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Abstract

Artificial intelligence and machine learning techniques have progressed dramatically and become
powerful tools required to solve complicated tasks, such as computer vision, speech recognition,
and natural language processing. Since these techniques have provided promising and evident
results in these fields, they emerged as valuable methods for applications in human physiology
and healthcare. General physiological recordings are time-related expressions of bodily processes
associated with health or morbidity. Sequence classification, anomaly detection, decision making,
and future status prediction drive the learning algorithms to focus on the temporal pattern and
model the non-stationary dynamics of the human body. These practical requirements give birth to
the use of recurrent neural networks, which offer a tractable solution in dealing with physiological
time series and provide a way to understand complex time variations and dependencies. The
primary objective of this article is to provide an overview of current applications of recurrent
neural networks in the area of human physiology for automated prediction and diagnosis

within different fields. Lastly, we highlight some pathways of future recurrent neural network
developments for human physiology.

Index Terms—
Deep learning; human physiology; recurrent neural network; signal processing

. INTRODUCTION

MODERN artificial intelligence and machine learning techniques have significantly
impacted a wide range of applications, and such powerful learning tools have dramatically
improved results. Several ambitious goals have already been achieved: the early triumph of
AlphaGo from DeepMind and a recent version of OpenAl that beat the top human players
in Dota2 (a sophisticated video game)[1]. In terms of the existing achievements of machine
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learning, a natural question is raised: how can such an advanced technique serve human
health? One answer is deep learning-assisted biomedical image processing, which can adapt
Convolutional Neural Networks (CNNs) to analyze spatial information[2].

In another scenario, physiological recordings refer to sequential data rather than images.
Such data sets commonly have the following characteristics: (1). They refer to collective
electrical/mechanical signals representing physical variables of interest, such as electrical
activity produced by the brain or skeletal muscles; (2). These data reflect the status variation
of a subject/subjects in a given period of time; (3). They are naturally in the format

of time-related recordings (e.g., time series), and latent causality governs two (or more)
successive occurrences. In practice, detecting an event in real-time or the future is critical,
and the results might be sensitive to the temporal dynamics determined by physiological
conditions. Our literature survey found that most sensors used for signal acquisition were
non-invasive. For example, electrocardiography (ECG) or electroencephalogram (EEG)
signals were collected from electrodes attached to the skin. The data collection procedures
are patient-friendly and ubiquitous for practical healthcare systems. However, interpreting
these signals is not an easy task. The underlying complexity within the signals and actual
physiological mechanisms are generally not visible or easy to understand. Therefore, it is
challenging to predict outcomes solely based on a human expert’s experience since the
physiological interactions are multidimensional, highly nonlinear, stochastic, time-variant,
and patient-specific.

Artificial networks may offer solutions to the problems mentioned above. Neural networks
can mathematically describe the underlying relationship. The “Universal Approximation
Theorem” tells us that the neural network with one hidden layer can approximate a
particular class of functions, which are large enough to capture processes of practical
concern. In other words, all the members of the neural network family can approximate the
nonlinear characteristics of a given system and explore the relationship from the inputs and
corresponding labels, although this process is affected by many factors, such as network
structures and learning algorithms. Basic feed-forward neural networks (or deep neural
network, DNN) and convolutional neural networks have inherent limits in dealing with time
series. DNNs cannot model the system dynamics, which describes the transitions (or time-
dependencies) between states in a time sequence. Additionally, in most situations, samples
always have variant lengths, which are unfeasible for DNNs to process. The CNNSs are
good at finding local patterns of temporal sequences, but it’s hard to discover the long-term
dependency[3].

Besides the DNNs and CNNs, the Recurrent Neural Networks (RNNSs), another deep
learning architecture, are more suitable tools for physiological applications with sequential
data or signals. RNN presents a class of artificial neural networks, which possess many

of the qualities required for tackling the physiological problems: they possess both current
and past features of the temporal sequences, adapt to the long-term historical changes in

the data, store the past information to solve context-dependent tasks, and make predictions
simultaneously with existing observations. Although RNNs were typically used to deal with
sequential data like music or language, there have been attempts at applying RNNs to the
area of physiology.
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In computational physiology, designing a machine-learning algorithm aims to transform
electrical recordings from the human cardiovascular, nervous, muscular, and other systems
into computer computation in order to predict or identify events, monitor body activities,
and detect anomalies[4]. For example, the ECG signal analysis focuses on classifying
different types of heartbeat, thus assisting the cardiologist in achieving an accurate diagnosis
for the patient; the EEG signal is a critical measure to evaluate many human functions,
such as emotion and sleep qualities. It is also widely used to assess cerebral disorders,
such as seizures and stroke. All these modalities carry human body information to create
the solutions that transform healthcare delivery. As mentioned before, these recordings or
signals are commonly presented in sequential manners, and the RNNSs are thus successful
paradigms in modeling complex physiological processes.

For machine learning practitioners, another goal is to improve the model performance.
However, it is greatly constrained by specific conditions of physiological applications, such
as feature extraction, data structure, model implementation, and subject issues. In this
review, we first briefly introduce the RNN structures and highlight the model constructions
according to two types of labels. Meanwhile, regarding the data collection from human
subjects, we summarize the currently adopted validation strategies from a deep learning
perspective, and discuss how they could affect the performance in later sections. We also
present a variety of physiological applications with most representative studies and show
that the RNN-based models outperform the other types of architectures, such as support
vector machine (SVM) and CNN models. Furthermore, we summarize the existing issues in
this field and propose possible solutions for future work.

[I. RNN inGENERAL

RNN is a kind of network specifically designed for processing time dependent sequential
data. Given an input sequence, x = (x(%), x(1), .. x()), a basic RNN architecture maps the

input to a target sequence y = (%), y(1), ..y(T)) with a hidden layer, as shown in Fig.1. This
hidden layer aims to learn the state-wise time dependency, which is modeled as:

A+ — RNN Unit(h(’), x(’)) 0

where the RNN unit is a class of functions, which will be introduced later. Based on Eq.(1),
the RNN structure models the relationship between adjacent hidden states and thus has

the capability to process temporal information. This is the main difference between the
RNN and CNN. Moreover, the RNNs have many characteristics benefiting the physiological
activities and resultant multi-channel signals: (1) For the RNN models, the sequential
examples do not necessarily have the same length[5], [6]. This is another difference
between the RNN and CNN, because the CNNSs request all the input samples have the
same dimension;(2) the mapping process keeps the time consistency between the input and
output; (3) the th element x, could be multi-dimensional; (4) the hidden states described
by the recurrent units can be stacked as a deeper structure [7], [8]. In practice, the training
process and model performance are greatly affected by the construction of the RNN unit.
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A. Structures of the RNN unit
1) Elman RNN: The Elman RNN, which was named after Jeffrey Locke Elman, is the

most basic RNN unit (sometimes called “Vanilla RNN”, meaning that it doesn’t have any
extra features)[9]. The hidden state is calculated as:

W = 6,(Ux®D + Wh' =D +b,) @

where W, U are weights matrices, and b, is a bias term.

Elman RNN is one dense layer structure augmented by the inclusion of edges that span
adjacent time steps[3]. The nonlinearity is introduced by using the activation function ¢, to
transfer the hidden state dynamically.

