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Abstract

Artificial intelligence and machine learning techniques have progressed dramatically and become 

powerful tools required to solve complicated tasks, such as computer vision, speech recognition, 

and natural language processing. Since these techniques have provided promising and evident 

results in these fields, they emerged as valuable methods for applications in human physiology 

and healthcare. General physiological recordings are time-related expressions of bodily processes 

associated with health or morbidity. Sequence classification, anomaly detection, decision making, 

and future status prediction drive the learning algorithms to focus on the temporal pattern and 

model the non-stationary dynamics of the human body. These practical requirements give birth to 

the use of recurrent neural networks, which offer a tractable solution in dealing with physiological 

time series and provide a way to understand complex time variations and dependencies. The 

primary objective of this article is to provide an overview of current applications of recurrent 

neural networks in the area of human physiology for automated prediction and diagnosis 

within different fields. Lastly, we highlight some pathways of future recurrent neural network 

developments for human physiology.

Index Terms—

Deep learning; human physiology; recurrent neural network; signal processing

I. INTRODUCTION

MODERN artificial intelligence and machine learning techniques have significantly 

impacted a wide range of applications, and such powerful learning tools have dramatically 

improved results. Several ambitious goals have already been achieved: the early triumph of 

AlphaGo from DeepMind and a recent version of OpenAI that beat the top human players 

in Dota2 (a sophisticated video game)[1]. In terms of the existing achievements of machine 
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learning, a natural question is raised: how can such an advanced technique serve human 

health? One answer is deep learning-assisted biomedical image processing, which can adapt 

Convolutional Neural Networks (CNNs) to analyze spatial information[2].

In another scenario, physiological recordings refer to sequential data rather than images. 

Such data sets commonly have the following characteristics: (1). They refer to collective 

electrical/mechanical signals representing physical variables of interest, such as electrical 

activity produced by the brain or skeletal muscles; (2). These data reflect the status variation 

of a subject/subjects in a given period of time; (3). They are naturally in the format 

of time-related recordings (e.g., time series), and latent causality governs two (or more) 

successive occurrences. In practice, detecting an event in real-time or the future is critical, 

and the results might be sensitive to the temporal dynamics determined by physiological 

conditions. Our literature survey found that most sensors used for signal acquisition were 

non-invasive. For example, electrocardiography (ECG) or electroencephalogram (EEG) 

signals were collected from electrodes attached to the skin. The data collection procedures 

are patient-friendly and ubiquitous for practical healthcare systems. However, interpreting 

these signals is not an easy task. The underlying complexity within the signals and actual 

physiological mechanisms are generally not visible or easy to understand. Therefore, it is 

challenging to predict outcomes solely based on a human expert’s experience since the 

physiological interactions are multidimensional, highly nonlinear, stochastic, time-variant, 

and patient-specific.

Artificial networks may offer solutions to the problems mentioned above. Neural networks 

can mathematically describe the underlying relationship. The “Universal Approximation 

Theorem” tells us that the neural network with one hidden layer can approximate a 

particular class of functions, which are large enough to capture processes of practical 

concern. In other words, all the members of the neural network family can approximate the 

nonlinear characteristics of a given system and explore the relationship from the inputs and 

corresponding labels, although this process is affected by many factors, such as network 

structures and learning algorithms. Basic feed-forward neural networks (or deep neural 

network, DNN) and convolutional neural networks have inherent limits in dealing with time 

series. DNNs cannot model the system dynamics, which describes the transitions (or time-

dependencies) between states in a time sequence. Additionally, in most situations, samples 

always have variant lengths, which are unfeasible for DNNs to process. The CNNs are 

good at finding local patterns of temporal sequences, but it’s hard to discover the long-term 

dependency[3].

Besides the DNNs and CNNs, the Recurrent Neural Networks (RNNs), another deep 

learning architecture, are more suitable tools for physiological applications with sequential 

data or signals. RNN presents a class of artificial neural networks, which possess many 

of the qualities required for tackling the physiological problems: they possess both current 

and past features of the temporal sequences, adapt to the long-term historical changes in 

the data, store the past information to solve context-dependent tasks, and make predictions 

simultaneously with existing observations. Although RNNs were typically used to deal with 

sequential data like music or language, there have been attempts at applying RNNs to the 

area of physiology.

Mao and Sejdić Page 2

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2024 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In computational physiology, designing a machine-learning algorithm aims to transform 

electrical recordings from the human cardiovascular, nervous, muscular, and other systems 

into computer computation in order to predict or identify events, monitor body activities, 

and detect anomalies[4]. For example, the ECG signal analysis focuses on classifying 

different types of heartbeat, thus assisting the cardiologist in achieving an accurate diagnosis 

for the patient; the EEG signal is a critical measure to evaluate many human functions, 

such as emotion and sleep qualities. It is also widely used to assess cerebral disorders, 

such as seizures and stroke. All these modalities carry human body information to create 

the solutions that transform healthcare delivery. As mentioned before, these recordings or 

signals are commonly presented in sequential manners, and the RNNs are thus successful 

paradigms in modeling complex physiological processes.

For machine learning practitioners, another goal is to improve the model performance. 

However, it is greatly constrained by specific conditions of physiological applications, such 

as feature extraction, data structure, model implementation, and subject issues. In this 

review, we first briefly introduce the RNN structures and highlight the model constructions 

according to two types of labels. Meanwhile, regarding the data collection from human 

subjects, we summarize the currently adopted validation strategies from a deep learning 

perspective, and discuss how they could affect the performance in later sections. We also 

present a variety of physiological applications with most representative studies and show 

that the RNN-based models outperform the other types of architectures, such as support 

vector machine (SVM) and CNN models. Furthermore, we summarize the existing issues in 

this field and propose possible solutions for future work.

II. RNN IN GENERAL

RNN is a kind of network specifically designed for processing time dependent sequential 

data. Given an input sequence, x = x 0 , x 1 , …x T , a basic RNN architecture maps the 

input to a target sequence y = y 0 , y 1 , …y T  with a hidden layer, as shown in Fig.1. This 

hidden layer aims to learn the state-wise time dependency, which is modeled as:

h t + 1 = RNN Unit h t , x t (1)

where the RNN unit is a class of functions, which will be introduced later. Based on Eq.(1), 

the RNN structure models the relationship between adjacent hidden states and thus has 

the capability to process temporal information. This is the main difference between the 

RNN and CNN. Moreover, the RNNs have many characteristics benefiting the physiological 

activities and resultant multi-channel signals: (1) For the RNN models, the sequential 

examples do not necessarily have the same length[5], [6]. This is another difference 

between the RNN and CNN, because the CNNs request all the input samples have the 

same dimension;(2) the mapping process keeps the time consistency between the input and 

output; (3) the ith element xi could be multi-dimensional; (4) the hidden states described 

by the recurrent units can be stacked as a deeper structure [7], [8]. In practice, the training 

process and model performance are greatly affected by the construction of the RNN unit.
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A. Structures of the RNN unit

1) Elman RNN: The Elman RNN, which was named after Jeffrey Locke Elman, is the 

most basic RNN unit (sometimes called “Vanilla RNN”, meaning that it doesn’t have any 

extra features)[9]. The hidden state is calculated as:

h t = σh Ux(t) + W h(t − 1) + bℎ (2)

where W , U are weights matrices, and bℎ is a bias term.

Elman RNN is one dense layer structure augmented by the inclusion of edges that span 

adjacent time steps[3]. The nonlinearity is introduced by using the activation function σh to 

transfer the hidden state dynamically.

