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From flocks of birds to biomolecular assemblies, systems in which many individual
components independently consume energy to perform mechanical work exhibit a wide
array of striking behaviors. Methods to quantify the dynamics of these so-called active
systems generally aim to extract important length or time scales from experimental
fields. Because such methods focus on extracting scalar values, they do not wring
maximal information from experimental data. We introduce a method to overcome
these limitations. We extend the framework of correlation functions by taking into
account the internal headings of displacement fields. The functions we construct
represent the material response to specific types of active perturbation within the
system. Utilizing these response functions we query the material response of disparate
active systems composed of actin filaments and myosin motors, from model fluids to
living cells. We show we can extract critical length scales from the turbulent flows of
an active nematic, anticipate contractility in an active gel, distinguish viscous from
viscoelastic dissipation, and even differentiate modes of contractility in living cells.
These examples underscore the vast utility of this method which measures response
functions from experimental observations of complex active systems.
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Active systems can be found at various scales across the natural world. From flocks of birds
and schools of fish (1, 2), to swarms of bacteria (3, 4) and the protein filaments inside of
cells (5), a system is considered active if individual agents—birds or molecular motors—
locally convert energy into mechanical work (6). These local injections of energy produce
forces, flows, and dynamic patterns on scales much larger than the active components
themselves (7). While all active systems share an underlying character, the structure
and dynamics exhibited by each are a consequence of their specific mechanisms of
energy injection, long-range structural interactions, hydrodynamic milieu, and boundary
conditions (2). Understanding how these factors conspire to produce the emergent
phenomena we observe is an important challenge not just for understanding complex
natural systems but also for designing potentially autonomous materials. The myriad
length and time scales often present, however, make characterizing the mechanics and
dynamics of active systems difficult.

When trying to gain access to length and time scales of active systems, the most easily
accessible and plentiful data available are dynamic fields (e.g., velocity or intensity fields).
Many methods have been developed to analyze these fields (8–10). Correlation functions
in particular have proven useful for extracting both length and time scales from velocity
fields (10). In the process, however, these methods tend to reduce the information
in complicated experimental fields to fewer dimensions, simplifying interpretation but
limiting the insights we can glean. While methods have been introduced to capture
dynamical heterogeneity (11, 12) or measure dynamics along an external frame of
reference (13), a complete picture of active dynamics would report the localized
response of the system to an active perturbation. In thermally driven systems, material
responses can be obtained from microrheology (14–16). Two-point microrheology
enables measurement of length and time scale–dependent responses. However, the
paucity of data necessitates spatial averaging over radial dimensions (8). Recently,
correlated displacement velocitometry was introduced which overcomes this limitation
by considering the motion of many particles with respect to an averaged source (17). This
method allowed for the measurement of interfacial flow around thermally driven colloids
in two dimensions. By taking into account the internal directions of a displacement field,
this method effectively extended correlation analysis to measure the response function of
a simple fluid near thermodynamic equilibrium.

Here, we extend this method to measure the response of active systems with unknown
material properties far from equilibrium. We show that the idea introduced in ref. 17
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can be applied to any number of fields readily obtained from ex-
perimental data. Furthermore, by considering cross-correlations,
we measure material response not only to displacement but
other salient perturbations. We utilize this method to elucidate
material and dynamical responses in a range of active materials
composed of the biopolymer F-actin driven by myosin molecular
motors. Specifically, in an active extensile nematic, we extract
the time-dependent length scales associated with vortical and
shear perturbation that provide insight into turbulent flows. In a
contractile active gel, we find that the ratio of these two critical
length scales presages the onset of contractility. Furthermore,
considering the temporal decay of these response functions
allows us to distinguish viscous from viscoelastic dissipation in
the nematic and the gel, respectively. Finally, we show that
this method can be harnessed to probe the mechanics of the
actomyosin cytoskeleton in living cells. While we focused our
attention here on active actomyosin materials, this method should
be of broad utility in the study of complex systems.

Method and Results

Measurement of Response Functions in 2D Active Materials.
To begin, we consider a displacement field for a two-dimensional
active material. Fig. 1A shows one such field from an experimental
active system. As typical active materials contain a number of
length and time scales, our approach will be to extract as much
information as we can from this important dynamic field. To
do so, we will approach correlation analysis not as conventional
autocorrelation but as generalized cross-correlation between some
field Ep and the displacement field Eu. The real trick here will be
to take special notice of any directional information in Ep. This
directional information will help the correlation to represent an
averaged response of Eu to the specific perturbation represented
by Ep.

Because Ep could in principle be a high-rank tensor field and
interpreting high-ranked correlation functions is difficult (SI
Appendix), we introduce the general correlation function E�Ep.

E�Ep(ER, �) = 〈p(Er1, t)Eu(Er2, t + �)�(ER − Er′12)〉Er1,Er2,t , [1]

here p is the scalar magnitude of the field Ep which renders E�Ep
the same rank as Eu. 〈·〉Er1,Er2,t denotes averaging over space and
time. Since p and Eu are often discrete measurements, the average
is computed by binning our data over a window of chosen size,
which is represented by the finite width delta function �. Note
that the data in each bin should be statistically significant to make
sure the average value is independent of the possible noise in the
system and is independent of ensemble size (SI Appendix, Figs.
S1–S3). ER is the location in a new Euclidean space with the same
dimensionality as Eu. Finally, Er′12 is the distance vector between Ep
and Eu, which will be constructed in this new coordinate system
to report on the location of Eu(Er2) with respect to the position and
heading—the local direction—of Ep(Er1). The purpose of Er′12 is to
center the average such that each Ep( Er1) is located at the origin
of ER. In practice, we will be dealing not with E� itself but rather
the normalized correlation field EUEp = E�Ep/

√
〈p2〉. In tandem

with the field Ep, the choice of coordinate system in which Er′12
is measured is a critical one and has important ramifications for
how we interpret these correlations. To see why, let us consider
a concrete example.