2) Long-Shot Term Memory (LSTM): Compared with EIman RNN, LSTM contains
an external cell structure. It delivers the information of input states through the entire time
chain and forms a shortcut connection for the hidden states, as shown in Fig. 2. Since the
cell state (c) won’t be transferred to the next layer, it is also considered as a self-loop.
Moreover, in LSTM, three gate components control the information flow: input gate, output
gate, and forget gate. At each time step, the cell state updates itself by two actions: 1.
gathering new information from the current input and hidden state, and 2. choosing old
information from the past cell state.

The input feature x(*) and the previous hidden state A =1 are used to compute an
intermediate state 2" with an activation function oy This procedure is similar to that of
the Elman RNN (Eq.(2)). The state i can accumulate into the cell state &0 if the input
gate allows it. The cell state is controlled by the forget gate to drop irrelevant parts of the

previous cell. Meanwhile, the input gate and forget gate determine how much information is
chosen from the current and past time steps for updating the cell state. Moreover, the output

state 1) can be shut off by the output gate to limit the information passed to the next hidden
state. The cell state can also act as an extra input to these gating units, as shown in Fig. 2(b).

3) Gated Recurrent Unit(GRU): GRU is another successful RNN unit design, as
shown in Fig. 3 [5]. It contains two gating units: a reset gate and an update gate, as shown in
Fig.3. The reset gate determines how much information is removed from the previous hidden

state K’ = D) and generates a new state A" =1, Similar to EIman RNN (Eq.(2)), the input

feature x() and the new state " ~ ") are used to compute a intermediate state A" with an
activation function o,.

If the reset gate outputs zero, the unit only involves the information of current input x(*). To
calculate the hidden state ), the unit needs to select the meaningful information from the
intermediate state ") by an update gate. Meanwhile, to make the output a0 quickly react to
the previous state n =1 GRU also includes a shortcut connection, as delineated with blue
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lines in Fig. 3. The useful part of A =1 can also be controlled by the update gate, which
acts like a two-way switch and simultaneously controls both forget and output information.

In these three RNN units, the EIman RNN employs the simplest structure, and it was thus
widely applied in various physiological studies. However, training ElIman RNN would raise
issues known as exploding gradient and vanishing gradient with the first-order optimization
method (like Gradient Descent)[10]. Compared to the Elman unit, both LSTM and GRU
establish shortcut paths with gate components. The primary advantage of these two units is
that they efficiently address the gradient vanishing problem when the time lag is extremely
long[3]. Therefore, they have the capability of learning long-term dependency for time
sequences. Besides, the GRU uses fewer parameters than the LSTM and thus reduces the
computational time in the training and inference processes. In physiology, which kind of
RNN unit is the most appropriate for a given task is still an open question. We will offer
more discussion with physiological studies in Section V-B.

B. Bidirectional RNN

The previously discussed RNN computational graph (shown in Fig. 1) learns information
from the previous time steps, meaning that RNNSs are causal systems from a control theory
perspective. In some cases, the RNN also needs to model the temporal dependency from the
future to get better representations of the entire signal. Such a function can be conducted

by simply adding an extra backward path to form a bidirectional RNN, as shown in

Fig.4. The bidirectional RNN performs well on language-related tasks because the semantic
analysis requires the previous and future words or sounds. Intuitively, bidirectional RNNs
are not suitable for the physiological signal analysis, especially when online detection or
classification is desired, because the future input is unobserved. A feasible solution is to
specify a fixed size window (or buffer) around the current time step when the classification
results are highly sensitive to the upcoming input. In abnormal heartbeat detection and
emotion classification tasks, some studies attempted to use bidirectional RNNs, since the
future observation on physiological signals may give us more evidence for decision-making
at the current time point[11], [12], [7], [13].

[1l. Experivent besiech with RNN

In physiological applications, Supervised learning is commonly used because the expected
output (label) always exists. Besides, some Unsupervised learning techniques, such as
autoencoder and clustering, may also help the physiological studies, which will be
introduced in Section IV with examples. The experimental design depends on practical
requirements and special considerations, which are sometimes beyond the scope of computer
science or engineering. We will discuss the experiment design from two levels of view.

A. Model implementation

For model implementation, one should first analyze the data structure on hand. The
physiological signals, which are always used as input data, are time sequences. As shown
in Fig. 5(a) and (b), the annotated label structure would lead to two scenarios. Scenario |

is that a sequence sample is annotated with a sequential label, framed as a ‘Many-to-Many’
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problem, such as the study of sleep stage classification[14]. The model output was also a
sequence with the same length as the label sequence. Another scenario 11 is that a sequence
sample is annotated with a single label. For example, the ECG signal in a segment has only
one label[15], [16]. This scenario is also described as a ‘Many-to-One’ problem since the
considered output is a scalar value for each sequential input.

1) Model output construction: The RNN model structures have slight differences at
the final output part in these two scenarios. For scenario I, one can use the structure shown
in Fig.1, Fig.2(a), and Fig.4, since the output in these figures is also sequential. For scenario
11, there would be several ways to construct a fusion function (layer) to obtain the output, as
shown in Fig.5(d).

A. The easiest way to construct the output is to use the hidden state at the last step with one
or more dense layers. For example, to diagnose arrhythmia based on ECG signal, Oh et al.
fed the LSTM’s hidden state at last time step to 3-dense layers for final output[17]. Chang
et al. and Hofmann et al. also applied a similar configuration [18], [19]. For the bidirectional
RNNSs, one can concatenate the last hidden states of both forward and backward paths into a
signal vector, and then feed it into dense layers for final output, as introduced in the studies
of Lynn et al. and Supratak et a/[20], [21].

B. Another way of designing a fusion function is to employ an attention layer and then a
dense layer as the final output. [22], [11], [23], [14]. The attention layer is calculated by
a weighted sum of all the hidden state vectors from the RNN. A study from Shashikumar
et al. suggested that the attention mechanism could improve the accuracy of classifying
paroxysmal atrial fibrillation[11].

C. The third way of constructing the output also uses the information of all the hidden states.
They could be flattened first and concatenated into a 1-D vector, then fed to dense layer(s)
for the final output. For example, the studies reported by Yildirim and Liu er a/. applied such
a way for arrhythmia classification[24], [25], [26], [27]; Xing et al. also designed one dense
layer with all hidden states as input for emotion recognition from EEG[28].

There could be other designs for the fusion function, such as sparse projection on hidden
states[29] or averaging all the hidden states[30]. Method B and C may not be compatible
with variant length samples since the concatenated vector should have a uniform length.
Padding zeros might be a solution. However, more studies are needed to discuss the padding
effects.

2) Input construction: TThe input constructions of the two scenarios shown in Fig.5(a)
and (b) are also slightly different. In scenario I, the signals are manually divided into
consecutive chunks (or slices, epochs, segments) with clinical or other practical purposes,
as shown in Fig.5(a). To construct an input sequence, a feature extraction module might be
needed, which is also called ‘epoch processing block’ in the study of Phan ef a/[31]. This
module forms a vector representing each chunk’s information, and then vectors from all the
chunks connect into an input sequence, as shown in Fig.5(c).