2) Long-Shot Term Memory (LSTM): Compared with Elman RNN, LSTM contains 

an external cell structure. It delivers the information of input states through the entire time 

chain and forms a shortcut connection for the hidden states, as shown in Fig. 2. Since the 

cell state c  won’t be transferred to the next layer, it is also considered as a self-loop. 

Moreover, in LSTM, three gate components control the information flow: input gate, output 

gate, and forget gate. At each time step, the cell state updates itself by two actions: 1. 

gathering new information from the current input and hidden state, and 2. choosing old 

information from the past cell state.

The input feature x t  and the previous hidden state h t − 1  are used to compute an 

intermediate state h t  with an activation function σh. This procedure is similar to that of 

the Elman RNN (Eq.(2)). The state h t  can accumulate into the cell state c t , if the input 

gate allows it. The cell state is controlled by the forget gate to drop irrelevant parts of the 

previous cell. Meanwhile, the input gate and forget gate determine how much information is 

chosen from the current and past time steps for updating the cell state. Moreover, the output 

state h t  can be shut off by the output gate to limit the information passed to the next hidden 

state. The cell state can also act as an extra input to these gating units, as shown in Fig. 2(b).

3) Gated Recurrent Unit(GRU): GRU is another successful RNN unit design, as 

shown in Fig. 3 [5]. It contains two gating units: a reset gate and an update gate, as shown in 

Fig.3. The reset gate determines how much information is removed from the previous hidden 

state h t − 1  and generates a new state h t − 1 . Similar to Elman RNN (Eq.(2)), the input 

feature x t  and the new state h t − 1  are used to compute a intermediate state h t  with an 

activation function σh.

If the reset gate outputs zero, the unit only involves the information of current input x t . To 

calculate the hidden state h t , the unit needs to select the meaningful information from the 

intermediate state h t  by an update gate. Meanwhile, to make the output h t  quickly react to 

the previous state h t − 1 , GRU also includes a shortcut connection, as delineated with blue 
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lines in Fig. 3. The useful part of h t − 1  can also be controlled by the update gate, which 

acts like a two-way switch and simultaneously controls both forget and output information.

In these three RNN units, the Elman RNN employs the simplest structure, and it was thus 

widely applied in various physiological studies. However, training Elman RNN would raise 

issues known as exploding gradient and vanishing gradient with the first-order optimization 

method (like Gradient Descent)[10]. Compared to the Elman unit, both LSTM and GRU 

establish shortcut paths with gate components. The primary advantage of these two units is 

that they efficiently address the gradient vanishing problem when the time lag is extremely 

long[3]. Therefore, they have the capability of learning long-term dependency for time 

sequences. Besides, the GRU uses fewer parameters than the LSTM and thus reduces the 

computational time in the training and inference processes. In physiology, which kind of 

RNN unit is the most appropriate for a given task is still an open question. We will offer 

more discussion with physiological studies in Section V-B.

B. Bidirectional RNN

The previously discussed RNN computational graph (shown in Fig. 1) learns information 

from the previous time steps, meaning that RNNs are causal systems from a control theory 

perspective. In some cases, the RNN also needs to model the temporal dependency from the 

future to get better representations of the entire signal. Such a function can be conducted 

by simply adding an extra backward path to form a bidirectional RNN, as shown in 

Fig.4. The bidirectional RNN performs well on language-related tasks because the semantic 

analysis requires the previous and future words or sounds. Intuitively, bidirectional RNNs 

are not suitable for the physiological signal analysis, especially when online detection or 

classification is desired, because the future input is unobserved. A feasible solution is to 

specify a fixed size window (or buffer) around the current time step when the classification 

results are highly sensitive to the upcoming input. In abnormal heartbeat detection and 

emotion classification tasks, some studies attempted to use bidirectional RNNs, since the 

future observation on physiological signals may give us more evidence for decision-making 

at the current time point[11], [12], [7], [13].

III. EXPERIMENT DESIGN WITH RNN

In physiological applications, Supervised learning is commonly used because the expected 

output (label) always exists. Besides, some Unsupervised learning techniques, such as 

autoencoder and clustering, may also help the physiological studies, which will be 

introduced in Section IV with examples. The experimental design depends on practical 

requirements and special considerations, which are sometimes beyond the scope of computer 

science or engineering. We will discuss the experiment design from two levels of view.

A. Model implementation

For model implementation, one should first analyze the data structure on hand. The 

physiological signals, which are always used as input data, are time sequences. As shown 

in Fig. 5(a) and (b), the annotated label structure would lead to two scenarios. Scenario I 
is that a sequence sample is annotated with a sequential label, framed as a ‘Many-to-Many’ 
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problem, such as the study of sleep stage classification[14]. The model output was also a 

sequence with the same length as the label sequence. Another scenario II is that a sequence 

sample is annotated with a single label. For example, the ECG signal in a segment has only 

one label[15], [16]. This scenario is also described as a ‘Many-to-One’ problem since the 

considered output is a scalar value for each sequential input.

1) Model output construction: The RNN model structures have slight differences at 

the final output part in these two scenarios. For scenario I, one can use the structure shown 

in Fig.1, Fig.2(a), and Fig.4, since the output in these figures is also sequential. For scenario 

II, there would be several ways to construct a fusion function (layer) to obtain the output, as 

shown in Fig.5(d).

A. The easiest way to construct the output is to use the hidden state at the last step with one 

or more dense layers. For example, to diagnose arrhythmia based on ECG signal, Oh et al. 
fed the LSTM’s hidden state at last time step to 3-dense layers for final output[17]. Chang 

et al. and Hofmann et al. also applied a similar configuration [18], [19]. For the bidirectional 

RNNs, one can concatenate the last hidden states of both forward and backward paths into a 

signal vector, and then feed it into dense layers for final output, as introduced in the studies 

of Lynn et al. and Supratak et al.[20], [21].

B. Another way of designing a fusion function is to employ an attention layer and then a 

dense layer as the final output. [22], [11], [23], [14]. The attention layer is calculated by 

a weighted sum of all the hidden state vectors from the RNN. A study from Shashikumar 

et al. suggested that the attention mechanism could improve the accuracy of classifying 

paroxysmal atrial fibrillation[11].

C. The third way of constructing the output also uses the information of all the hidden states. 

They could be flattened first and concatenated into a 1-D vector, then fed to dense layer(s) 

for the final output. For example, the studies reported by Yildirim and Liu et al. applied such 

a way for arrhythmia classification[24], [25], [26], [27]; Xing et al. also designed one dense 

layer with all hidden states as input for emotion recognition from EEG[28].

There could be other designs for the fusion function, such as sparse projection on hidden 

states[29] or averaging all the hidden states[30]. Method B and C may not be compatible 

with variant length samples since the concatenated vector should have a uniform length. 

Padding zeros might be a solution. However, more studies are needed to discuss the padding 

effects.

2) Input construction: TThe input constructions of the two scenarios shown in Fig.5(a) 

and (b) are also slightly different. In scenario I, the signals are manually divided into 

consecutive chunks (or slices, epochs, segments) with clinical or other practical purposes, 

as shown in Fig.5(a). To construct an input sequence, a feature extraction module might be 

needed, which is also called ‘epoch processing block’ in the study of Phan et al.[31]. This 

module forms a vector representing each chunk’s information, and then vectors from all the 

chunks connect into an input sequence, as shown in Fig.5(c).
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In each chunk, there are several ways to design a feature extraction module: 1. Directly 

flatten the chunk-wise data into a 1-D vector. The data lengths in all the chunks should be 

the same. 2. Knowledge-based features. Such as the R-R interval of the ECG signal[32], 

[33], [34]. 3. Handcraft features with engineering methods, including the statistic features. 

