.02) 0.32 (±0.03) 0.33 (±0.06) 0.3 (±0.07) 0.35 (±0.04) 0.33 (±0.05)
{LW} DeepConvLSTM 0.3 (±0.02) 0.18 (±0.04) 0.3 (±0.02) 0.19 (±0.02) 0.29 (±0.03) 0.18 (±0.03)
{RW} CNN-LSTM 0.35 (±0.04) 0.28 (±0.05) 0.35 (±0.04) 0.28 (±0.05) 0.36 (±0.03) 0.28 (±0.03)
{RW} ResNet 0.34 (±0.07) 0.32 (±0.07) 0.38 (±0.07) 0.36 (±0.07) 0.33 (±0.05) 0.32 (±0.04)
{RW} DeepConvLSTM 0.27 (±0.02) 0.16 (±0.01) 0.29 (±0.04) 0.16 (±0.04) 0.29 (±0.04) 0.17 (±0.03)
{ST} CNN-LSTM 0.32 (±0.04) 0.25 (±0.03) 0.3 (±0.03) 0.23 (±0.04) 0.32 (±0.03) 0.24 (±0.04)
{ST} ResNet 0.26 (±0.05) 0.24 (±0.05) 0.26 (±0.06) 0.24 (±0.05) 0.29 (±0.06) 0.27 (±0.06)
{ST} DeepConvLSTM 0.28 (±0.06) 0.19 (±0.05) 0.27 (±0.05) 0.16 (±0.05) 0.28 (±0.06) 0.18 (±0.07)
{LF} CNN-LSTM 0.29 (±0.04) 0.23 (±0.06) 0.29 (±0.03) 0.23 (±0.04) 0.29 (±0.02) 0.23 (±0.03)
{LF} ResNet 0.21 (±0.03) 0.19 (±0.04) 0.22 (±0.03) 0.2 (±0.03) 0.2 (±0.02) 0.18 (±0.02)
{LF} DeepConvLSTM 0.24 (±0.03) 0.15 (±0.01) 0.21 (±0.03) 0.13 (±0.02) 0.26 (±0.05) 0.17 (±0.05)
{RF} CNN-LSTM 0.32 (±0.02) 0.25 (±0.03) 0.3 (±0.04) 0.24 (±0.05) 0.29 (±0.04) 0.23 (±0.04)
{RF} ResNet 0.23 (±0.06) 0.19 (±0.04) 0.25 (±0.05) 0.22 (±0.04) 0.25 (±0.05) 0.22 (±0.05)
{RF} DeepConvLSTM 0.25 (±0.06) 0.16 (±0.06) 0.27 (±0.04) 0.18 (±0.04) 0.26 (±0.03) 0.17 (±0.03)

The best performing model for each sensor and validation setup is highlighted in bold.