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2024 October 05.
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In each chunk, there are several ways to design a feature extraction module: 1. Directly
flatten the chunk-wise data into a 1-D vector. The data lengths in all the chunks should be
the same. 2. Knowledge-based features. Such as the R-R interval of the ECG signal[32],
[33], [34]. 3. Handcraft features with engineering methods, including the statistic features.
For example, mean value, standard deviation, frequency-domain features, and spectral
features [35], [36], [27]. 4. Deep learning method to form a end-to-end system. For instance,
CNN-1D, autoencoder, or even lower level RNN[21], [14], [22].

The sequential data in scenario Il can also be sliced into chunks with sliding windows,

and then the designer can apply the feature extraction module in each window to form the
input sequence for RNN. The most straightforward design is that the window size is one
and skip the feature extraction. In this case, the raw signal or recording is directly fed into
the RNN as an input sequence, as introduced in [37]. Similar to scenario I, designers can
also use the handcrafted features with overlapped windows[38], [11]. One typical design
applies the Short-Time Fourier Transform (STFT) or Continuous Wavelet Transform (CWT)
on the signals to form a spectral image, as introduced in [18], [39], [38]. Such an image
composes a sequence of feature vectors. The CNN-1D layers can also be treated as a sliding
window, in which the filter size determines the window size and stride determines how large
two adjacent windows are overlapped[40], [41], [25], [17], [21]. More sophisticated designs
could combine the two ways: calculate the spectral image and then apply CNN-1D on each
frequency vector or CNN-2D on the spectral image[30], [42], [43].

Sliding windows can also serve the model design in scenario I. The chunks at a time

[r =1, 7, t+ 1] could use as an input sequence for the label at «, as suggested in [14]. The
feature extraction module is critical for constructing the input sequence for RNN model. It
can employ very flexible and complicated structures. The later sections will introduce more
about this module.

B. Subjectissue

Unlike other prevalent deep learning tasks, such as image classification or natural language
processing, the physiological application has a very peculiar issue related to the subjects
(persons, patients, participants, or users). One subject could offer more than one training
pair in data collection, and all the data samples may not be independent of each other.
Assigning of training, validation, and testing sets must consider the subject effect. Based
on our survey, Cross-subject (Inter-subject) prediction and Within-subject (Intra-subject)
prediction are commonly used strategies in physiological applications.

1) Cross-subject prediction: Based on the samples acquired from certain subjects,

it is desired for an RNN to model the universal pattern and predict the event of interest

on the unseen subjects. The common practice of examining the model generalization is
leave-one-subject-out, or k-fold subjects cross-validation, as shown in Fig 6(a). For example,
Joseph Futoma et a/. trained an RNN to detect sepsis on an unseen participant[44]. Chang
etal, Hou et al., and Shashikumar et a/. also conducted cross-subject experiments for the
ECG classification studies[18], [45], [11]. The basic assumption of such a design is that

the physiological information shared in the training group can benefit the testing group.
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Compared to the within-subject prediction, the cross-subject prediction is substantially
challenging because human characteristics are subject-specific, and inter-subject variability
can seriously degrade the performance[46].

Diagnosing an unseen patient from the experience of diagnosing former patients is attractive
for both clinical and technical investigators. To obtain robust RNNs, gathering data from
more subjects is helpful, although it is costly or sometimes infeasible. We will discuss this
issue in Section V-C.

2) Within-subject prediction: In some studies, the RNN-based models were trained by
some samples (or clinical attempts) collected from one/some subject(s) and validated/tested
by the samples collected from the same subject(s). The validation/testing pairs were unseen
for the model, but the subject(s) information was partially seen in the model. In practice,
there are mainly three ways to implement within-subject studies.

1. Mixed manner.: Each subject provided several samples, and the whole sample pool
was collected from multiple subjects. All the samples were mixed and randomly divided
into training, validation, and testing sets, as shown in Fig. 6(b). This manner assumed
that all the samples were independent and identically distributed regardless of the subject
effect. Some ECG classification studies adopted this manner[37], [24], [17], [26]. In the
applications of emation recognition with EEG signals, some studies also applied trial-
oriented” recognition, which was similar to mixed manner[30], [47], [28].

2. Subject-specific (subject-dependent) manner.: This manner tended to train a specific
model for just one subject due to the variability among the subjects[32]. The training

and validation sets were collected from the same subject for just one model training, and
the participant’s group thus required multiple models, as shown in Fig6(c). This manner
assumed that only the samples collected from the same subject share an identical pattern.
Some epileptic seizures prediction studies preferred to use this manner, such as the studies
reported in [27], [48].

3. Fine-tuning manner.: This manner attempted to balance the information of other
subjects and the testing subject. The model could be first trained by the data collected

from other subjects, and then fine-tuned by partitions data of the tested subject (also known
as target domain). Such a manner believed that the training set collected from training

group helped model the common patterns, but it has insufficient personalized information

of unseen subjects due to the interuser differences. To build up the blood glucose prediction
model, Dong et a/. used this manner to train a model on multiple patients and then fine-tuned
the model for one patient [49]. Similarly, Phan ef a/. fine-tuned SeqSleepNet[14] and
DeepSleepNet[21] models, which are well-developed RNN-based models in sleep stage
classification[31].

The strategy choice is greatly determined by the study purposes, practical requirement, data
structure, and physiological considerations. However, different strategies on the same dataset
could lead to significantly different results. We will discuss this issue in Section V-C.
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IV.  APPLICATIONS IN PHYSIOLOGY

The main machine learning task in physiology is to develop an automatic diagnostic or
patient status monitoring system. Analyzing the disorder, predicting the onset of a seizure,
classifying a subjects’ state, and even forecasting a possible disease from the time-related
signals are all desired tasks. RNNs are the top options for dealing with temporal information
and learning the relationship between the signals and the symptoms. As mentioned before,
such relationships are generally not well understood and are hard to evaluate with existing
human knowledge. The RNN framework endows physiological data analysis with a highly
flexible, inductive, nonlinear modeling ability. Based on our survey, we found that the RNNs
have already served human physiology from the top (brain) to the bottom (gait), as shown in
Fig.7.

The works cited in this review were found by use of aggregate research databases

including PubMed (MEDLINE), Springer Link, Google Scholar, and IEEE Xplore.
Keyword searches were conducted through these databases with search terms such as
‘recurrent neural network’, ‘long short-term memory’ and ‘gated recurrent unit’ (and their
acronyms) with the combination of ‘physiology’, ‘electrocardiogram’, ‘electromyography’,
‘electroencephalogram’, ‘photoplethysmogram’, ‘epileptic seizure’, ‘emotion recognition’,
‘sleep stage’, ‘blood glucose’ and “‘gait’ (and their acronyms). In the following sections, we
will summarize the majority of studies in ECG classification, emotion recognition, epileptic
seizure detection, sleep stage classification, and blood glucose level prediction with RNNS.
To present up-to-date studies in these applications, we focus on the papers published after
2015. Besides, we also summarize the studies in other physiological fields from the most
representative studies published after 2010. We mainly cover the human-subject studies that
applied RNN for analyzing the physiological time sequence. Additional studies, such as
biomedical image processing and document/tabular analysis, will not be included.