We can consider the displacement–displacement autocorrela-
tion function in this new setting; EUEu = E�Eu/

√
u2. Our objective

is to understand how the displacement field responds to each
specific Eu( Er1). This means we want to take into account not only
the location Er1 but also the heading of Eu( Er1). To do so, we set up a
new coordinate system whose Y axis aligns with Eu( Er1). That is, we

define Er12
′ = EM( Er2− Er1), where EM =

(
cos(�1) − sin(�1)
sin(�1) cos(�1)

)
is

the rotation matrix in which �1 is the angle between Eu( Er1) and the
Y axis of the lab frame. By defining Er′12 in this way, EUEu reports
on the correlation of the displacement field with a perturbing
vector pointing along the Y axis. By normalizing by

√
〈u2〉 this

correlation reports on the average behavior of the displacement
field with respect to an impulse of defined direction and
magnitude (Fig. 1C ). Put differently, the function EUu reports on
the averaged response of the displacement field Eu to a perturbation
of unit magnitude along the Y axis. This procedure is closely
related to what was utilized recently to measure the Stokeslet flow
induced by Brownian motion of passive colloids at an interface
(17). By taking this directional information into account, the
resulting response function is not radially symmetric as one would
expect from traditional autocorrelation. Rather, the resulting
displacement response function is only reflectively symmetric
about the Y axis (Fig. 1 C, ii). As one might expect, the response
to a displacement along one axis decays at different rates for
different angles with respect to that impulse. The response in the
longitudinal direction Uu,‖ = U |X=0 propagates over the largest
distance and in the transverse direction, Uu,⊥ = U |Y=0 over
the shortest distance (Fig. 1 C, ii). The difference between these
two length scales is mainly related to the hydrodynamic coupling
of the active material to the viscous bulk fluids (18–20). The
ratio of these two length scales quantifies the ratio of the kinetic
energy that is dissipated within the 2d system (active nematic
in this case) and kinetic energy dissipated externally. These two
spatial length scales, however, get convoluted when calculating
the conventional displacement autocorrelation function CEu·Eu =
〈Eu(Er) · Eu(Er + ER)〉r/

√
〈Eu(Er) · Eu(Er)〉r as all perturbations Eu are

treated identically regardless of heading. In fact, this traditional
autocorrelation function is equal to the azimuthal average of the
response function we consider, CEu·Eu = 1/2�

∫ 2�
0 UY (ER)d� =

(U⊥+U‖)/2; where � is the angle in polar coordinates. By taking
into account the headings of each element of the displacement
field as we construct the correlation function, we are able to
access important two-dimensional features of flow responses.
Unfortunately, while this description of the autocorrelation
response contains more information than the previous version,
determining a length scale from these functions still requires
a model. This stems from the fact that any autocorrelation
function must inherently be maximally correlated with itself at
the origin. Without any universal scaling describing the decay
of this correlation in active systems, we are left to approximate.
We will show that such ambiguity may not exist in responses to
higher-order perturbations.

To capture the response of the displacement field to high-
order modes of deformation, we explore the response of the
displacement field to its own gradients, E∇Eu. In a linear system,
we begin by decomposing the displacement gradient tensor
∂iuj into the anisotropic symmetric traceless strain rate tensor,
Sij = (∂iuj + ∂jui)/2− ∂kukIij/2, the isotropic symmetric strain
rate tensor Dij = ∂kukIij/2, and the circulation tensor Ωij =
(∂iuj − ∂jui)/2. Here, EI is an identity tensor with the same rank
as ∂iuj. This choice of decomposition has great physical utility as
in two dimensions it corresponds to separating the contributions
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Fig. 1. Measuring directionally rectified correlations reveals response functions in active materials. (A and B) Displacement fields measured by optical flow
from fluorescence microscope images of an active nematic liquid crystal at t = 0s (A) and t = 12s (B). Displacements measured over Δt = 2 s. (i) Schematic of
coordinate transformation and ensemble formation for the response of the two-dimensional displacement field Eu to various perturbation fields Ep. Ep is either
the displacement field itself, Eu (C), the vorticity field, � (D), or the anisotropic strain rate field, ES (E). (ii) Equal time two-dimensional response of the displacement
field in (A) to each of the respective perturbations. Ensembles are constructed such that the Y axis in (i) is the same as (ii). Streamlines indicate the direction
of the resulting response function and color indicates the magnitude (Scale bars, 5 μm). (iii) The � = 12s time delayed response function. The perturbation
coordinate system is set at � = 0s, and the response is measured at � = 12s. (iv) One-dimensional profiles of the responses calculated at various lag times.
Lighter colors indicate longer lag times. (C, iv) One-dimensional profile is constructed by tracing along the major axis (blue). Note that the azimuthal average is
simply the average of the major axis trace and the minor axis trace (red). (D, iv) One-dimensional profile is constructed by azimuthally averaging. Model free
characteristic deformation U∗ and length R∗ scales at the various lag times indicated by open circles. (E, iv) One-dimensional profile constructed as a trace along
the Y axis. The origin symmetry of the field shown is unique to divergence free systems. Note the large characteristic length scale in comparison to vortical
deformation fields.

of pure shear, normal, and vortical deformation from one
another. Having performed this decomposition, we construct
a family of response functions EUES , EU ED, EU EΩ corresponding to the

response of the deformation field to the different perturbations,
each of which quantifies different flow structures in Eu. We will
defer the physical interpretation of these response functions in
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the various systems for the later sections but will focus here
on the methodology for constructing each. Specifically, let us
focus on the critical question of how to choose a coordinate
system.