For example, mean value, standard deviation, frequency-domain features, and spectral 

features [35], [36], [27]. 4. Deep learning method to form a end-to-end system. For instance, 

CNN-1D, autoencoder, or even lower level RNN[21], [14], [22].

The sequential data in scenario II can also be sliced into chunks with sliding windows, 

and then the designer can apply the feature extraction module in each window to form the 

input sequence for RNN. The most straightforward design is that the window size is one 

and skip the feature extraction. In this case, the raw signal or recording is directly fed into 

the RNN as an input sequence, as introduced in [37]. Similar to scenario I, designers can 

also use the handcrafted features with overlapped windows[38], [11]. One typical design 

applies the Short-Time Fourier Transform (STFT) or Continuous Wavelet Transform (CWT) 

on the signals to form a spectral image, as introduced in [18], [39], [38]. Such an image 

composes a sequence of feature vectors. The CNN-1D layers can also be treated as a sliding 

window, in which the filter size determines the window size and stride determines how large 

two adjacent windows are overlapped[40], [41], [25], [17], [21]. More sophisticated designs 

could combine the two ways: calculate the spectral image and then apply CNN-1D on each 

frequency vector or CNN-2D on the spectral image[30], [42], [43].

Sliding windows can also serve the model design in scenario I. The chunks at a time 

t − 1, t, t + 1  could use as an input sequence for the label at t, as suggested in [14]. The 

feature extraction module is critical for constructing the input sequence for RNN model. It 

can employ very flexible and complicated structures. The later sections will introduce more 

about this module.

B. Subject issue

Unlike other prevalent deep learning tasks, such as image classification or natural language 

processing, the physiological application has a very peculiar issue related to the subjects 

(persons, patients, participants, or users). One subject could offer more than one training 

pair in data collection, and all the data samples may not be independent of each other. 

Assigning of training, validation, and testing sets must consider the subject effect. Based 

on our survey, Cross-subject (Inter-subject) prediction and Within-subject (Intra-subject) 
prediction are commonly used strategies in physiological applications.

1) Cross-subject prediction: Based on the samples acquired from certain subjects, 

it is desired for an RNN to model the universal pattern and predict the event of interest 

on the unseen subjects. The common practice of examining the model generalization is 

leave-one-subject-out, or k-fold subjects cross-validation, as shown in Fig 6(a). For example, 

Joseph Futoma et al. trained an RNN to detect sepsis on an unseen participant[44]. Chang 

et al., Hou et al., and Shashikumar et al. also conducted cross-subject experiments for the 

ECG classification studies[18], [45], [11]. The basic assumption of such a design is that 

the physiological information shared in the training group can benefit the testing group. 
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Compared to the within-subject prediction, the cross-subject prediction is substantially 

challenging because human characteristics are subject-specific, and inter-subject variability 

can seriously degrade the performance[46].

Diagnosing an unseen patient from the experience of diagnosing former patients is attractive 

for both clinical and technical investigators. To obtain robust RNNs, gathering data from 

more subjects is helpful, although it is costly or sometimes infeasible. We will discuss this 

issue in Section V-C.

2) Within-subject prediction: In some studies, the RNN-based models were trained by 

some samples (or clinical attempts) collected from one/some subject(s) and validated/tested 

by the samples collected from the same subject(s). The validation/testing pairs were unseen 

for the model, but the subject(s) information was partially seen in the model. In practice, 

there are mainly three ways to implement within-subject studies.

1. Mixed manner.: Each subject provided several samples, and the whole sample pool 

was collected from multiple subjects. All the samples were mixed and randomly divided 

into training, validation, and testing sets, as shown in Fig. 6(b). This manner assumed 

that all the samples were independent and identically distributed regardless of the subject 

effect. Some ECG classification studies adopted this manner[37], [24], [17], [26]. In the 

applications of emotion recognition with EEG signals, some studies also applied ”trial-

oriented” recognition, which was similar to mixed manner[30], [47], [28].

2. Subject-specific (subject-dependent) manner.: This manner tended to train a specific 

model for just one subject due to the variability among the subjects[32]. The training 

and validation sets were collected from the same subject for just one model training, and 

the participant’s group thus required multiple models, as shown in Fig6(c). This manner 

assumed that only the samples collected from the same subject share an identical pattern. 

Some epileptic seizures prediction studies preferred to use this manner, such as the studies 

reported in [27], [48].

3. Fine-tuning manner.: This manner attempted to balance the information of other 

subjects and the testing subject. The model could be first trained by the data collected 

from other subjects, and then fine-tuned by partitions data of the tested subject (also known 

as target domain). Such a manner believed that the training set collected from training 

group helped model the common patterns, but it has insufficient personalized information 

of unseen subjects due to the interuser differences. To build up the blood glucose prediction 

model, Dong et al. used this manner to train a model on multiple patients and then fine-tuned 

the model for one patient [49]. Similarly, Phan et al. fine-tuned SeqSleepNet[14] and 

DeepSleepNet[21] models, which are well-developed RNN-based models in sleep stage 

classification[31].

The strategy choice is greatly determined by the study purposes, practical requirement, data 

structure, and physiological considerations. However, different strategies on the same dataset 

could lead to significantly different results. We will discuss this issue in Section V-C.
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IV. APPLICATIONS IN PHYSIOLOGY

The main machine learning task in physiology is to develop an automatic diagnostic or 

patient status monitoring system. Analyzing the disorder, predicting the onset of a seizure, 

classifying a subjects’ state, and even forecasting a possible disease from the time-related 

signals are all desired tasks. RNNs are the top options for dealing with temporal information 

and learning the relationship between the signals and the symptoms. As mentioned before, 

such relationships are generally not well understood and are hard to evaluate with existing 

human knowledge. The RNN framework endows physiological data analysis with a highly 

flexible, inductive, nonlinear modeling ability. Based on our survey, we found that the RNNs 

have already served human physiology from the top (brain) to the bottom (gait), as shown in 

Fig.7.

The works cited in this review were found by use of aggregate research databases 

including PubMed (MEDLINE), Springer Link, Google Scholar, and IEEE Xplore. 

Keyword searches were conducted through these databases with search terms such as 

‘recurrent neural network’, ‘long short-term memory’ and ‘gated recurrent unit’ (and their 

acronyms) with the combination of ‘physiology’, ‘electrocardiogram’, ‘electromyography’, 

‘electroencephalogram’, ‘photoplethysmogram’, ‘epileptic seizure’, ‘emotion recognition’, 

‘sleep stage’, ‘blood glucose’ and ‘gait’ (and their acronyms). In the following sections, we 

will summarize the majority of studies in ECG classification, emotion recognition, epileptic 

seizure detection, sleep stage classification, and blood glucose level prediction with RNNs. 

To present up-to-date studies in these applications, we focus on the papers published after 

2015. Besides, we also summarize the studies in other physiological fields from the most 

representative studies published after 2010. We mainly cover the human-subject studies that 

applied RNN for analyzing the physiological time sequence. Additional studies, such as 

biomedical image processing and document/tabular analysis, will not be included.

A. Electrocardiographic signal analysis

The ECG plays a significant role in the diagnosis of cardiovascular status[32]. It has become 

a focus of investigations since it consists of unobtrusive, effective, non-invasive, low cost, 

and widely available procedures using sensors (or electrodes). As a physiological measure, 

the ECG represents the sequential cardiac electrical activities, such as depolarization and 

repolarization of the cardiac muscle. When the deep learning models are applied, The 

ECG signal could be directly fed into the network without any elaborate preprocessing[50]. 