A. Electrocardiographic signal analysis

The ECG plays a significant role in the diagnosis of cardiovascular status[32]. It has become
a focus of investigations since it consists of unobtrusive, effective, non-invasive, low cost,
and widely available procedures using sensors (or electrodes). As a physiological measure,
the ECG represents the sequential cardiac electrical activities, such as depolarization and
repolarization of the cardiac muscle. When the deep learning models are applied, The

ECG signal could be directly fed into the network without any elaborate preprocessing[50].
Alternatively, knowledge-based features, such as morphology (or shape) features, heartbeat
interval (R-R interval), and heart rate, could also be used as input[45]. It is worth noticing
that all of these features are also variant over time, which offers us a way to detect events of
interest with RNNs.

The tasks of ECG classification are usually ‘Many to One’ problems, namely classifying
the clinical label based on the signal segment in each beat. Therefore, most studies would
consider segment-level classification. Some studies also attempted to model the dependency
between successive heartbeats, such as the studies reported by Shashikumar et a/., Chang

et al., and Mousavi et af18], [11], [54]. The detailed applications of RNNs in diagnosing
abnormalities or analyzing signals are listed in Table I.
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The LSTM is becoming more popular in recent years for ECG-based heart disorder
diagnosis, although the EIman RNN is still competitive due to its computational
efficiency[41]. Besides the RNN method, many studies attempted to apply CNN solely
for the ECG classification problems. Moreover, the CNN models were much deeper than
the proposed RNN models, as listed in Table I. Acharya et al. proposed an 11-layer deep
structure with one-dimensional CNN to detect coronary artery disease and achieved 95%
accuracy[55]. Kachuee et al. also attempted residual blocks with CNN-1D layers in a 13-
layer deep learning model, which obtained 93.4% accuracy on the MIT-BIH database[56].
Jun et al. designed also designed an 11-layer deep structure with 2-dimensional CNN layers
for arrhythmia classification on the same database, and the beat waveform was treated as
a gray-scale image for input construction[57]. They achieved 99.05% accuracy, which was
slightly lower than RNN-based models, such as the study presented by Hou et af45].

B. Emotion Recognition via RNN

Human emotions influence all aspects of our diurnal experience. Automatic emotion
recognition has been an active research field for decades from psychology, cognitive science,
and engineering. Physiological signals are strongly correlated with emotion and offer more
objective evidence, since emotion leaded physiological reactions are involuntary. Among all
the modalities, such as EEG, ECG, electrooculography (EOG), temperature, blood volume
pressure, electromyography (EMG), electrodermal activity(EDA), the EEG signal has drawn
particular attention as it comes directly from the human brain[58], [59], [47]. EEG signals
are recorded by electrodes placed on the participants’ scalp and reflect the electrical activity
of the brain signals. The EEG-based assessment method is superior in the neuroscience
domain due to its non-invasive ability to detect deep brain structures. The recent studies of
emotion recognition with EEG and RNN are listed in Table II.

Most analyses focused on the time-frequency representation for features extraction from
the EEG signals since some studies suggested the correlation between valence/arousal and
the frequency bands. For example, pictures and music-induced higher arousal associates
decreased alpha oscillatory power[60]. Considering these characteristics of EEG signals,
the power spectrum densities, continuous wavelet transformation analysis, or differential
entropy features offers promising features for investigating the patterns of brain activities
for specific emotion [61], [29], [62], [63], [47]. For the dataset SEED, DEAP, and other
10-20 system constructed EEG data, an additional concern is how to represent not only the
temporal dependency but also the spatial connection of the multi-channel signals. The EEG
components from different brain regions may also correlate with emotions. Collaborating
with RNN, some studies listed in Table. 1l attempted to model the spatially-adjacent
dependency according to the positions of electrodes. For example, the studies reported

in [47] mapped the multi-channel signals to 2-dimensional image sequences and further
extracted deep features by CNN layers, thus improving the accuracy compared with the
study in [30].

Although various approaches have been proposed for EEG-based emotion recognition,
most experimental results cannot be compared directly for different setups of experiments.
Recently, we have several publicly available emotional EEG datasets, but there is still
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a lack of standard protocol for evaluating the performance. For example, the studies of

Li, Youjun et al,, and Li, Xiang et al. employed the trial-oriented 5-fold cross-validation
(mixed manner) to implement their model[30], [47]. In contrast, Alhagry et al. and Yang

et al. trained the model in a subject-specific manner. Nevertheless, some studies compared
their performances with non-RNN methods under similar experiment setups. Li, Xiang

et al. proposed C-RNN architecture achieved better performance than the random forest
and support vector machine[30]. On both DEAP and SEED datasets, Li, Xiang et a/. also
suggested RNN with variational autoencoder outperformed support vector machine, random
forest, k-nearest neighbors, sample logistic regression, naive Bayes classifier, and DNN[66].

C. Epileptic Seizure Detection

Epilepsy is a chronic neurological disorder caused by abnormal excessive or synchronous
neuronal activities in the patient’s brain[68]. Based on the EEG recording, the study of the
brain activity and the neurodynamic behavior of epileptic seizures provides required clinical
diagnostic information. However, EEG analysis is time-consuming for the neurologist
through qualitative visual inspection of raw data. Current studies in automatically detecting
epileptic seizures have already utilized the merit of RNN, which helps to explore the
characteristics of EEG, as summarized in Table. Il1.

Almost all the studies in Table. 111 adopted the with-in subject strategy, leading to relatively
fair comparisons. Only the study carried out by Thodoroff ef a/. considered cross-subject
detection[69]. With a similar reason to the EEG-based emotion classification tasks, some
studies constructed handcraft features from time-frequency representations[69], [70], [27].
Alternatively, deep models, such as CNN and autoencoder, were also applied to learn the
lower-level features[48], [72].

On the CHB-MIT dataset, the model designed by Daoud et al. gave the state-of-art
performance (99.72% accuracy) when the CNN layers and pre-trained encoder were used

to extract the features[48]. Their model outperformed the CNN and DNN models. On the
Uni Bonn dataset, a state-of-art performance was achieved by directly feeding the reshaped
raw signal into RNN. The accuracy reached 100%[74], suggesting that the handcraft features
were not robust enough. Other studies also applied non-RNN-based methods on the same
dataset, but they did not exceed the best performance. For example, Acharya et al. conducted
a 13-layer deep CNN, and obtained 88.7% accuracy[77]. Lu and Triesch proposed a deep
CNN with residual structure and the system gave 99.0% accuracy[78].

D. Sleep Stage Classification

Sleep plays a vital role in human health. Abnormalities in sleep timing and circadian
rhythm are common comorbidities in numerous disorders, such as apnea, insomnia,

and narcolepsy[79]. Automatically monitoring the sleep stage would significantly benefit
the clinical research and practice for evaluating a subject’s neurocognitive performance.
Many studies have been trying to automate sleep stage scoring based on multi-channel
signals from electrodes. These signals are generally called polysomnogram (PSG),
typically consisting of EEG, EOG (electrooculogram), EMG, and ECG. Most sleep stage
classification problems could be described as ‘Many-to-Many’ problems?, since the labels
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were commonly in the sequential form synchronized with the PSG signals. Meanwhile,
as described in Fig.5(a), each signal chunk had one corresponding label annotated by the
human expertz.