Among these tensors, ED—which quantifies bulk contraction
or extension—does not have a unique eigendirection and can be
fully described by its first principal invariant. Therefore it can be
treated as a scalar field, D. As scalar fields do not have headings,
we cannot choose a meaningful angle about which to rotate. In
such cases, we default to a translation of the lab frame (Fig. 1
D, i). More precisely, in the case of a scalar perturbation field we
simply take Er12

′ = ( Er2 − Er1). A similar situation arises with the
circulation tensor EΩ in two dimensions. This tensor has only one
pseudovector which is normal to the plane of observation with the
rotation rate equal to vorticity � = êz · E∇×Eu. As the pseudovector
of EΩ provides no extra information, we will use the scalar vorticity
field, �, throughout this work and choose the simple translation
of the lab frame as our coordinate system (Fig. 1 D, i). In the
case of both D and �, the resulting response function is radially
symmetric, which is a product of the lab frame coordinate that
we have chosen (Fig. 1 D, ii). Intuitively, we expect a system’s
response to vortical perturbation, EU� or normal deformation to
be radially symmetric which is the case in the measured responses
(Fig. 1 D, ii).

Unlike its cousins, ES is not a scalar field and thus requires more
care when choosing coordinates. ES possesses two eigenvectors
which identify pure shear directions with eigenvalues±� indicat-
ing shear rate. To construct E�ES in this case, we set up a coordinate
system similar to the case of displacement autocorrelation where
the Y axis is aligned with the eigendirection corresponding to
the positive eigenvalue (Fig. 1 E, i). It is important to note here
that it does not truly matter which eigenvector we choose so long
as we are consistent while constructing the response function. As
a convention, we have chosen the eigenvector associated with
positive shear as we will eventually turn this method on an
extensile system. The eigenvalue of ES in this direction, �, is used
as the scalar field which normalizes the correlation. The shear
response function we construct, EUES = E�ES/

√
�2 is therefore

the response function of the system to a pure extensile shear
perturbation at the origin pointing outward along the Y axis
as seen in Fig. 1 E, i. Since ES is a symmetric and traceless
tensor, the resulting response function EUES is symmetric about
both X and Y axes (Fig. 1 E, ii). This is the high-rank extension
of what we have seen already. Scalar fields, having no internal
directions in the plane, form radially symmetric correlation
functions while vector fields yield only one axis of symmetry. This
response to a second-rank tensor which represents bidirectional
motion yields a response function that is symmetric about two
separate axes.

So far we have only measured equal-time response functions.
Evaluating the response after some lag time however is straight-
forward. Taking a perturbation field Ep(Er1) at time t the delayed
response function is constructed from Eu measured after some
delay time t + �. A snapshot of the velocity field from Fig. 1A
measured at � = 12 s is shown in Fig. 1B. From these two
displacement fields corresponding response functions EUEu(�),
EU�(�), and EUES(�) are computed at � = 12 s (Fig. 1 C–E, iii).
The spatiotemporal response functions as measured here provide
useful information about spectral properties of the dynamics of
active matter in the time domain, which has proven challenging
so far to gain access to ref. 21.

Thus far then, we have focused solely on technical implemen-
tation of this approach. We have demonstrated that by taking into
account internal headings of a perturbing field, we can use the
familiar language of correlation functions to construct functions
that report on the response of a displacement field to these specific
perturbations. After decomposing the displacement gradient
tensor into constituent parts, we demonstrated how to construct
similar response functions for various ranks of perturbing inputs.
Finally, we have seen a simple procedure to extend this framework
into the time domain. Having detailed these technical steps, we
now utilize our analysis on real data. In each, we will ask what
information this approach can reveal compared to previously
established methods for a few well-characterized active systems.

Response Functions Reveal Characteristic Length Scales in
Active Nematic Turbulence. We begin by analyzing the flow
structures of an active nematic liquid crystal, as their steady-state
dynamics are well characterized (2, 7, 22). Here, we consider
an extensile nematic composed of short actin filaments driven
by mysoin motors (23, 24). Fig. 1 A and B are snapshots of the
displacement field Eu of an active nematic measured over Δt = 2 s
at two different time points. We measure the displacement
response EUEu in this system and find a difference in decay length
between the direction parallel and perpendicular to the averaged
displacement vector (Fig. 1 C, ii). The monotonic decay of these
traces preclude the extraction of an unambiguous length scale as
quantifying the decay would require a model or ansatz, Fig. 1 C,
ii. The nonmonotonic shape of the vortical and shear responses
overcome this limitation (Fig. 1 D and E, iv).

