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Abstract 

Properly integrating spatially resolved transcriptomics (SRT) generated from different 
batches into a unified gene-spatial coordinate system could enable the construction 
of a comprehensive spatial transcriptome atlas. Here, we propose SPIRAL, consisting 
of two consecutive modules: SPIRAL-integration, with graph domain adaptation-based 
data integration, and SPIRAL-alignment, with cluster-aware optimal transport-based 
coordination alignment. We verify SPIRAL with both synthetic and real SRT datasets. By 
encoding spatial correlations to gene expressions, SPIRAL-integration surpasses state-
of-the-art methods in both batch effect removal and joint spatial domain identification. 
By aligning spots cluster-wise, SPIRAL-alignment achieves more accurate coordinate 
alignments than existing methods.

Background
Recent years have witnessed the great success of single cell technologies in characteriz-
ing cell state dynamics in complex biological systems, which reveals the cellular mecha-
nisms of development and disease at an unprecedented resolution. However, the lack of 
spatial dimension hindered the exploration of how cell identity and cell fate are influ-
enced by their surrounding environment. Advances in spatially resolved transcriptomics 
(SRT) technologies have supplied the spatial dimension to achieve joint measurement of 
the gene expression profiles and spatial coordinates. Such spatial technologies include 
imaging-based [1–4] and next-generation-sequencing (NGS) -based technologies [5–8].

In the traditional single cell community, integrating single cell non-spatial transcrip-
tomes from various sources enables the comparisons of distinct tissues, organs, or indi-
viduals in one shared space, e.g., the Human Cell Atlas (HCA) [9]. With the popularity of 
different spatial technologies in different biological systems and by different laboratories, 
the primary goal of HCA also extended to mapping those cells into common coordinate 
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maps (CCMs) [10] to analyze their functions and relationships in their spatial context. 
Like the shared low-dimensional spaces of integrated scRNA-seq data, in which each 
cell has its own position, a CCM is also a shared 2D/3D coordinate system, in which 
cells from distinct experiments can be embedded. Specifically, to create CCMs, we need 
to relate cells from distinct experiments with cells from a selected reference map, by 
which cells with distinct sources can be assigned new coordinates in the selected refer-
ence system. Besides, it is necessary to remove batch effect, caused by different samples, 
protocols, technologies, or laboratories, in SRT data with different origins in order to 
compare them in the shared feature space and in the shared coordinate space. Therefore, 
integrating SRT data includes two basic sequential tasks, i.e., removing batch effects and 
aligning coordinates. With the similarities of spots from different experiments supplied 
by the first task, one could accomplish the second task.

Unlike scRNA-seq technologies, in which cells’ representations are classically defined 
by their own transcriptome profiles only, SRT technologies add spatial information, 
thus providing the opportunity to analyze the gene expression variations with both cell 
identity and the surrounding microenvironment [11]. However, the methods designed 
to remove batch effects of scRNA data [12–14] cannot be directly applied to SRT data. 
Firstly, these methods for scRNA-seq would eliminate the spatial dependences of the 
gene expressions that are needed not only in the compensation of low-quality or low-
quantity sequencing of some experiments but also in the downstream analysis such as 
delineations of spatial domains and identifications of spatial genes. For example, the 
gene expression zonation gradients along the lobular axis of the liver revealed by spa-
tial transcriptomes may be missed without spatial information [15]. Secondly, with-
out spatial constraints, scRNA-seq based methods can easily mix up cells with similar 
gene expressions but distinct microenvironments. For example, the different sub-tumor 
microenvironments of pancreatic ductal adenocarcinoma have distinct influences on 
tumor immunity, subtypes, differentiation, and treatment response, which cannot be 
revealed only by transcriptome profiles alone [16].

Recently, several methods have been proposed to address the integration of SRT data-
sets containing multiple slices for joint clustering [17–20]. One such method, BASS [17], 
focuses on simultaneously performing cell type clustering and spatial domain detection 
for multiple samples using Bayesian hierarchical methods. However, BASS has two limi-
tations. Firstly, it lacks low-dimensional embeddings or gene expressions without batch 
effects. Secondly, its performance in joint clustering for SRT data generated from dif-
ferent technologies is suboptimal. Another method, GraphST [18], tackles batch effect 
corrections for horizontally split slices using coordinate alignments through the PASTE 
algorithm [21] and for vertically split slices through manual coordinate alignment as the 
initial step. However, the effectiveness of GraphST heavily relies on the accuracy of coor-
dinate alignments, which limits its widespread usage. DeepST [19] introduces a two-step 
process to remove batch effects. First, it utilizes a graph neural network for representa-
tion learning, which is followed by batch effect removal of these representations using 
domain adversarial neural networks (DAN). However, this approach cannot obtain the 
batch effect-free gene expression. Furthermore, the training methodology employed by 
DeepST hinders the effective integration of diverse samples. STAligner [20] achieves 
spatial-aware SRT data integration by combining STAGATE and a mutual nearest 
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neighbor (MNN)-based method into a unified model. Coordinate alignments are per-
formed using spot pairs. The MNN-based method employed by STAligner aims to mini-
mize distances between positive pairs and maximize distances between negative pairs. 
Consequently, it may overlook non-MNN pairs from the same spatial domains and mis-
takenly include MNN pairs belonging to different domains.