The current studies for sleep staging are summarized in TABLE.IV. The RNN was
indispensable for this task when deep learning methods were used. Similar to the task of
emotion recognition, some studies for sleep staging used the frequency domain features

for constructing the input, such as the log-power spectrum, based on the frequency bands
of the rhythms of EEG signals. Meanwhile, according to the American Academy of

Sleep Medicine (AASM) standard, the five sleeping stages are highly characterized by

the frequency bands[86], [81]. Most of the studies applied a cross-subject strategy. For
example, Suparatak et a/. applied k-fold subjects cross-validation, and Phan et a/. used
leave-one-subject-out cross-validation[21], [23]. The DeepSleepNet developed by Supratak
et al. obtained higher overall accuracy than the non-RNN sparse autoencoder[87] and
CNN-based method[88]. Based on LSTM, Phan et a/. further improved the accuracy with
SeqSleepNet with learned features. They suggested that such a model worked better than the
CNN-only[88], [89], DNN-only, and regular machine learning methods, such as SVM and
random forest[38].

E. Blood glucose level prediction

Diabetes mellitus is a common public health issue, and the prevalence of diabetes diagnoses
has increased substantially over the past 30 years among adults in the U.S[90]. The culprit of
this metabolic disorder is insulin release or action, which leads to hyperglycemia. Managing
the blood glucose (BG) levels of a diabetic patient can benefit glycaemic control and reduce
costly complications[91].

Continuous subcutaneous glucose monitoring is becoming the most popular tool with a
micro-invasive sensor to measure BG, such as an adhesive patch. One primary task for
machine learning algorithms is to forecast abnormal changes in glucose concentration to
take preventive action in time and avoid life-threatening risks[92]. To implement this,
there are two types of inputs: using the past BG concentration only, or using the past

BG concentration and external factors, such as food, drug, insulin intake, and activity, as
shown in Table.V. The features are commonly extracted from physiological models when
the external factors were included as input modalities[91], [92]. All these features describe
the effects of carbohydrate, insulin, exercise, sleep, and glucose dynamics, and they are
characterized as glucose-related variables.

Predicting the value at a future step is traditionally an auto-regressive problem. When
RNN is applied, this problem could be re-formulated as a "Many-to-One” scenario. For
the prediction with multiple steps, such as predicting the BL in 15, 30, and 60 min,

one can construct the model output as a multi-dimensional vector[93], [94]. Most RNN-

1Some studies in this field also named such a scenario as the ‘Sequence-to-Sequence’ sleep staging problem, which has a similar name
with the well-known Seq2seq model[80]. For disambiguation, we use the term ‘Many-to-many’ to describe the scenario in Fig.5(a)

Some EEG or PSG studies named a signal slice in a specific window as ‘epoch’. However, in deep learning studies, ‘epoch’ usually
refers to the iterations that an entire dataset is used for training a model. For disambiguation, we use ‘chunk’ instead of ‘epoch’ to
represent the signal slice.
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based BL prediction studies have proven that the RNN models offered better performance
(lower errors) than the other methods, such as the autoregressive model and support vector
regression[92], [95], [94], indicating that RNN was more robust in searching the historical
information with sufficient non-linearities. Besides, one innovative design structured this
prediction problem into the seq2seq model adapting RNN-based autoencoder, as introduced
in the study of Foxet af95]. Their comparative studies suggested that the ‘Many-to-One’
structure (DeepMO) could not offer the best performance. Instead, the PolySegqMO
outperformed all other structures. More details could be found in Table.V.

A critical challenge for the BG studies is modeling the typical pattern among all the
subjects while considering the subject-specific characteristic. To address this issue, the
practitioners in BG prediction generally design the model with 2 (or more) divisions: one
learned the personalized pattern with different weights and biases, and the other one learned
the common dynamics by shared RNN[93], [92], [91]. Other studies also attempt to apply
the idea of fine-tuning manner, as shown in Fig. 6(c)[49], [94]. Glucose metabolism in

the human body is a long-term process. For example, the effect of insulin intake can be
present for more than ten hours, and measuring BGL variation demands days. Therefore, it
is challenging to obtain a large number of samples. Meanwhile, within-subject experiment
is the main strategy in the existing studies since the inter-patient variability makes it hard to
find a generic model. We will discuss more in Section V-C.

F.  Other applications

Besides the applications mentioned above, the RNN also exhibited its power in other
physiological fields. Singh et a/. attempted to classify automotive drivers’ stress levels
based on the Galvanic Skin Response and Photoplethysmography signals[98]. Their study
compared the traditional DNN and the ElIman RNN, and pointed out that the RNN was the
most optimal structure for stress level detection. Futoma et al. applied an LSTM combined
with the Multitask Gaussian Process to detect the onset of sepsis[44]. Mastorocostas et al.
designed a block-diagonal RNN, a modified version of the EIman RNN, to analyze lung
sounds[99]. Cheng et a/. used a deep LSTM to detect the obstruction of sleep apnea based
on ECG signals[100]. Su et a/. used ECG and PPG to predict blood pressure[34]. Their
study applied a res-RNN architecture with a residual connection similar to the ResNet
based on the CNNSs[101]. Liu et a/. involved historical blood pressure records, heart rate,
and temperature in predicting future blood pressure with LSTMs[102]. More importantly,
they used the subject’s profile as an extra input vector to address the cross-subject issue,
and we will discuss it in Section V-C3. Hussain et a/ investigated the preterm prediction
for pregnant women using Electrohysterography (EHG) technique [36]. Bahrami Rad et a/.
also used PSG to detect non-apneic and non-hypopneic arousals with 3-layers bidirectional
LSTM[103]. Yang et al. detected heartbeat anomalies based on heart sounds with a two-
layer GRU[35].

The EEG signals are also valuable measures for stroke detection and rehabilitation, and an
increasing number of studies attempted to analyze such a disease with RNNs. Choi et al.
designed a hybrid model with CNN and bidirectional LSTM for early stroke detection[104].
Fawaz et al. proposed a learnable Fast Fourier Transform method collaborating with LSTM
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RNN to classify stroke/non-stroke patients[105]. To identify post-stroke patients based on
EEG, Sansiagi et al. applied a 3-layer LSTM with discrete wavelet representations[106].

Another physiological application of RNN is the pain assessment, which is challenging

to complete in clinical practice. One method to objectively assess the pain level is to

detect the protective behaviors by wearable motion sensors and the surface EMG signals.
Based on these modalities, Wang et a/. applied a 3-layer LSTM model to identify the
patients with chronic lower back pain[107]; Li et a/. proposed a similar structure with

extra dense layers[108]; Yuan et a/. constructed an LSTM-based autoencoder to extract

the latent features, and then applied attention mechanism to the feature sequences[109].
Another physiological modality is functional near-infrared spectroscopy, which measures the
hemodynamic response in the brain. Rojas et a/. employed this modality and bidirectional
LSTM to classify thermal-induced pain perceptions[110].

Some studies have also attempted to use RNN in EMG signals analysis. These signals
reflect the muscular electrical activities and offer a widely adopted method for evaluating
the neuromuscular status and identifying body movement. Xia et a/. proposed an EMG-
based forearm movement estimation system with LSTM [43]. By analyzing the EMG
collected from seven upper body muscles, Bengoetxea et a/. identified different figure-eight
movements[111]. Wang et a/. classified the left-hand postures using LSTM [42]. Li et al.
built the relationship between EMG and stimulated muscular torque with a NARX strategy
[46].