The azimuthal average of the vortical response function
U�(R), exhibits a clear peak (Fig. 1 D, iv). Since the helicity
〈�(Er)Eu(Er)〉Er in a 2D nematic field is zero, U� starts from
zero at the origin and rises to the characteristic magnitude
U ∗� at the characteristic length scale R∗� , before decaying at
large distances due to dissipation mechanisms (21). To put
the characteristic length scale R∗� = 14.1 μm in context with
established methods, we measure the distribution of vortex sizes
using the standard Okubo–Weiss parameter and velocity winding
number (7, 25, 26) (SI Appendix, Fig. S4). Applying this method
to our distribution we find an average vortex area of 688± 9 μm2.
This is in close agreement with the vortex area calculated from
our model free vorticity length scale �(R∗� )

2 = 624 μm2. Thus,
the vortical response function reports a critical length scale
that is commensurate with the radius of an average vortex in
the system.

The shear response EUES for an active nematic exhibits a high
degree of reflective symmetry (Fig. 1 E, ii). In this case EUES
is symmetric about not only the X and Y axes as we would
expect from the response to a second-order tensor, but also the
diagonalY = X . This symmetry arises from the incompressibility
of the nematic film. Because EUES is diagonally symmetric, we
consider only the one-dimensional trace along the Y axis (Fig. 1
E, iv). Similar to the vortical response, this one-dimensional
trace rises from zero at small length scales and decays due to
various dissipation mechanisms giving a critical magnitude, U ∗

ES
,

and length scale, R∗
ES
, of flow structures associated with shear

perturbation. In this case, this one-dimensional response trace
starts from zero at the origin because inertial advection Eu · E∇Eu
at small length scales is zero. It is interesting to note that in
general R∗

ES
> R∗� . This is because the shear deformation field EUES

is coupled to pressure gradients in the system while the vortical
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deformation field, in the absence of inertial effects, is not (2, 27).
Vortical perturbation at the origin only propagates by the curl
of force density due to elastic, flow-alignment, and active stresses
and thus is dictated in large part by the systems shear rheology
(20). Because these scales are model-free and unambiguous, they
allow for comparisons between active nematics with different
levels of activity and reveal a scaling law in nematic dynamics
(SI Appendix, Fig. S5) (28, 29).

Critical Length Scales Anticipate the Onset of Contractility in an
Active Gel. In contrast to active nematics that exhibit dynamics
at the steady state, the structure and dynamics of contractile
active gels evolve over time (Fig. 2 A–C, i, actin fluorescence
in gray scale, myosin fluorescence in magenta, and SI Appendix,
Fig. S6) (30, 31). The gels we consider are composed of long
actin filaments driven by myosin II motors which cross-link
and buckle filaments leading to bulk contraction (30). One
interesting feature is that after the addition of myosin motors
at t = 0 min, the gel does not contract immediately. Rather
as myosin filaments settle onto the network and stresses slowly
build up, the divergence of the displacement field 〈 E∇ · Eu〉 remains
negligible for a time before rapidly decreasing as the system
irreversibly contracts (Fig. 2D, black circles). This delay has been
a particular focus of studies on active gels, specifically the relation
between the buildup and spectrum of internal stresses and the
stability or contractility of the system (32). To investigate this
transition in detail, we measure the shear EUES and normal EUD

response at three representative stages of contractility where 〈 E∇·Eu〉
of ∼ 0, −0.01, and −0.1 (Fig. 2D, vertical dashed lines). As we
expect, the magnitude of the normal response EUD increases as
contractility builds reflecting the compression of the gel (Fig. 2
A–C, iii and F ).

One striking feature of the contractile gel is that the shear
response in the transverse direction decays more quickly than
along the major axis of contraction (Fig. 2 B, ii, comparing
the X (transverse) and Y (contraction) axes). The asymmetry
becomes even more pronounced for increasing divergence (Fig. 2
B and C, ii). We can think about this deviation from symmetry
as the addition of an isotropic response that represents the net
contraction of the system due to shear perturbations. To isolate
these different modes of deformation, EUES can be separated into
an isotropic and anisotropic part EUES = [−UESR,aniso cos 2� +
UES,iso]êR+UES�,aniso sin 2�ê� , where EUES,aniso gives the strain dipolar
modes, and EUES,iso gives the compressional mode. Splitting the
response in this fashion allows us to track the progression
of contraction in the gel directly from the shear response.
Specifically, the azimuthal average of the isotropic shear response
per unit area at R∗

ES
, UES,iso(R

∗)/R∗
ES
, is equal to the average

divergence, 〈 E∇ · Eu〉, of the displacement field (Fig. 2D, solid
black line). The isotropic shear response EUES,iso then, is reporting
on the magnitude of contraction induced by local shear stress.
Thus in this system, which is driven by the local sliding of pairs
of filaments (30), this response captures the global divergence. It
should be noted here the relationship between EUES,iso and EUD.
The normal response EUD measures the system’s response to
the contraction captured by EUES,iso. Considering the azimuthal
average of each, we find that both UES,iso (Fig. 2E, dots) and UD
(Fig. 2F, lines) increase as contractility increases. UES,iso decays
weakly as a function of distance, reflecting the spatial dependence
of local contractility (Fig. 2E, dots). UD exhibits a clear peak

indicating a length scale over which contractility drives maximal
material deformation (Fig. 2F ). A similar peak occurs in EUES,aniso
which captures material rearrangements due to shear (Fig. 2E,
solid lines). Furthermore, as contractile flows in the material
increase, the energy scale and extent of this local shear response—
both R∗ and U ∗—grow monotonically (SI Appendix, Figs. S7
and S8). Interestingly, after these peaks none of these responses
decay fully to zero (Fig. 2 E and F ). As noted in the nematic, at
steady state the far field response decays to zero. The lack of such
decay in the far field (R > R∗) indicates that the contractile gel
dynamics are not at steady state.