Alternatively, knowledge-based features, such as morphology (or shape) features, heartbeat 

interval (R-R interval), and heart rate, could also be used as input[45]. It is worth noticing 

that all of these features are also variant over time, which offers us a way to detect events of 

interest with RNNs.

The tasks of ECG classification are usually ‘Many to One’ problems, namely classifying 

the clinical label based on the signal segment in each beat. Therefore, most studies would 

consider segment-level classification. Some studies also attempted to model the dependency 

between successive heartbeats, such as the studies reported by Shashikumar et al., Chang 

et al., and Mousavi et al[18], [11], [54]. The detailed applications of RNNs in diagnosing 

abnormalities or analyzing signals are listed in Table I.
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The LSTM is becoming more popular in recent years for ECG-based heart disorder 

diagnosis, although the Elman RNN is still competitive due to its computational 

efficiency[41]. Besides the RNN method, many studies attempted to apply CNN solely 

for the ECG classification problems. Moreover, the CNN models were much deeper than 

the proposed RNN models, as listed in Table I. Acharya et al. proposed an 11-layer deep 

structure with one-dimensional CNN to detect coronary artery disease and achieved 95% 

accuracy[55]. Kachuee et al. also attempted residual blocks with CNN-1D layers in a 13-

layer deep learning model, which obtained 93.4% accuracy on the MIT-BIH database[56]. 

Jun et al. designed also designed an 11-layer deep structure with 2-dimensional CNN layers 

for arrhythmia classification on the same database, and the beat waveform was treated as 

a gray-scale image for input construction[57]. They achieved 99.05% accuracy, which was 

slightly lower than RNN-based models, such as the study presented by Hou et al[45].

B. Emotion Recognition via RNN

Human emotions influence all aspects of our diurnal experience. Automatic emotion 

recognition has been an active research field for decades from psychology, cognitive science, 

and engineering. Physiological signals are strongly correlated with emotion and offer more 

objective evidence, since emotion leaded physiological reactions are involuntary. Among all 

the modalities, such as EEG, ECG, electrooculography (EOG), temperature, blood volume 

pressure, electromyography (EMG), electrodermal activity(EDA), the EEG signal has drawn 

particular attention as it comes directly from the human brain[58], [59], [47]. EEG signals 

are recorded by electrodes placed on the participants’ scalp and reflect the electrical activity 

of the brain signals. The EEG-based assessment method is superior in the neuroscience 

domain due to its non-invasive ability to detect deep brain structures. The recent studies of 

emotion recognition with EEG and RNN are listed in Table II.

Most analyses focused on the time-frequency representation for features extraction from 

the EEG signals since some studies suggested the correlation between valence/arousal and 

the frequency bands. For example, pictures and music-induced higher arousal associates 

decreased alpha oscillatory power[60]. Considering these characteristics of EEG signals, 

the power spectrum densities, continuous wavelet transformation analysis, or differential 

entropy features offers promising features for investigating the patterns of brain activities 

for specific emotion [61], [29], [62], [63], [47]. For the dataset SEED, DEAP, and other 

10–20 system constructed EEG data, an additional concern is how to represent not only the 

temporal dependency but also the spatial connection of the multi-channel signals. The EEG 

components from different brain regions may also correlate with emotions. Collaborating 

with RNN, some studies listed in Table. II attempted to model the spatially-adjacent 

dependency according to the positions of electrodes. For example, the studies reported 

in [47] mapped the multi-channel signals to 2-dimensional image sequences and further 

extracted deep features by CNN layers, thus improving the accuracy compared with the 

study in [30].

Although various approaches have been proposed for EEG-based emotion recognition, 

most experimental results cannot be compared directly for different setups of experiments. 

Recently, we have several publicly available emotional EEG datasets, but there is still 
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a lack of standard protocol for evaluating the performance. For example, the studies of 

Li, Youjun et al., and Li, Xiang et al. employed the trial-oriented 5-fold cross-validation 

(mixed manner) to implement their model[30], [47]. In contrast, Alhagry et al. and Yang 

et al. trained the model in a subject-specific manner. Nevertheless, some studies compared 

their performances with non-RNN methods under similar experiment setups. Li, Xiang 

et al. proposed C-RNN architecture achieved better performance than the random forest 

and support vector machine[30]. On both DEAP and SEED datasets, Li, Xiang et al. also 

suggested RNN with variational autoencoder outperformed support vector machine, random 

forest, k-nearest neighbors, sample logistic regression, naive Bayes classifier, and DNN[66].

C. Epileptic Seizure Detection

Epilepsy is a chronic neurological disorder caused by abnormal excessive or synchronous 

neuronal activities in the patient’s brain[68]. Based on the EEG recording, the study of the 

brain activity and the neurodynamic behavior of epileptic seizures provides required clinical 

diagnostic information. However, EEG analysis is time-consuming for the neurologist 

through qualitative visual inspection of raw data. Current studies in automatically detecting 

epileptic seizures have already utilized the merit of RNN, which helps to explore the 

characteristics of EEG, as summarized in Table. III.

Almost all the studies in Table. III adopted the with-in subject strategy, leading to relatively 

fair comparisons. Only the study carried out by Thodoroff et al. considered cross-subject 

detection[69]. With a similar reason to the EEG-based emotion classification tasks, some 

studies constructed handcraft features from time-frequency representations[69], [70], [27]. 

Alternatively, deep models, such as CNN and autoencoder, were also applied to learn the 

lower-level features[48], [72].

On the CHB-MIT dataset, the model designed by Daoud et al. gave the state-of-art 

performance (99.72% accuracy) when the CNN layers and pre-trained encoder were used 

to extract the features[48]. Their model outperformed the CNN and DNN models. On the 

Uni Bonn dataset, a state-of-art performance was achieved by directly feeding the reshaped 

raw signal into RNN. The accuracy reached 100%[74], suggesting that the handcraft features 

were not robust enough. Other studies also applied non-RNN-based methods on the same 

dataset, but they did not exceed the best performance. For example, Acharya et al. conducted 

a 13-layer deep CNN, and obtained 88.7% accuracy[77]. Lu and Triesch proposed a deep 

CNN with residual structure and the system gave 99.0% accuracy[78].

D. Sleep Stage Classification

Sleep plays a vital role in human health. Abnormalities in sleep timing and circadian 

rhythm are common comorbidities in numerous disorders, such as apnea, insomnia, 

and narcolepsy[79]. Automatically monitoring the sleep stage would significantly benefit 

the clinical research and practice for evaluating a subject’s neurocognitive performance. 

Many studies have been trying to automate sleep stage scoring based on multi-channel 

signals from electrodes. These signals are generally called polysomnogram (PSG), 

typically consisting of EEG, EOG (electrooculogram), EMG, and ECG. Most sleep stage 

classification problems could be described as ‘Many-to-Many’ problems1, since the labels 
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were commonly in the sequential form synchronized with the PSG signals. Meanwhile, 

as described in Fig.5(a), each signal chunk had one corresponding label annotated by the 

human expert2.