Some physiological signals can also use for identification with the help of RNNs. Salloum et
al. and Lynn et al. used ECG signals to conduct biometric identification with RNN, and the
accuracies were more than 98% [20], [112]. Moreover, Zhang et a/. used ballistocardiogram
as input for a similar task[113]. The above studies all compared the accuracies between

GRU and LSTM and reported that there were no significant differences between these two
units. More discussion will be presented in Section V-B.

Recently, some studies are attempting to measure the swallowing-induced events with on-
neck sensors signals and RNN models. Mao et a/. applied a multi-layer EIman RNN to
track the hyoid bone movement during swallowing[114]. They then combined CNN-1D and
GRUs to identify the laryngeal vestibule status (opening or closure)[115]. Importantly, they
pointed out that the RNN-based model performed better than the CNN model. Khalifa et a/.
proposed a hybrid CNN-RNN model to detect the upper esophageal sphincter opening with
swallowing acceleration signals. The proposed model used a GRU-based RNN for modeling
time dependencies after time-localized feature extraction from raw signals using CNN[116],
[117].

Another critical physiological task is human gait analysis, as the data can hold information
about medical and neurodegenerative disorders. Zhao et al. applied LSTMs on force-
sensitive resistors signals to identify neurodegenerative diseases, such as Parkinson’s
disease, Huntington’s disease, and amyotrophic lateral sclerosis[118]. Zhen et a/. used
LSTM with accelerometer signals collected from the thigh, calf, and foot to identify swing
and stance phases in the gait circles[119]. GAO et al. proposed a structure that combined
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LSTM and 1D CNN to classify the abnormal gait with wearable inertial measurement
units[120]. Tortora et al. attempted to decode the gait patterns from EEG signals using
LSTM[121]. In this case, the input was the sequential features of EEG, and the labels are
swing or stance phase. The application of RNNs in human gait analysis still has a long way
to go in physiology since the related studies are relatively limited.

V. EXISTING ISSUES AND FUTURE WORK

Although many studies have reported using RNNs to solve a wide range of problems, as
introduced above, there remain several issues facing the further development of RNNs in
physiological applications.

A. Finding features for RNN models

1) Knowledge-based feature engineering: The principal idea of feature extraction is
selecting the meaningful components of sequential data to predict events of interest. These
features are supposed to be related to these events, and feature extraction requires external
knowledge. Involving this knowledge in the RNN model design is a natural methodology,
especially when some typical applications’ signal features have been previously explored.
For example, in the epilepsy detection studies, wavelet-based methods were prevalent

in constructing features from EEG signals, because wavelet transforms were extensively
studied and well established to analyze brain activity[70], [122]. The study by Schwab et a/.
aimed to classify cardiac arrhythmias based on ECG and manually extracted features from
engineering and clinical perspectives, such as the amplitude of R point and QRS duration

in the ECG waveform[22]. All these features were widely studied biomarkers for cardiac
disorders. They designed a 5-layer GRU or bidirectional LSTM with a Markov Model

and attention mechanism. Although it was considerably complicated, such a sophisticated
structure indeed provided state-of-the-art performance. All the previously reported studies
in features extraction will help the RNNs’ design, especially in ECG and EEG-related
tasks. However, seeking features might be intractable when the domain knowledge is
insufficient[123].

2) Finding features through deep RNNs: Besides extracting the features by human
knowledge, scholars were also aware of the merit in deep learning: it is possible to seek
features via the deep architecture itself. In computer vision, deep CNN architecture has been
historically successful by generating “feature maps” in intermediate layers. However, the
situations were more complicated in dealing with physiological data. If seeking features
from the raw data is desirable, increasing the model capacity may be needed. Chauhan

and Vig first attempted to feed raw electrocardiographic signals into a three-layer LSTM
RNN to conduct anomaly detection[124]. It was quite a deep structure in processing the
physiological temporal data. Qiu et a/. proposed a three-layer LSTM to remove the power
line interference in ECG, in which the input was also raw data[125].

The drawback of the raw signal input is the number of time steps through which the error
signal of RNNSs has to propagate[22]. The LSTM and GRU are specifically designed to
solve the long time dependency problems, and they are not hardware friendly due to the
difficulties in parallelized computation[126]. Therefore, the design of hardware accelerators
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is a path for future work. An alternative way is the modification of the entire deep RNN
structures to reduce the calculation of back-propagation through time, as introduced in the
next section.

3) Finding features through deep structures: From 2018, there was a tendency

to combine convolutional networks with RNNs (C-RNN) for physiological application[11],
[12], [41], [43]. Although the purpose of each network in these studies was different, the
deep structures were similar: the CNN layers aimed to extract the local features, and the
RNN connected the temporal relationship among these features. Shashikumar et a/. treated
the 1-D ECG signals as 2-D pictures by calculating the wavelet power spectrum[11]. Based
on the spectral “image”, they implemented a 5-layers CNN, at the top of which was a
one-layer bidirectional EIman RNN. Unlike Shashikumar’s work, Tan et a/. and Andrea et
al. used a 1-D CNN as the bottom layer to extract the features of 1-D signals[12]. Andrea

et al. also proposed a “siamese architecture” besides the C-RNN to improve accuracy. The
structure reported by Xiong ef a/. was more advanced: they applied the residual block

and the batch normalization techniques to cardiac arrhythmias detection with an EIman
RNNI[41]. These ideas are prevalent in image-related tasks and have been transferred to
physiological studies. In the above studies, the CNN layers provide short-term local features
and are easy to parallelize in computation. Additionally, when a convolutional layer is
introduced, the pooling technique is also applicable to reduce the signal length or time steps,
and the computation is therefore simplified. The studies of hybrid structures just started in
physiological applications, but they created new ideas in future studies.

B. Choice of RNN unit

Section I1-A introduced the Elman, LSTM, and GRU, and they are widely used units in most
physiological studies. The LSTM and GRU are famous structures to address the problem

of ‘gradient vanishing’, typically associated with the long-term training of EIman RNN.
Based on the existing studies shown in Section 1V, the best choices for building up the RNN
models are LSTM and GRU. However, we should explore more in future studies.

1) LSTM vs. GRU: Choosing between LSTM and GRU might be a hard question for
the model designer. The detailed comparison between these two units was presented in

[5]. Also, based on polyphonic music modeling and speech signal modeling, this study
suggested no concrete conclusion on which of the two units was better. In terms of
physiological studies, we can get similar results. Zhang et a/. conducted ballistocardiogram-
based biometric identification with two types of units and reported that LSTM and GRU
were not significantly different in accuracy[113]. Lynn suggested that GRU was slightly
better than LSTM with ECG signals[20]. Dong et a/. reported that LSTM and GRU
achieved similar performance for sleep stage classification[38]. Latif ef a/. conducted RNN-
based abnormal heartbeat detection with phonocardiography and reported that the accuracy
difference of GRU and LSTM was smaller than 1% [127].

Although GRU gave similar results with LSTM, it employs fewer parameters and thus is
computationally efficient compared to LSTM. Latif et a/. also reported that GRU took 35%
less run-time than Bi-directional LSTM while achieving a comparable result, suggesting
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that GRU was more suitable for deploying mobile or wearable devices with limited
hardware resources[127]. From the perspective of algorithm deployment, the GRU is more
competitive and hardware-friendly than LSTM.