In addition to specifically enumerating these mesoscale de-
formations due to contractile stress, the resolution of our
measurement reveals features that seem to presage the onset of
contractility. Recall that the length scale associated with shear
response R∗

ES
is typically larger than the length scale associated

with the vortical response R∗
E� (Fig. 1 D and E, iii and SI

Appendix, Fig. S7). Interestingly, the ratio of these length scales
R∗�/R

∗

ES
increases over time reaching its maximal value of ∼ 0.9

just prior to the onset of 〈 E∇ · Eu〉 < 0 (Fig. 2D, open blue
squares), where such increase is absent in noncontractile active
gel (SI Appendix, Fig. S9). Prior work has shown in strongly
driven F-actin networks that the rate of energy dissipation and
filament bending energy increases until the onset of contractility
(32). In this light, we surmise that the increase of R∗�/R

∗

ES
reflects

the decoupling of the pressure and shear deformation fields via fil-
ament bending until bulk contraction once again suppresses these
fluctuations.

Temporal Decorrelation of Responses Enumerate Modes of Dis-
sipation Across Length Scales. We next investigated dissipation
across different length scales. Recall that in the active nematic,
all the curves of UES(�) as a function of lag time (Figs. 1 E, iv
and 3A, red curve), shared a similar form. Namely, U ∗

ES
decreases

and R∗
ES

increases as � grows, until at longer lag times the response
is negligible (Fig. 3A, red curves; lighter colors indicate longer
lag times). This steady decorrelation in time is characteristic of
viscous dissipation as built-up strain slowly decorrelates over time.
In contrast to this monotonic decay, U ∗

ES
in the contractile gel

becomes negative at intermediate lag times before approaching
zero (Fig. 3A, blue curves). This anticorrelated signal is a strong
signature of elasticity as accumulated strain rebounds elastically
producing a negatively correlated strain after a time. That the
absolute value of the peak height is not that of the original
reflects contributions from viscous dissipation. This contractile
gel then bears a strong signature of viscoelasticity dissipation;
biochemical modifications to the contractile gel that enhance
viscous relaxation abrogate this response (SI Appendix, Fig. S10).
We quantify the length-scale-dependent dissipation in the active
nematic by considering the normalized relaxation of UES(�)
at several distances R with respect to the peak R∗

ES
(Fig. 3B).

Each relaxation is fit to a scaled exponential function, U (�) =
exp(−[�/�r(R)](R)); where �r(R) is the size dependent decay
time and (R) is the size dependent scaling factor. We define
the decay time from scale-dependent response measurements,
�r(q = 2�/R) as the time that the normalized response profile
(Fig. 3B) relaxes to the inverse of the Euler number, ∼ 0.368.
For R = 0, we find that the scaling factor  = 1 consistent with
diffusive relaxation of the shear response (Fig. 3B, red curve).
At large scales, R = 2R∗

ES
, the relaxation profile is a stretched

exponential  = 2, diagnostic of ballistic type motion (33, 34)
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Fig. 2. Response functions identify key dynamic consequences of contraction in in vitro actomyosin networks. (i) Micrographs of fluorescent actin (gray) and
myosin (magenta) overlaid with scaled velocity vectors (orange) for the active gel at various divergences (A–C). Colors correspond to divergences indicated in
(D), each box is 100× 100 μm2 of the field of view. (ii) Equal time shear response for the velocity fields in (i). (iii) Normal (compression) response for the velocity
fields in (i). Streamlines indicate the direction of the resulting correlation field and color indicates the magnitude; scale bars are 5 μm2. (D) Divergence of the
velocity field (black circles) as a function of time for a contractile active gel. The azimuthal average of the isotropic shear response per unit area at R = R∗

ES
,

UES,iso(R
∗

ES
)/R∗
ES

(solid black line) agrees with the calculated divergence. The green, blue, and red dashed lines indicate the points taken as characteristic of the gel
before contraction, at the onset of contraction, and deep in the contractile regime. Numerical labels indicate the value of divergence at these points. Ratio of
characteristic length scales R∗� /R∗

ES
as a function of time (solid blue line, open blue squares). The time axis indicates elapsed time after the addition of myosin

motors. (E) One-dimensional traces of the symmetric (UES,iso, dashed lines), and anisotropic (UES,aniso, solid line) decomposition of the shear response function
in (ii) as a function of distance R. (F ) One-dimensional traces of the normal (compressional) response in (iii) as a function of distance R.
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A B

C D

Fig. 3. Temporal dependence of correlated displacement field reveals characteristic time scales of active materials. (A) Normalized one-dimensional shear
response, UES , for an active nematic (blue) and active gel (red) measured at different delay time � (see scale bar). (B) Normalized shear response as a function of
delay time � measured at different spatial scales with respect to the critical length scale R∗. Experimental data are indicated with symbols solid lines are fit of
the data to a stretched exponential. (C) Dynamic structure function D(q, �) at different wave number q (see scale). D(q = 2�/R∗ , �) is plotted in black. �2 and �
scaling are indicated. (D) Characteristic time scales �r as a function of wave number q for DDM (black) and displacement (UEu, green), shear (UES , red), or vortical
(U� , blue) response.

(Fig. 3B, green). At intermediate scales, R∗
ES
/2 ≤ R ≤ R∗

ES
,

 transitions smoothly between these extremes, indicating the
transition between stochastic and flow dominated dissipation in
the active nematic (Fig. 3B, blue and black).

