Skip to main content
. 2023 Oct 15;101:106651. doi: 10.1016/j.ultsonch.2023.106651

Table 2.

ANOVA of the regression model for prediction of EY and DPM.

Source EY
DPM
SS df F-value p-value SS df F-value p-value
Model 616.72 9 308.35 < 0.0001 964.03 9 129.08 < 0.0001
X1 (L) 0.7626 1 3.43 0.1064 18.09 1 21.80 0.0023
X1 (Q) 129.51 1 582.77 < 0.0001 119.47 1 143.97 < 0.0001
X2 (L) 2.43 1 10.94 0.0130 7.72 1 9.31 0.0186
X2 (Q) 88.75 1 399.35 < 0.0001 451.41 1 543.96 < 0.0001
X3 (L) 170.20 1 765.88 < 0.0001 0.0055 1 0.0066 0.9373
X3 (Q) 169.43 1 762.42 < 0.0001 233.80 1 281.74 < 0.0001
X1.X2 0.2116 1 0.9522 0.3617 0.3025 1 0.3645 0.5651
X1.X3 7.54 1 33.91 0.0006 47.54 1 57.29 0.0001
X2.X3 3.37 1 15.15 0.0060 0.0025 1 0.0030 0.9578
Lack of fit 1.22 3 4.76 0.0829 2.98 3 1.40 0.3646
Pure Error 0.3403 4 2.83 4
Residual 1.56 7 5.81 7
Corr. Total 618.27 16 969.84 16
R2 0.9975 0.9940
R2Adj 0.9942 0.9863
R2Pred 0.9677 0.9463
CV % 1.44 6.00

L = linear terms; Q = quadratic terms; X1 = Amplitude (%); X2 = Time (min); X3 = Solvent-to-solid ratio (mL/g).