2) The use of EIman RNN: ElIman RNN may still be valuable for future model design.
Although training EIman RNN is suffered by ‘gradient vanishing’ problem, we didn’t see

an absolute disappearance in current studies from Section IV. EIman RNN is simple and
computationally efficient, and we need to figure out how to address the ‘gradient vanishing’
problem. One way is reducing the length of input sequence with deep models (such as CNN)
at a lower level, as suggested by Xiong et al., Shashikumar ef al., and Zhang et al[11], [41],
[29]. The model proposed by Xiong et al. even outperformed other LSTM-based models
with the same dataset, as shown in Table. I. Mousavi also conducted a Seq2seq model with
CNN layers and bidirectional EIman RNN, and they achieved better performance for ECG
classification than the LSTM ones[54].

Compared to EIman RNN, LSTM and GRU have additive gating components. According to
the analysis carried out by Chung et al., these additions effectively create shortcut paths that
bypass multiple temporal steps[5]. For effectively training the EIman RNN, an alternative
way is to create the shortcut paths outside the recurrent loops. Several studies attempted to
investigate this idea. In atrial fibrillation detection, Shashikumar et a/. added a soft attention
layer on the top of ElIman RNN for the final output[11]. Another profound study was
proposed by Zhu et al. in 2020. They designed a dilated ElIman RNN structure with skipped
time-step connections on each successive layer and reduced the long-term dependency[94].
They also compared the Elman with LSTM and GRU, and suggested that the EIman gave
the best performance with significantly reduced parameters number. For the ‘Many-to-One’
scenario, methods B and C (Section I11-A) create the shortcuts outside recurrent units.
These structures may help the EIman RNN solve the vanished gradient problem since the
backpropagation-through-time is not the only way for weight updating.

3) Other choices: Although LSTM and GRU are widely used RNN units, they are not
the only choices for constructing the RNN models. There were several other unit types,
which were modified versions of existing units and showed promising results.

Quasi-Recurrent Neural Networks (Q-RNN, 2016)[128].: Q-RNN is a hybrid structure
inspired by LSTM. It combines CNN and LSTM, and enables parallel computation across
time-steps. Q-RNN achieved comparable results with LSTM on language modeling tasks.

Simple Recurrent Units (SRU, 2017) [129].: SRU holds the idea of cell states while only
using forget and reset gates. One improvement is replacing the matrix multiplication of

cell state with point-wise multiplication, making the unit computation parallelizable. SRU
achieved more robust performance than LSTM and Q-RNN but used less computational time
on various language processing tasks.

Independently Recurrent Neural Network (IndRNN, 2018) [130].: IndRNN is similar to
the Elman unit. In Eq.(2, the hidden state is updated by matrix multiplication, while IndRNN
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replaces matrix multiplication with point-wise multiplication (Hadamard product). INdRNN
got a higher accuracy on both image and language tasks.

Just Another NETwork (JANET, 2018) [131].: JANET only keeps the forget gate of
LSTM and removes all other gates. JANET outperformed the LSTM on MNIST and pM-
NIST databases. JANET was also applied to the MIT-BIH ECG database and achieved
89.4% accuracy under cross-subject classification. This performance is higher than the
study reported by Hou et a/,, who also conducted cross-subject classification with the same
dataset[45].

All these currently proposed units have shown promising performances with simplified
structures. They have not been broadly investigated in physiological applications, and
comparative results are still absent.

C. Subject effects

Section 111-B introduced the experiments that could employ either within-subject or cross-
subject strategies for model training. Meanwhile, in Section 1V, the comparisons of existing
methods are under the same strategy to avoid the impact of the subject issue. Although

this issue exists for all kinds of machine learning designs (e.g., DNN and CNN), it causes
obstacles for RNN development.

1) Performance comparison: Using inconsistent strategies stagnated side-by-side
comparisons among the studies. It is hard to design a better model structure if we cannot
measure the performance fairly. With the same datasets, performances can get changed by
the innovative model designs, and the strategies in the experiments. Some studies attempted
to compare the performance discrepancy under different strategies with RNN. Tan et a.
conducted both a mixed manner and an equivalent way of cross-subject prediction for ECG
classification, and accuracies were 99.85% and 95.76%, respectively[12]. For the same task,
Hou et al. also compared beats-based cross-validation (mixed manner) and record-based
cross-validation (cross-subject prediction), and the accuracies were 99.74% and 85.20%,
respectively[45]. In the EEG emotion recognition task, Li et a/. used both mixed manner
and leave-one-subject-out cross-validation, and the accuracies were 92.38% and 83.28%,
respectively[62]. Thodoroff ef al. employed both patient-specific and cross-patient settings
for seizure detection, and the sensitivities were 95-100% and 85%, respectively[69].

For even comparison, an ideal way is using a standard protocol for all the practitioners in

a specific field. Building up universal standard test datasets is challenging and requires
collaboration across organizations and disciplines. Fortunately, the effort is currently
ongoing, such as the dataset provided by Computing in Cardiology Challenge, in which

the testing set was strictly defined for all the participating groups[15], as shown in Table

I. Some research groups would also spontaneously use the same protocol, such as the
protocol proposed by Zheng et al. for EEG emaotion recognition[61], and leave-one-subject-
out cross-validation in pain level assessment[109]. With the evenly comparative results, we
can objectively evaluate the development and have a clear vision for future model design.
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Considering the subject effect in computational physiology, the deep learning practitioners
should clearly describe how they conduct the validation process. Our survey found that it

is challenging to compare some performances among published studies since sometimes the
types of validation were not clearly stated. Moreover, the comparative analysis should be
carefully carried out. Picking up the reported values from other studies is arbitrary because
they may not use the same strategy. Fortunately, some studies conducted comparison by
re-performing the methods proposed from the other ones under the same strategy. Based

on these investigations, we could see the advantages of the RNN model, as introduced in
Section V.

2) Practicability: Most pilot studies were in the prototype stage, and adopting a within-
subject strategy was for the proof of concept purpose. Although they suggested that the RNN
could achieve better results, we also need to consider whether the within-subject study is
practically feasible. The models trained under within-subject strategies must be re-trained (or
fine-tuned) with new training set for the unseen subjects. This is not typically an issue if

the devices have sufficient computational power. The problem is whether human experts are
indispensable for labeling new data. If the labels for unseen subjects can be automatically
obtained without human experts, personalized models are practically feasible. One example
is blood glucose prediction, in which monitoring devices could measure the glucose level
continuously. Therefore, it is efficient for the pre-trained models to capture the training pairs
for a new subject, and the inter-person variability issue could be addressed in practice.

If the labels are not easy to acquire and human experts are necessary for the labeling
process, off-line fine-tuning for a personalized model is the only choice. For an unseen
subject, the model tuning procedures will be constrained by many factors, such as the
availability of the human raters. Since within-subject studies have already achieved very
high performance, more studies should focus on the scalability of the personalized models.
In the future, we would like to see investigations that practically implement the within-
subject model for the unseen subjects at the inference stage, especially when the recordings
of unseen subjects were not collected or labeled before training the pre-trained model.
These studies would enlighten the way to make protocols of data collection, human experts
scheduling, inter/intra-rater reliability analysis, off-line tuning for the personalized model,
and model deployment for the unseen subjects.