To put these results in context, we compare our results to
measurements from the established technique of differential
dynamic microscopy (DDM) (9, 34, 35). We calculate the
dynamic structure functionD(q, �) from time-lapse images of the
active nematic considered above over a range of wave-numbers q,
from 0.1 μm−1 to 1 μm−1 and lag times 1 < � < 200 s (Fig. 3C,
color indicates q). We define a characteristic timescale �r(q)
by fitting D(q, �) with a stretched or compressed exponential
function as described in Materials and Methods (Fig. 3C ). For
short lag times, � < �r(q), D(q, �) follows a power law, �DDM
reflecting high frequency relaxation. Consistent with our response
function analysis, we find DDM = 2 for q < 0.1 μm−1, and
DDM = 1 for q > 1 μm−1 (Fig. 3C ), indicating ballistic type
motion at long length scales (36). Similar to scale-dependent
response functions, we find a smooth transition between these
behaviors in intermediate regimes (Fig. 3C and SI Appendix,
Fig. S11).

While both methods agree on qualitative motion at short and
long scales, we find that the critical time scales �r(q) extracted
from DDM are uniformly shorter than relaxation times found
using our response analysis (Fig. 3D, black squares DDM, colored
squares response analysis). Furthermore, this is not the product
of a mere baseline shift but rather of markedly different scaling
(Fig. 3D). The relaxation time measured by DDM scales as �r ∼
q� with � < 2 which is indicative of superdiffusive motion. Over
the same range, U� becomes q independent (Fig. 3D, open green
squares). This disconnect arises from the fundamental difference
between these two methods. DDM measures image differences
agnostic of how those differences arise. Our response analysis, on
the other hand, deals with deformations correlated to a specific

type of perturbation. As such, we find that DDM correlations
relax quickly. In contrast, U� stops scaling below the agent size in
the system—∼ 1 μm here (Fig. 3D, green)—while �r from shear
and vortical responses scale weakly with wave number in small
scales, �r ∼ q−0.25 (Fig. 3D, blue and red). This slower scaling
of �r(q) reflects the relaxation of only one source of strain. Thus
these two techniques give different pictures of dynamics, DDM
combines many modes of relaxation while response functions
allow us to tease apart relaxation from many sources of stress
independently.

Response Functions Differentiate Modes of Cellular Contrac-
tility. We now explore whether our method can distinguish
different modes of actomyosin contractility in living cells. In
adherent cells, the actomyosin cytoskeleton is organized into
networks and bundles with highly stereotyped architecture
and dynamics (37). Transverse arcs are actomyosin bundles
formed near the cell periphery and oriented parallel to the cell
edge. Myosin activity continually drives the coalescence and
contraction of transverse arcs resulting in their continual inward
motion, a dynamic process known as retrograde flow (37, 38). In
contrast, ventral stress fibers are highly stable actomyosin bundles
anchored on each end by focal adhesions (37, 38). While both
architectures can coexist, broadly circular U2OS osteosarcoma
cells and elongated NIH 3T3 fibroblast cells predominantly
display transverse arcs and ventral stress fibers, respectively (Fig. 4
A and B). In each cell type, time-lapse imaging of fluorescently
labeled myosin is used to obtain displacement fields of the
actomyosin dynamics (Fig. 4 A and B, stress fibers gray, flow
field blue arrows).

The shear response EUES is then calculated for different lag
times (Fig. 4, ii) and as in Fig. 2E is split into one-dimensional
traces of the anisotropic UES,ansio (Fig. 4, iii) and isotropic UES,iso
(Fig. 4, iv) components. The most dramatic difference between
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Fig. 4. Utilizing response functions to differentiate mechanical response of the actomyosin cytoskeleton in living cells. (i) Micrographs of the actin fibers (gray)
overlaid with myosin displacement vectors (blue) for (A) transverse arcs (in a U2OS cell), (B) ventral stress fibers (in an NIH 3T3), and (C) regional stimulated
ventral stress fibers (NIH 3T3). The orange box in (C, i) indicates the region of optogenetic activation. (ii) Shear response EUES for the displacement fields shown in
(i). Streamlines indicate the direction of the response and color indicates the magnitude (see color bars). (iii and iv) One-dimensional traces of the anisotropic,
EUES,aniso (iii), and isotropic EUES,iso (iv), parts of the shear response shown in (ii) measured at lag times of � = 0 s (red) and � = 10 s (blue).

these architectures is in the isotropic shear response. In transverse
arcs, this response increases linearly as a function of distance
and does not diminish over time, reflecting long-range and
coherent retrograde flow (Fig. 4 A, ii and iv). The isotropic
shear response is entirely absent in ventral stress fibers reflecting
a lack of contractile dynamics (Fig. 4 B, ii and iv). In contrast
to the differences in the isotropic shear response, in both cases
the anisotropic shear response at � = 0 s is peaked around 1 μm
(Fig. 4 A and B, iii, red). This reflects a similar length scale
of maximal shear distortion. By � = 10 s the anisotropic shear
response in transverse arcs decays completely (Fig. 4 A, iii, blue).

This indicates that shear deformations in transverse arcs decor-
relate faster than the time scale �. In contrast, in ventral stress
fibers UES,ansio persists at � = 10 s (Fig. 4 B, iii, blue) reflecting
longer lived shear distortions. The disparity in anisotropic shear
response at later lag time reveals differences in local dissipation of
shear stress arising from differences in boundary conditions and
local mechanical properties.