The current studies for sleep staging are summarized in TABLE.IV. The RNN was 

indispensable for this task when deep learning methods were used. Similar to the task of 

emotion recognition, some studies for sleep staging used the frequency domain features 

for constructing the input, such as the log-power spectrum, based on the frequency bands 

of the rhythms of EEG signals. Meanwhile, according to the American Academy of 

Sleep Medicine (AASM) standard, the five sleeping stages are highly characterized by 

the frequency bands[86], [81]. Most of the studies applied a cross-subject strategy. For 

example, Suparatak et al. applied k-fold subjects cross-validation, and Phan et al. used 

leave-one-subject-out cross-validation[21], [23]. The DeepSleepNet developed by Supratak 

et al. obtained higher overall accuracy than the non-RNN sparse autoencoder[87] and 

CNN-based method[88]. Based on LSTM, Phan et al. further improved the accuracy with 

SeqSleepNet with learned features. They suggested that such a model worked better than the 

CNN-only[88], [89], DNN-only, and regular machine learning methods, such as SVM and 

random forest[38].

E. Blood glucose level prediction

Diabetes mellitus is a common public health issue, and the prevalence of diabetes diagnoses 

has increased substantially over the past 30 years among adults in the U.S[90]. The culprit of 

this metabolic disorder is insulin release or action, which leads to hyperglycemia. Managing 

the blood glucose (BG) levels of a diabetic patient can benefit glycaemic control and reduce 

costly complications[91].

Continuous subcutaneous glucose monitoring is becoming the most popular tool with a 

micro-invasive sensor to measure BG, such as an adhesive patch. One primary task for 

machine learning algorithms is to forecast abnormal changes in glucose concentration to 

take preventive action in time and avoid life-threatening risks[92]. To implement this, 

there are two types of inputs: using the past BG concentration only, or using the past 

BG concentration and external factors, such as food, drug, insulin intake, and activity, as 

shown in Table.V. The features are commonly extracted from physiological models when 

the external factors were included as input modalities[91], [92]. All these features describe 

the effects of carbohydrate, insulin, exercise, sleep, and glucose dynamics, and they are 

characterized as glucose-related variables.

Predicting the value at a future step is traditionally an auto-regressive problem. When 

RNN is applied, this problem could be re-formulated as a ”Many-to-One” scenario. For 

the prediction with multiple steps, such as predicting the BL in 15, 30, and 60 min, 

one can construct the model output as a multi-dimensional vector[93], [94]. Most RNN-

1Some studies in this field also named such a scenario as the ‘Sequence-to-Sequence’ sleep staging problem, which has a similar name 
with the well-known Seq2seq model[80]. For disambiguation, we use the term ‘Many-to-many’ to describe the scenario in Fig.5(a)
2Some EEG or PSG studies named a signal slice in a specific window as ‘epoch’. However, in deep learning studies, ‘epoch’ usually 
refers to the iterations that an entire dataset is used for training a model. For disambiguation, we use ‘chunk’ instead of ‘epoch’ to 
represent the signal slice.
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based BL prediction studies have proven that the RNN models offered better performance 

(lower errors) than the other methods, such as the autoregressive model and support vector 

regression[92], [95], [94], indicating that RNN was more robust in searching the historical 

information with sufficient non-linearities. Besides, one innovative design structured this 

prediction problem into the seq2seq model adapting RNN-based autoencoder, as introduced 

in the study of Foxet al[95]. Their comparative studies suggested that the ‘Many-to-One’ 

structure (DeepMO) could not offer the best performance. Instead, the PolySeqMO 
outperformed all other structures. More details could be found in Table.V.

A critical challenge for the BG studies is modeling the typical pattern among all the 

subjects while considering the subject-specific characteristic. To address this issue, the 

practitioners in BG prediction generally design the model with 2 (or more) divisions: one 

learned the personalized pattern with different weights and biases, and the other one learned 

the common dynamics by shared RNN[93], [92], [91]. Other studies also attempt to apply 

the idea of fine-tuning manner, as shown in Fig. 6(c)[49], [94]. Glucose metabolism in 

the human body is a long-term process. For example, the effect of insulin intake can be 

present for more than ten hours, and measuring BGL variation demands days. Therefore, it 

is challenging to obtain a large number of samples. Meanwhile, within-subject experiment 

is the main strategy in the existing studies since the inter-patient variability makes it hard to 

find a generic model. We will discuss more in Section V-C.

F. Other applications

Besides the applications mentioned above, the RNN also exhibited its power in other 

physiological fields. Singh et al. attempted to classify automotive drivers’ stress levels 

based on the Galvanic Skin Response and Photoplethysmography signals[98]. Their study 

compared the traditional DNN and the Elman RNN, and pointed out that the RNN was the 

most optimal structure for stress level detection. Futoma et al. applied an LSTM combined 

with the Multitask Gaussian Process to detect the onset of sepsis[44]. Mastorocostas et al. 
designed a block-diagonal RNN, a modified version of the Elman RNN, to analyze lung 

sounds[99]. Cheng et al. used a deep LSTM to detect the obstruction of sleep apnea based 

on ECG signals[100]. Su et al. used ECG and PPG to predict blood pressure[34]. Their 

study applied a res-RNN architecture with a residual connection similar to the ResNet 

based on the CNNs[101]. Liu et al. involved historical blood pressure records, heart rate, 

and temperature in predicting future blood pressure with LSTMs[102]. More importantly, 

they used the subject’s profile as an extra input vector to address the cross-subject issue, 

and we will discuss it in Section V-C3. Hussain et al investigated the preterm prediction 

for pregnant women using Electrohysterography (EHG) technique [36]. Bahrami Rad et al. 
also used PSG to detect non-apneic and non-hypopneic arousals with 3-layers bidirectional 

LSTM[103]. Yang et al. detected heartbeat anomalies based on heart sounds with a two-

layer GRU[35].

The EEG signals are also valuable measures for stroke detection and rehabilitation, and an 

increasing number of studies attempted to analyze such a disease with RNNs. Choi et al. 
designed a hybrid model with CNN and bidirectional LSTM for early stroke detection[104]. 

Fawaz et al. proposed a learnable Fast Fourier Transform method collaborating with LSTM 
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RNN to classify stroke/non-stroke patients[105]. To identify post-stroke patients based on 

EEG, Sansiagi et al. applied a 3-layer LSTM with discrete wavelet representations[106].

Another physiological application of RNN is the pain assessment, which is challenging 

to complete in clinical practice. One method to objectively assess the pain level is to 

detect the protective behaviors by wearable motion sensors and the surface EMG signals. 

Based on these modalities, Wang et al. applied a 3-layer LSTM model to identify the 

patients with chronic lower back pain[107]; Li et al. proposed a similar structure with 

extra dense layers[108]; Yuan et al. constructed an LSTM-based autoencoder to extract 

the latent features, and then applied attention mechanism to the feature sequences[109]. 

Another physiological modality is functional near-infrared spectroscopy, which measures the 

hemodynamic response in the brain. Rojas et al. employed this modality and bidirectional 

LSTM to classify thermal-induced pain perceptions[110].

Some studies have also attempted to use RNN in EMG signals analysis. These signals 

reflect the muscular electrical activities and offer a widely adopted method for evaluating 

the neuromuscular status and identifying body movement. Xia et al. proposed an EMG-

based forearm movement estimation system with LSTM [43]. By analyzing the EMG 

collected from seven upper body muscles, Bengoetxea et al. identified different figure-eight 

movements[111]. Wang et al. classified the left-hand postures using LSTM [42]. Li et al. 
built the relationship between EMG and stimulated muscular torque with a NARX strategy 

[46].