3) Implementation of cross-subject prediction: Developing the physiological
system for unseen patients is the most nature circumstance. As introduced in Section

IV and V-C1, the accuracies of some studies under within-subjects classification tasks

have already achieved more than 90%, even approaching 100%. However, cross-subject
prediction accuracies stayed 80% ~ 90%. In the future, we should consider the hypothesis
that it is possible to predict one person’s status by other persons’ examples via RNN models.
The inter-patient variability will seriously affect the results when the cross-subject prediction
is conducted, but it does not suggest the impossibility of capturing the personalized pattern
based on training groups. For example, the state-of-the-art cross-subject performance has
reached 99.53% for ECG classification by using the Seq2seq model[54].
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We can imagine whether the human experts(raters) are ‘personalized’ or ‘user specific’
when labeling the data. However, this expert-level performance is only obtainable when the
studied cohort is large, i.e., hundreds of subjects or more [31], [91]. Although some datasets
were manually annotated and publicly available, such as MIT-BIH of ECG signals[16],
DEAP of EEG signals[58], more data is still needed to improve the model’s cross-subject
prediction generalization. Collecting more datasets for training is a solution, but it is
challenging due to practical constraints, such as time cost for labeling, monetary expense,
ethical review, and privacy problem.

The individual characteristics impede the model’s generalization across the patients, and
the samples may be conditionally identical distributed under different subjects. However,
rigorous mathematical or numerical analysis is absent, and it is unclear how the inter-
subject variability impacts the model’s generalization error bound. Meanwhile, we need

to investigate whether the input signals contain the class information and represent the
individual characteristics. Unsupervised learning methods, such as the autoencoder model,
may help us answer those questions by analyzing the latent space. A typical structure
involving unsupervised learning was proposed by Dong et a/. for blood glucose prediction,
in which a combined model with the K-mean method and RNN model was proposed (Clu-
RNN)[93]. The idea was that the input vectors collected from some subgroups might share
similar patterns. Moreover, Li et al. attempted to use the unsupervised learning method first
to search the sequence of the features for emotion recognition[66]. This method achieved the
best cross-subject accuracy for the SEED dataset compared with other studies.

In physiological applications, each patient could be characterized by external factors, such
as gender, age, weight, body mass index, medical history, and personal profile. Suppose the
model cannot capture the complete personalized information based on the input signals. In
that case, we can encode the external factors as an auxiliary input vector and involve them in
the model design. Liu ef a/. adopted such an idea in blood pressure prediction by embedding
a contextual information cue (personal profile), including age, gender, body mass index,
height, weight, and temperature[102]. In practice, the personal information is easy to achieve
and may help to improve the model’s performance for cross-subject prediction.

Data augmentation is a widely used way for improving the model generalization.
Augmentation is not readily accessible for sequential physiological input since there is no
way to augment the inputs from unseen subjects. If the latent factors, some mathematical
descriptions of training subjects, follow some distribution, would it be possible to model this
and sample it to get more training data? Generative models are good options. Such ideas
have already been successfully implemented in other fields, but more effort is needed in
processing the physiological sequences.

Another way to obtain more data is multi-task learning. We introduced that the emotion
recognition, seizure detection, and sleep stage classification tasks adopted EEG(PSG)
signals as inputs. Although they were collected from different domains and varied setups,
they may share common features. Joint datasets and multi-task learning could extract these
features. This method increases the number of subjects and achieves more robust features.
Additionally, some unsupervised learning methods, such as RNN-based autoencoder, allow
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involving more EEG datasets without any annotation. Multi-task learning may offer us new
solutions to improve the cross-subject prediction performance for the task of sub-domain
and ideas for other big-data-related physiological problems, such as transfer learning.

D. Other opportunities

- Ensemble model. There are so many ways of constructing RNN models, as
introduced in Section IV. Also, there are many choices for feature extraction,
hyperparameters setup, and the types of RNN units. By including different deep
learning architectures, the ensemble model partially addresses the problem of
searching for the optimal structure while improving robustness. This technique
is prevalent in many fields and has shown encouraging results. In physiological
tasks, only several studies attempted to implement this technique with RNNs,
such as the studies carried out by Schwab et a/. and Zihlmann et al. for ECG
classification[22], [39].

- Seg2seq model. In Section 111-A, we described the ”Many-to-Many” scenario, in
which both the input and output are sequences, and we also discussed the typical
way of model construction. Alternatively, the Seq2seq model is also suitable
for the "Many-to-Many” scenario[80]. This model is well-developed in natural
language processing, but it is not drawing enough attention in the physiological
area. Fox et al. borrowed the idea of the Seq2seq model and designed the
PolySegMO to predict the blood glucose[95]. Mousavi et al. adopted the
Seq2seq model to classify the sleep stages[83]. They also proposed a similar
structure for ECG classification and reached the best performance (shown in
Table. 1)[54]. Moreover, some advanced techniques accompanied by Seq2seq,
such as attention mechanism[132], transformer-based architectures[133], can
also be transferred to physiological applications.

- Generative model. As stated in Section V-C3, generative models may help for
data augmentation. Generative adversarial network (GAN) has mainly been
developed and applied to images or artificial audio generation[134], [135].
Recent studies have already attempted to generate EEG and ECG signals
with advanced techniques like Wasserstein GANs with gradient penalty [136],
[137]. Besides data augmentation, GANSs can also serve other physiological
tasks, such as anomaly detection with well-trained discriminators, signal
denoising, and signal synthesis/restoration for missing channel(s) of multiple-
sensor systems[138], [139]. Variational Autoencoder (VAE) is another kind
of generative model, which offers an alternative manner for describing the
distribution of given data in latent space[140]. This model could also generate
more physiological sequences, such as ECG generation reported by Kuznetsov
et al[141]. VAE may enlighten new studies in computational physiology, but
more investigations are still needed.
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VI. ConcLusion

This review provided a comprehensive overview of existing studies attempting to apply
RNNs in the field of human physiology. The RNN is particularly amenable for monitoring
and detecting various physiological states in real-time due to its capability of processing
time-dependent sequential data. Our survey revealed that RNNs have already been widely
studied in diverse healthcare applications. The modern neural networks and computational
power techniques have facilitated addressing health issues.
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Computational graph of RNN. o is the RNN output, and L presents the difference between

the RNN output and the desired output (target or label). L is commonly used for calculating
the loss function.
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LSTM recurrent neural network. The computational graph is shown in (a). The LSTM has
an extra pathway for the cell state. A recurrent unit of LSTM is shown in (b). The arrows in
blue represent the internal cell state.
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The unit structure of GRU.
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The general bidirectional RNN has two time flow paths. The variables a® and g™ present
the hidden state for the sub-RNN moving forward and backward, respectively.
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5.

The implementations of RNN models are determined by the label structure of each signal
sample. (a) shows a signal sequence with a sequential label. The general applied RNN could
be designed in (c). Sometimes a signal sequence could only have one annotated label, as
shown in (b), and the RNN could be designed in the form of (d). Although (c) and (d)

show one-layer unidirectional RNN, multiple stacked layers or bidirectional RNN are also
adoptable.
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Page 36

The experiment designs in computational physiology. (a)Cross-subject prediction; (b), (c),

and (d) describe three different strategies of within-subject prediction. (b): the mixed

manner; (c) patient-specific manner; (d) fine-tuning manner
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Fig. 7.
Representative applications of RNN in the human body for diagnosis and event detection.
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