Both ventral stress fibers and transverse arcs reflect steady-state
dynamics common in adherent cells. Perturbations around these
steady states can be queried via recently developed optogenetic
techniques. Regional activation of RhoA in NIH 3T3 cells drives
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increased local actomyosin contractility and induces flow in
adjacent ventral stress fibers (39). Using this previously published
data, we measure the shear response of ventral stress fibers prior
to (Fig. 4B) and during (Fig. 4C ) regional RhoA activation in
the orange box indicated in Fig. 4 C, i. Activation induces a
shear response qualitatively similar to transverse arcs but with
some important distinctions. The most notable similarity is that
upon optogenetic activation, ventral stress fibers exhibit a linearly
increasing isotropic shear response that is consistent over � = 10 s
but with a decreased magnitude (Fig. 4 C, iv). This underscores
that a spatial gradient of contractile stress is sufficient to induce
long-range coherent flows in ventral stress fibers (Fig. 4 C, iv).
Interestingly, the anisotropic shear response at short scales of
ventral stress fibers with and without regional activation are
qualitatively similar (Fig. 4 A–C, iii). In longer length scales,
however, while the anisotropic response decays to 0 in the case
without regional activation, the regional activation induces a far
field response that does not fully decay reflecting the departure
of the system from steady-state dynamics (Fig. 4 A–C, iii). This
deviation from the steady state is similar to what was observed in
the case of the active gel as divergence increased (Fig. 2E, solid
lines). The short and long-range behavior of UES,ansio over lag
times allow us to discern local mechanical properties and degree
of mechanical homeostasis in cellular actomyosin architectures.

Conclusions

Here, we have introduced a method that extends correlation
analysis to probe the full response function of active systems.
Traditional correlation analysis takes into account only the
position of each element of the field over which the correlation
is measured, averaging over field elements that may point in
different direction to produce radially symmetric correlation
functions. Here, we overcome this inherent dimensionality
reduction by constructing correlations in which we align the
correlation average with each field element in turn. By aligning
our correlations, we take into account the response of the field in
multiple dimensions and effectively measure a material response
function from data. While we focused here on the response of a
displacement field u to some derivative of itself, this method can
be applied more generally. In fact, we can apply the same method
to measure the response of any tensor field Eq to a meaningful
perturbative field Ep. Furthermore, while the systems considered
here are all two or quasi-two-dimensional, the method is not
limited to these dimensionalities. One can in principle apply
this method to any tensor fields Ep and Eq so long as they can be
accurately measured. We can thus extend the basic framework
presented here to gain insights into other many body systems
with complex dynamics such as high-order quantum systems.

To demonstrate the utility of this technique, we compared the
response of the displacement field in active actomyosin materials
to previously established methods. We found that the critical
length scale of the vorticity response in an active nematic, R∗� ,
is equal to the average vortex radius measured with traditional
analyses (7). We decomposed the shear response of an active
gel into anisotropic and isotropic parts and found that the
isotropic part captured the same contractions as the divergence of
the velocity field (30). Furthermore, our method enumerated a
transition from diffusive-like relaxation at small scales to ballistic-
like relaxation at large length scales in agreement with previous
analysis (35). In addition to these expected results, we also found
that the ratio of vortical to shear length scales presaged the onset
of contractility in active gels. This provides a window into stress
buildup and propagation and how it relates to the onset of
compressibility in contractile gels. The temporal relaxation of

shear responses allowed us to capture viscoelastic relaxation in
multiple materials. This enables future work to address how the
peculiarities of local driving affect long-range dissipation in active
system. Finally, we also demonstrated the utility of this method
to measure material properties of the actomyosin cortex in vivo.
This represents a powerful tool to query cell mechanics.

The specific measurements presented in this work are in many
ways simply the lowest-hanging fruit. A great deal of promise
remains to be unlocked by combining the analysis presented here
with specific experimental perturbations. By measuring response
functions over a range of conditions, one could calibrate the
method and allow for a truly quantitative understanding of
complex systems. In nematics alone, one could imagine using
such a procedure to detail the effect of substrate coupling,
filament length, or even active agent composition on mechanics
and dynamics. In cells, one could imagine genetically perturbing
an actin accessory protein and specifically understanding how the
mechanics of the network respond to that perturbation. Because
the method is not based on any specific physical model we can
apply it to these systems and many more, including those with
unknown mechanics. As such, we envision this method being of
great use from dynamic systems to cell biology.

Materials and Methods
Active Nematics and Gel Preparation. Nematic experiments were performed
as described previously (24). Gel data in Fig. 3A are from ref. 30. Briefly,
2 μm actin 10% labeled with tetramethylrhodamine-6-maleimide (TMR) was
polymerized in F-buffer [10 mM imidazole, 1 mM MgCl2, 50 mM KCl, 0.2 mM
egtazic acid (EGTA), pH 7.5] in the presence of 1 mM (gel) or 100 μM (nematic)
ATP. To minimize photobleaching, an oxygen scavenging system (4.5 mg/mL
glucose, 2.7 mg/mL glucose oxidase(cat#345486, Calbiochem, Billerica, MA),
17,000 units/mL catalase (cat #02071, Sigma, St. Louis, MO) and 0.5 vol.
% �-mercaptaethanol is added to the actin mixture. Then, 0.3% w% 400 cP
methylcellulose is added to this mixture to crowd actin filaments to the bottom
of the sample volume. Nematic samples also included 30 nM f-actin capping
protein to limit filament growth while gels were uncapped. Nematic samples
were driven by 100 nM synthetic tetrameric motors as described in ref. 40, while
gels were driven by 50 nM rabbit skeletal muscle Myosin II (30).