Some physiological signals can also use for identification with the help of RNNs. Salloum et 
al. and Lynn et al. used ECG signals to conduct biometric identification with RNN, and the 

accuracies were more than 98% [20], [112]. Moreover, Zhang et al. used ballistocardiogram 

as input for a similar task[113]. The above studies all compared the accuracies between 

GRU and LSTM and reported that there were no significant differences between these two 

units. More discussion will be presented in Section V-B.

Recently, some studies are attempting to measure the swallowing-induced events with on-

neck sensors signals and RNN models. Mao et al. applied a multi-layer Elman RNN to 

track the hyoid bone movement during swallowing[114]. They then combined CNN-1D and 

GRUs to identify the laryngeal vestibule status (opening or closure)[115]. Importantly, they 

pointed out that the RNN-based model performed better than the CNN model. Khalifa et al. 
proposed a hybrid CNN-RNN model to detect the upper esophageal sphincter opening with 

swallowing acceleration signals. The proposed model used a GRU-based RNN for modeling 

time dependencies after time-localized feature extraction from raw signals using CNN[116], 

[117].

Another critical physiological task is human gait analysis, as the data can hold information 

about medical and neurodegenerative disorders. Zhao et al. applied LSTMs on force-

sensitive resistors signals to identify neurodegenerative diseases, such as Parkinson’s 

disease, Huntington’s disease, and amyotrophic lateral sclerosis[118]. Zhen et al. used 

LSTM with accelerometer signals collected from the thigh, calf, and foot to identify swing 

and stance phases in the gait circles[119]. GAO et al. proposed a structure that combined 
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LSTM and 1D CNN to classify the abnormal gait with wearable inertial measurement 

units[120]. Tortora et al. attempted to decode the gait patterns from EEG signals using 

LSTM[121]. In this case, the input was the sequential features of EEG, and the labels are 

swing or stance phase. The application of RNNs in human gait analysis still has a long way 

to go in physiology since the related studies are relatively limited.

V. EXISTING ISSUES AND FUTURE WORK

Although many studies have reported using RNNs to solve a wide range of problems, as 

introduced above, there remain several issues facing the further development of RNNs in 

physiological applications.

A. Finding features for RNN models

1) Knowledge-based feature engineering: The principal idea of feature extraction is 

selecting the meaningful components of sequential data to predict events of interest. These 

features are supposed to be related to these events, and feature extraction requires external 

knowledge. Involving this knowledge in the RNN model design is a natural methodology, 

especially when some typical applications’ signal features have been previously explored. 

For example, in the epilepsy detection studies, wavelet-based methods were prevalent 

in constructing features from EEG signals, because wavelet transforms were extensively 

studied and well established to analyze brain activity[70], [122]. The study by Schwab et al. 
aimed to classify cardiac arrhythmias based on ECG and manually extracted features from 

engineering and clinical perspectives, such as the amplitude of R point and QRS duration 

in the ECG waveform[22]. All these features were widely studied biomarkers for cardiac 

disorders. They designed a 5-layer GRU or bidirectional LSTM with a Markov Model 

and attention mechanism. Although it was considerably complicated, such a sophisticated 

structure indeed provided state-of-the-art performance. All the previously reported studies 

in features extraction will help the RNNs’ design, especially in ECG and EEG-related 

tasks. However, seeking features might be intractable when the domain knowledge is 

insufficient[123].

2) Finding features through deep RNNs: Besides extracting the features by human 

knowledge, scholars were also aware of the merit in deep learning: it is possible to seek 

features via the deep architecture itself. In computer vision, deep CNN architecture has been 

historically successful by generating “feature maps” in intermediate layers. However, the 

situations were more complicated in dealing with physiological data. If seeking features 

from the raw data is desirable, increasing the model capacity may be needed. Chauhan 

and Vig first attempted to feed raw electrocardiographic signals into a three-layer LSTM 

RNN to conduct anomaly detection[124]. It was quite a deep structure in processing the 

physiological temporal data. Qiu et al. proposed a three-layer LSTM to remove the power 

line interference in ECG, in which the input was also raw data[125].

The drawback of the raw signal input is the number of time steps through which the error 

signal of RNNs has to propagate[22]. The LSTM and GRU are specifically designed to 

solve the long time dependency problems, and they are not hardware friendly due to the 

difficulties in parallelized computation[126]. Therefore, the design of hardware accelerators 
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is a path for future work. An alternative way is the modification of the entire deep RNN 

structures to reduce the calculation of back-propagation through time, as introduced in the 

next section.

3) Finding features through deep structures: From 2018, there was a tendency 

to combine convolutional networks with RNNs (C-RNN) for physiological application[11], 

[12], [41], [43]. Although the purpose of each network in these studies was different, the 

deep structures were similar: the CNN layers aimed to extract the local features, and the 

RNN connected the temporal relationship among these features. Shashikumar et al. treated 

the 1-D ECG signals as 2-D pictures by calculating the wavelet power spectrum[11]. Based 

on the spectral “image”, they implemented a 5-layers CNN, at the top of which was a 

one-layer bidirectional Elman RNN. Unlike Shashikumar’s work, Tan et al. and Andrea et 
al. used a 1-D CNN as the bottom layer to extract the features of 1-D signals[12]. Andrea 

et al. also proposed a “siamese architecture” besides the C-RNN to improve accuracy. The 

structure reported by Xiong et al. was more advanced: they applied the residual block 

and the batch normalization techniques to cardiac arrhythmias detection with an Elman 

RNN[41]. These ideas are prevalent in image-related tasks and have been transferred to 

physiological studies. In the above studies, the CNN layers provide short-term local features 

and are easy to parallelize in computation. Additionally, when a convolutional layer is 

introduced, the pooling technique is also applicable to reduce the signal length or time steps, 

and the computation is therefore simplified. The studies of hybrid structures just started in 

physiological applications, but they created new ideas in future studies.

B. Choice of RNN unit

Section II-A introduced the Elman, LSTM, and GRU, and they are widely used units in most 

physiological studies. The LSTM and GRU are famous structures to address the problem 

of ‘gradient vanishing’, typically associated with the long-term training of Elman RNN. 

Based on the existing studies shown in Section IV, the best choices for building up the RNN 

models are LSTM and GRU. However, we should explore more in future studies.

1) LSTM vs. GRU: Choosing between LSTM and GRU might be a hard question for 

the model designer. The detailed comparison between these two units was presented in 

[5]. Also, based on polyphonic music modeling and speech signal modeling, this study 

suggested no concrete conclusion on which of the two units was better. In terms of 

physiological studies, we can get similar results. Zhang et al. conducted ballistocardiogram-

based biometric identification with two types of units and reported that LSTM and GRU 

were not significantly different in accuracy[113]. Lynn suggested that GRU was slightly 

better than LSTM with ECG signals[20]. Dong et al. reported that LSTM and GRU 

achieved similar performance for sleep stage classification[38]. Latif et al. conducted RNN-

based abnormal heartbeat detection with phonocardiography and reported that the accuracy 

difference of GRU and LSTM was smaller than 1% [127].

Although GRU gave similar results with LSTM, it employs fewer parameters and thus is 

computationally efficient compared to LSTM. Latif et al. also reported that GRU took 35% 

less run-time than Bi-directional LSTM while achieving a comparable result, suggesting 
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that GRU was more suitable for deploying mobile or wearable devices with limited 

hardware resources[127]. From the perspective of algorithm deployment, the GRU is more 

competitive and hardware-friendly than LSTM.

2) The use of Elman RNN: Elman RNN may still be valuable for future model design. 

