Skip to main content
. 2023 Oct 20;10:727. doi: 10.1038/s41597-023-02620-2

Table 6.

Comparison of different cross-validation methods and different performance metrics (column) for different models on four sensor combinations (row).

Sensors Model k-fold leave-recordings-out leave-one-subject-out
Acc F1 Acc F1 Acc F1
{LW, RW, ST, LF} CNN-LSTM 0.45 (±0.03) 0.41 (±0.03) 0.44 (±0.04) 0.4 (±0.03) 0.44 (±0.03) 0.4 (±0.03)
{LW, RW, ST, LF} ResNet 0.36 (±0.07) 0.35 (±0.08) 0.36 (±0.04) 0.35 (±0.05) 0.36 (±0.05) 0.35 (±0.06)
{LW, RW, ST, LF} DeepConvLSTM 0.33 (±0.05) 0.27 (±0.06) 0.33 (±0.04) 0.25 (±0.05) 0.35 (±0.05) 0.27 (±0.05)
{LW, RW, ST, RF} CNN-LSTM 0.44 (±0.03) 0.39 (±0.03) 0.44 (±0.03) 0.4 (±0.04) 0.43 (±0.04) 0.4 (±0.04)
{LW, RW, ST, RF} ResNet 0.33 (±0.06) 0.32 (±0.07) 0.33 (±0.04) 0.32 (±0.05) 0.35 (±0.05) 0.33 (±0.05)
{LW, RW, ST, RF} DeepConvLSTM 0.33 (±0.02) 0.26 (±0.02) 0.32 (±0.08) 0.26 (±0.08) 0.35 (±0.02) 0.28 (±0.02)
{LW, RW, LF, RF} CNN-LSTM 0.43 (±0.04) 0.4 (±0.03) 0.44 (±0.04) 0.4 (±0.03) 0.44 (±0.02) 0.4 (±0.02)
{LW, RW, LF, RF} ResNet 0.35 (±0.03) 0.34 (±0.05) 0.36 (±0.05) 0.35 (±0.05) 0.36 (±0.05) 0.34 (±0.05)
{LW, RW, LF, RF} DeepConvLSTM 0.34 (±0.02) 0.27 (±0.03) 0.34 (±0.07) 0.27 (±0.07) 0.35 (±0.05) 0.29 (±0.06)
{LW, ST, LF, RF} CNN-LSTM 0.41 (±0.04) 0.38 (±0.04) 0.42 (±0.04) 0.38 (±0.04) 0.41 (±0.06) 0.38 (±0.06)
{LW, ST, LF, RF} ResNet 0.33 (±0.06) 0.32 (±0.06) 0.33 (±0.04) 0.32 (±0.04) 0.3 (±0.05) 0.29 (±0.04)
{LW, ST, LF, RF} DeepConvLSTM 0.32 (±0.04) 0.26 (±0.03) 0.32 (±0.03) 0.26 (±0.03) 0.32 (±0.05) 0.26 (±0.06)
{RW, ST, LF, RF} CNN-LSTM 0.39 (±0.07) 0.34 (±0.07) 0.38 (±0.02) 0.33 (±0.04) 0.38 (±0.04) 0.33 (±0.03)
{RW, ST, LF, RF} ResNet 0.33 (±0.06) 0.31 (±0.06) 0.33 (±0.06) 0.32 (±0.07) 0.29 (±0.01) 0.28 (±0.02)
{RW, ST, LF, RF} DeepConvLSTM 0.32 (±0.05) 0.24 (±0.08) 0.33 (±0.02) 0.25 (±0.02) 0.3 (±0.04) 0.23 (±0.04)

The best performing model for each sensor and validation setup is highlighted in bold.