The sample was imaged on an Eclipse-Ti inverted microscope (Nikon, Melville,
NY) in confocal mode utilizing a spinning disk (CSU-X, Yokagawa Electric,
Musashino, Tokyo, Japan) and a CMOS camera (Zyla-4.2 USB 3; Andor, Belfast,
UK). Nematic experiments were imaged collecting one frame every 2 s, while
gels were imaged one frame every 5 s.

Flow Field Measurement. In nematics velocity fields were calculated using the
method of optical flow detailed in (41) using the Matlab code available at (https://
ps.is.mpg.de/code/secrets-of-optical-flow-code-for-various-methods) and the
“classic+nl-fast” method. These predictions were processed into proper units in
Matlab. Velocity fields in cells were determined using Quantitative Fluorescence
Speckle Microscopy, QFSM (42, 43). In QFSM, the otsu method was selected
for intensity threshing, and the alpha value is 0.01 for statistical selection of
speckles.

Response Function Measurement. The code utilized in this manuscript
(and sample data) are all found at https://github.com/Gardel-lab/Response
Function.git. In brief, gradients of the velocity fields E∇Eu are calculated using
localized polynomial fitting and finite element method for the fields measured
by the optical flow and QFSM respectively. The eigenvalues, �, of the strain
rate tensor, ES which is symmetric part of the E∇Eu, is calculated by solving the
characteristic equation |ES − �EI| = 0, and eigendirections are obtained by
plugging � in the systems of equation ES − �EI = 0 where EI is the identity
tensor. For the active nematic, the eigendirection associated with the positive
eigenvalue and for active gel and cell data the eigendirection associated with
the negative eigenvalue are chosen as the direction to set up the coordinate
system for ensemble averaging as described in ref. 17. The data measured
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close to the edge of the field of view is discarded to prevent error from optical
flow measurement to propagate to the measured response functions. E∇Eu and
its decomposed components, ES, E, and ED are measured over grid points with
spacing large enough to prevent oversampling the data. The correlation length
of these components in different systems is used to select the spacing; for
example, we chose the distance where the normalized autocorrelation functions
of vorticity or strain rate tensor drops to 0.5. In general, in the chaotic and
noisy system, the grid spacing should be smaller than grid spacing in highly
coherent systems.

Differential Dynamic Microscopy. To measure image structure function
D(Eq, �) at lag time � , the differential signal Id(Er, � , t) and its spatial Fourier
transform Id(Eq, � , t)are measured over time by subtracting two images recorded
at time t and t+ � , whereEr is the position vector in the image and Eq is the wave
vector in the Fourier space. Image structure function is measured as (9)

D(Eq, �) = 〈[Id(Eq, � , t)]
2
〉t , [2]

where 〈·〉t indicates average over time t. D(q, �) is the azimuthal average of
D(Eq, �) over Eq. D(q, �) for the system that exhibits plateau at long lag time is
fit to the following model

D(q, �) = A(q)[1− e−(�/�r)DDM ] + B(q), [3]

where A(q) is the amplitude, B(q) is the background, and the exponential term
is the model for the intermediate scattering function used previously (34).

Cell Culture. U2OS cells with NMIIA endogenously tagged with eGFP is a
generous gift from Dr. Jordan Beach (Loyola University Chicago). U2OS cells
were cultured in McCoy’s 5A Medium (Sigma-Aldrich) supplemented with 10%
FBS (Corning) and 2 mM L-glutamine (Invitrogen). NIH 3T3 (ATCC) were cultured
in DMEM (Mediatech) supplemented with 10% FBS (Corning) and 2 mM L-
glutamine (Invitrogen). Myosin was visualized by transfecting an mApple-RLC
(gift of Mike Davidson, University of Florida) plasmid.

Microscopy and Live-Cell Imaging. For the imaging of myosin dynamics in
U2OS cells, Airyscan imaging was performed on a Zeiss LSM 980 microscope
equipped with the Airyscan 2 detector. Images were acquired using the MPLX

SR-4X mode and processed by Zen Blue 3.0 software using the Airyscan
processing feature with default settings. During live-cell imaging, cells were
mounted on an imaging chamber (Chamlide) and maintained at 37◦C. For
live-cell imaging, cell medium was replaced with Dulbecco’s Modified Eagle
Medium (DMEM) without phenol red (Corning) supplemented with 10% FBS,
2 mM L-glutamine, 1% penicillin-streptomycin, 10 mM HEPES, and 30 μL/mL
Oxyrase (Oxyrase Inc.).

The data in Fig. 4 B and C appear in ref. 39, the NIH 3T3 cell was
imaged on an inverted Nikon Ti-E microscope (Nikon, Melville, NY) with a
Yokogawa CSU-X confocal scanhead (Yokogawa Electric, Tokyo, Japan) and
laser merge module containing 491-, 561-, and 642-nm laser lines (Spectral
Applied Research, Ontario, Canada). Images were collected on Zyla 4.2 sCMOS
Camera (Andor, Belfast, UK). Local recruitment using the optogenetic probe
(39) was performed using a 405-nm laser coupled to a Mosaic digital
micromirror device (Andor). Images were collected using a 60X 1.49 NA
ApoTIRF oil immersion objective (Nikon). All hardware was controlled using
the MetaMorph Automation and Image Analysis Software (Molecular Devices,
Sunnyvale, CA).

Data, Materials, and Software Availability. Code data have been deposited
in GitHub (44). Previously published data were used for this work (39).
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