Although training Elman RNN is suffered by ‘gradient vanishing’ problem, we didn’t see 

an absolute disappearance in current studies from Section IV. Elman RNN is simple and 

computationally efficient, and we need to figure out how to address the ‘gradient vanishing’ 

problem. One way is reducing the length of input sequence with deep models (such as CNN) 

at a lower level, as suggested by Xiong et al., Shashikumar et al., and Zhang et al.[11], [41], 

[29]. The model proposed by Xiong et al. even outperformed other LSTM-based models 

with the same dataset, as shown in Table. I. Mousavi also conducted a Seq2seq model with 

CNN layers and bidirectional Elman RNN, and they achieved better performance for ECG 

classification than the LSTM ones[54].

Compared to Elman RNN, LSTM and GRU have additive gating components. According to 

the analysis carried out by Chung et al., these additions effectively create shortcut paths that 

bypass multiple temporal steps[5]. For effectively training the Elman RNN, an alternative 

way is to create the shortcut paths outside the recurrent loops. Several studies attempted to 

investigate this idea. In atrial fibrillation detection, Shashikumar et al. added a soft attention 

layer on the top of Elman RNN for the final output[11]. Another profound study was 

proposed by Zhu et al. in 2020. They designed a dilated Elman RNN structure with skipped 

time-step connections on each successive layer and reduced the long-term dependency[94]. 

They also compared the Elman with LSTM and GRU, and suggested that the Elman gave 

the best performance with significantly reduced parameters number. For the ‘Many-to-One’ 

scenario, methods B and C (Section III-A) create the shortcuts outside recurrent units. 

These structures may help the Elman RNN solve the vanished gradient problem since the 

backpropagation-through-time is not the only way for weight updating.

3) Other choices: Although LSTM and GRU are widely used RNN units, they are not 

the only choices for constructing the RNN models. There were several other unit types, 

which were modified versions of existing units and showed promising results.

Quasi-Recurrent Neural Networks (Q-RNN, 2016)[128].: Q-RNN is a hybrid structure 

inspired by LSTM. It combines CNN and LSTM, and enables parallel computation across 

time-steps. Q-RNN achieved comparable results with LSTM on language modeling tasks.

Simple Recurrent Units (SRU, 2017) [129].: SRU holds the idea of cell states while only 

using forget and reset gates. One improvement is replacing the matrix multiplication of 

cell state with point-wise multiplication, making the unit computation parallelizable. SRU 

achieved more robust performance than LSTM and Q-RNN but used less computational time 

on various language processing tasks.

Independently Recurrent Neural Network (IndRNN, 2018) [130].: IndRNN is similar to 

the Elman unit. In Eq.(2, the hidden state is updated by matrix multiplication, while IndRNN 
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replaces matrix multiplication with point-wise multiplication (Hadamard product). IndRNN 

got a higher accuracy on both image and language tasks.

Just Another NETwork (JANET, 2018) [131].: JANET only keeps the forget gate of 

LSTM and removes all other gates. JANET outperformed the LSTM on MNIST and pM-

NIST databases. JANET was also applied to the MIT-BIH ECG database and achieved 

89.4% accuracy under cross-subject classification. This performance is higher than the 

study reported by Hou et al., who also conducted cross-subject classification with the same 

dataset[45].

All these currently proposed units have shown promising performances with simplified 

structures. They have not been broadly investigated in physiological applications, and 

comparative results are still absent.

C. Subject effects

Section III-B introduced the experiments that could employ either within-subject or cross-

subject strategies for model training. Meanwhile, in Section IV, the comparisons of existing 

methods are under the same strategy to avoid the impact of the subject issue. Although 

this issue exists for all kinds of machine learning designs (e.g., DNN and CNN), it causes 

obstacles for RNN development.

1) Performance comparison: Using inconsistent strategies stagnated side-by-side 

comparisons among the studies. It is hard to design a better model structure if we cannot 

measure the performance fairly. With the same datasets, performances can get changed by 

the innovative model designs, and the strategies in the experiments. Some studies attempted 

to compare the performance discrepancy under different strategies with RNN. Tan et al. 
conducted both a mixed manner and an equivalent way of cross-subject prediction for ECG 

classification, and accuracies were 99.85% and 95.76%, respectively[12]. For the same task, 

Hou et al. also compared beats-based cross-validation (mixed manner) and record-based 

cross-validation (cross-subject prediction), and the accuracies were 99.74% and 85.20%, 

respectively[45]. In the EEG emotion recognition task, Li et al. used both mixed manner 

and leave-one-subject-out cross-validation, and the accuracies were 92.38% and 83.28%, 

respectively[62]. Thodoroff et al. employed both patient-specific and cross-patient settings 

for seizure detection, and the sensitivities were 95–100% and 85%, respectively[69].

For even comparison, an ideal way is using a standard protocol for all the practitioners in 

a specific field. Building up universal standard test datasets is challenging and requires 

collaboration across organizations and disciplines. Fortunately, the effort is currently 

ongoing, such as the dataset provided by Computing in Cardiology Challenge, in which 

the testing set was strictly defined for all the participating groups[15], as shown in Table 

I. Some research groups would also spontaneously use the same protocol, such as the 

protocol proposed by Zheng et al. for EEG emotion recognition[61], and leave-one-subject-

out cross-validation in pain level assessment[109]. With the evenly comparative results, we 

can objectively evaluate the development and have a clear vision for future model design.
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Considering the subject effect in computational physiology, the deep learning practitioners 

should clearly describe how they conduct the validation process. Our survey found that it 

is challenging to compare some performances among published studies since sometimes the 

types of validation were not clearly stated. Moreover, the comparative analysis should be 

carefully carried out. Picking up the reported values from other studies is arbitrary because 

they may not use the same strategy. Fortunately, some studies conducted comparison by 

re-performing the methods proposed from the other ones under the same strategy. Based 

on these investigations, we could see the advantages of the RNN model, as introduced in 

Section IV.

2) Practicability: Most pilot studies were in the prototype stage, and adopting a within-

subject strategy was for the proof of concept purpose. Although they suggested that the RNN 

could achieve better results, we also need to consider whether the within-subject study is 

practically feasible.The models trained under within-subject strategies must be re-trained (or 

fine-tuned) with new training set for the unseen subjects. This is not typically an issue if 

the devices have sufficient computational power. The problem is whether human experts are 

indispensable for labeling new data. If the labels for unseen subjects can be automatically 

obtained without human experts, personalized models are practically feasible. One example 

is blood glucose prediction, in which monitoring devices could measure the glucose level 

continuously. Therefore, it is efficient for the pre-trained models to capture the training pairs 

for a new subject, and the inter-person variability issue could be addressed in practice.

If the labels are not easy to acquire and human experts are necessary for the labeling 

process, off-line fine-tuning for a personalized model is the only choice. For an unseen 

subject, the model tuning procedures will be constrained by many factors, such as the 

availability of the human raters. Since within-subject studies have already achieved very 

high performance, more studies should focus on the scalability of the personalized models. 

In the future, we would like to see investigations that practically implement the within-

subject model for the unseen subjects at the inference stage, especially when the recordings 

of unseen subjects were not collected or labeled before training the pre-trained model. 

These studies would enlighten the way to make protocols of data collection, human experts 

scheduling, inter/intra-rater reliability analysis, off-line tuning for the personalized model, 

and model deployment for the unseen subjects.

3) Implementation of cross-subject prediction: Developing the physiological 

system for unseen patients is the most nature circumstance. As introduced in Section 

IV and V-C1, the accuracies of some studies under within-subjects classification tasks 

have already achieved more than 90%, even approaching 100%. However, cross-subject 

prediction accuracies stayed 80% ~ 90%. In the future, we should consider the hypothesis 

that it is possible to predict one person’s status by other persons’ examples via RNN models. 

The inter-patient variability will seriously affect the results when the cross-subject prediction 

is conducted, but it does not suggest the impossibility of capturing the personalized pattern 

based on training groups. For example, the state-of-the-art cross-subject performance has 

reached 99.53% for ECG classification by using the Seq2seq model[54].
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We can imagine whether the human experts(raters) are ‘personalized’ or ‘user specific’ 

when labeling the data. However, this expert-level performance is only obtainable when the 

studied cohort is large, i.e., hundreds of subjects or more [31], [91]. Although some datasets 

were manually annotated and publicly available, such as MIT-BIH of ECG signals[16], 

DEAP of EEG signals[58], more data is still needed to improve the model’s cross-subject 

prediction generalization. Collecting more datasets for training is a solution, but it is 

challenging due to practical constraints, such as time cost for labeling, monetary expense, 

ethical review, and privacy problem.

The individual characteristics impede the model’s generalization across the patients, and 

the samples may be conditionally identical distributed under different subjects. However, 

rigorous mathematical or numerical analysis is absent, and it is unclear how the inter-

subject variability impacts the model’s generalization error bound. Meanwhile, we need 

to investigate whether the input signals contain the class information and represent the 

individual characteristics. Unsupervised learning methods, such as the autoencoder model, 

may help us answer those questions by analyzing the latent space. A typical structure 

involving unsupervised learning was proposed by Dong et al. for blood glucose prediction, 

in which a combined model with the K-mean method and RNN model was proposed (Clu-

RNN)[93]. The idea was that the input vectors collected from some subgroups might share 

similar patterns. Moreover, Li et al. attempted to use the unsupervised learning method first 

to search the sequence of the features for emotion recognition[66]. This method achieved the 

best cross-subject accuracy for the SEED dataset compared with other studies.

In physiological applications, each patient could be characterized by external factors, such 

as gender, age, weight, body mass index, medical history, and personal profile. Suppose the 

model cannot capture the complete personalized information based on the input signals. In 

that case, we can encode the external factors as an auxiliary input vector and involve them in 

the model design. Liu et al. adopted such an idea in blood pressure prediction by embedding 

a contextual information cue (personal profile), including age, gender, body mass index, 

height, weight, and temperature[102]. In practice, the personal information is easy to achieve 

and may help to improve the model’s performance for cross-subject prediction.

Data augmentation is a widely used way for improving the model generalization. 

Augmentation is not readily accessible for sequential physiological input since there is no 

way to augment the inputs from unseen subjects. If the latent factors, some mathematical 

descriptions of training subjects, follow some distribution, would it be possible to model this 

and sample it to get more training data? Generative models are good options. Such ideas 

have already been successfully implemented in other fields, but more effort is needed in 

processing the physiological sequences.

Another way to obtain more data is multi-task learning. We introduced that the emotion 

recognition, seizure detection, and sleep stage classification tasks adopted EEG(PSG) 

signals as inputs. Although they were collected from different domains and varied setups, 

they may share common features. Joint datasets and multi-task learning could extract these 

features. This method increases the number of subjects and achieves more robust features. 

Additionally, some unsupervised learning methods, such as RNN-based autoencoder, allow 
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involving more EEG datasets without any annotation. Multi-task learning may offer us new 

solutions to improve the cross-subject prediction performance for the task of sub-domain 

and ideas for other big-data-related physiological problems, such as transfer learning.

D. Other opportunities

‐ Ensemble model. There are so many ways of constructing RNN models, as 

introduced in Section IV. Also, there are many choices for feature extraction, 

hyperparameters setup, and the types of RNN units. By including different deep 

learning architectures, the ensemble model partially addresses the problem of 

searching for the optimal structure while improving robustness. This technique 

is prevalent in many fields and has shown encouraging results. In physiological 

tasks, only several studies attempted to implement this technique with RNNs, 

such as the studies carried out by Schwab et al. and Zihlmann et al. for ECG 

classification[22], [39].

‐ Seq2seq model. In Section III-A, we described the ”Many-to-Many” scenario, in 

which both the input and output are sequences, and we also discussed the typical 

way of model construction. Alternatively, the Seq2seq model is also suitable 

for the ”Many-to-Many” scenario[80]. This model is well-developed in natural 

language processing, but it is not drawing enough attention in the physiological 

area. Fox et al. borrowed the idea of the Seq2seq model and designed the 

PolySeqMO to predict the blood glucose[95]. Mousavi et al. adopted the 

Seq2seq model to classify the sleep stages[83]. They also proposed a similar 

structure for ECG classification and reached the best performance (shown in 

Table. I)[54]. Moreover, some advanced techniques accompanied by Seq2seq, 

such as attention mechanism[132], transformer-based architectures[133], can 

also be transferred to physiological applications.

‐ Generative model. As stated in Section V-C3, generative models may help for 

data augmentation. Generative adversarial network (GAN) has mainly been 

developed and applied to images or artificial audio generation[134], [135]. 

Recent studies have already attempted to generate EEG and ECG signals 

with advanced techniques like Wasserstein GANs with gradient penalty [136], 

[137]. Besides data augmentation, GANs can also serve other physiological 

tasks, such as anomaly detection with well-trained discriminators, signal 

denoising, and signal synthesis/restoration for missing channel(s) of multiple-

sensor systems[138], [139]. Variational Autoencoder (VAE) is another kind 

of generative model, which offers an alternative manner for describing the 

distribution of given data in latent space[140]. This model could also generate 

more physiological sequences, such as ECG generation reported by Kuznetsov 

et al.[141]. VAE may enlighten new studies in computational physiology, but 

more investigations are still needed.
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VI. CONCLUSION

This review provided a comprehensive overview of existing studies attempting to apply 

RNNs in the field of human physiology. The RNN is particularly amenable for monitoring 

and detecting various physiological states in real-time due to its capability of processing 

time-dependent sequential data. Our survey revealed that RNNs have already been widely 

studied in diverse healthcare applications. The modern neural networks and computational 

power techniques have facilitated addressing health issues.
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Fig. 1. 
Computational graph of RNN. o is the RNN output, and L presents the difference between 

the RNN output and the desired output (target or label). L is commonly used for calculating 

the loss function.
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Fig. 2. 
LSTM recurrent neural network. The computational graph is shown in (a). The LSTM has 

an extra pathway for the cell state. A recurrent unit of LSTM is shown in (b). The arrows in 

blue represent the internal cell state.
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Fig. 3. 
The unit structure of GRU.
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Fig. 4. 

The general bidirectional RNN has two time flow paths. The variables h t  and g t  present 

the hidden state for the sub-RNN moving forward and backward, respectively.

Mao and Sejdić Page 34

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2024 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The implementations of RNN models are determined by the label structure of each signal 

sample. (a) shows a signal sequence with a sequential label. The general applied RNN could 

be designed in (c). Sometimes a signal sequence could only have one annotated label, as 

shown in (b), and the RNN could be designed in the form of (d). Although (c) and (d) 

show one-layer unidirectional RNN, multiple stacked layers or bidirectional RNN are also 

adoptable.
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Fig. 6. 
The experiment designs in computational physiology. (a)Cross-subject prediction; (b), (c), 

and (d) describe three different strategies of within-subject prediction. (b): the mixed 

manner; (c) patient-specific manner; (d) fine-tuning manner
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Fig. 7. 
Representative applications of RNN in the human body for diagnosis and event detection.
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