Besides these, some other methods [22, 23], focusing on spatial domain identifications, 
learn low-dimensional representations considering both gene expression and spatial 
information that can be used as inputs of Harmony [12] to obtain the integrated embed-
dings. However, the batch effect removal will be inadequate with separated processes of 
representation learning and batch effect removal, while the batch-effect-corrected gene 
expressions cannot be obtained either.

Besides the gene expressions, the spatial coordinates of different samples are also 
required to be aligned to make them comparable in the physical space. A few methods 
have tried to align coordinates of different SRT data recently. PASTE [21] attempts to 
align and integrate SRT data from multiple tissue slides using both gene expression and 
spatial information by computing pairwise similarities of adjacent slices with the fused 
Gromov-Wasserstein optimal transport. Through the pairwise alignments, PASTE 
achieves a stacked 3D structure of a tissue. It also creates the center slice from multi-
ple similar slices. Nevertheless, PASTE has some limitations including the poor perfor-
mance on non-replicate samples and the lack of batch-effect-corrected transcriptomes 
of all integrated samples. Alma et  al. proposed another method to integrate different 
SRT data by constructing a common coordinate frame (CCF) to relate samples in physi-
cal space using Gaussian process regression (GPR) algorithm based on prior landmark 
knowledge [24]. The nonlinearity of GPR promotes its coordination alignment perfor-
mance on samples with different cell compositions. However, the landmark cannot be 
always obtained in advance, and the batch-effect-corrected gene expression cannot be 
learned for downstream analysis.

To overcome the limitations of all these methods, we proposed a new method SPIRAL 
to effectively integrate data in both feature space, including low-dimensional embed-
dings, high-dimensional gene expressions, and physical space. SPIRAL consists of two 
seamless modules, i.e., SPIRAL-integration for batch effect removal and SPIRAL-align-
ment for spatial coordinate alignment. The first module (SPIRAL-integration) incor-
porates GraphSAGE [25] and domain adaptation [26] into a unified model to learn the 
corrected embeddings and expressions via combining transcriptome profiles and spatial 
contexts. The second module (SPIRAL-alignment) makes use of the results of SPIRAL-
integration to align different coordinates via cluster-aware Gromov-Wasserstein distance 
[27]. GraphSAGE can encode features and spatial relationships into low-dimensional 
representations by inductively sampling and aggregating neighbors on large graphs. 
Domain adaptation can agglomerate different domains to a shared low-dimensional 
space. The combination of GraphSAGE and Domain adaptation achieves spatially aware 
integration of SRT data. The cluster-aware coordinate alignment can achieve accurate 
alignments of samples with distinct spatial structures.

We demonstrated the advantages of SPIRAL on several synthetic and recently pub-
lished SRT datasets [8, 28–31]. On one hand, compared with conventional non-spatial 
methods, e.g., Seurat and harmony, SPIRAL achieves better or comparable integrations 



Page 4 of 26Guo et al. Genome Biology          (2023) 24:241 

in both the biological tissues containing the same set of spatial domains and the tissues 
containing distinct spatial domains. In contrast with Seurat and harmony, the learned 
embeddings of SPIRAL can reflect more locally continuous domains in multiple sam-
ples, and the batch-effect-corrected gene expressions present clearer spatial patterns 
and stronger functional domain enrichment. On the other hand, compared with the 
methods based on separated embedding and batch effect removal, e.g., harmony_SEDR 
and harmony_STAGATE, SPIRAL implemented more effective integrations in many 
experiments. More strikingly, SPIRAL outperformed the existing spatial based methods, 
DeepST, STAligner, GraphST, and BASS in our experiments. We further compared SPI-
RAL with coordinate alignments methods e.g., PASTE, in a diverse range of datasets, 
and found that SPIRAL output litter mixtures of different spatial domains, and clearer 
patterns of domain-specific genes. Importantly, SPIRAL can be generalized to unseen 
SRT datasets to predict their cluster labels and register them correctly in the reference 
coordinate systems (RCSs).

Results
Overview of method

In this work, we designed a method SPIRAL, which combines gene expressions and spa-
tial relationships in the consecutive processes of batch effect removal and coordinate 
alignment by employing graph-based domain adaption and cluster-aware Gromov-Was-
serstein optimal transport. The graph-based domain adaption is able to consider gene 
expressions of neighbors during removing batch effects, and the cluster-aware alignment 
can avoid mistakenly mixing up different clusters.

SPIRAL consists of two seamlessly connected modules, i.e., SPIRAL-integration and 
SPIRAL-alignment. SPIRAL-integration corrects batch effects via integrating expres-
sion profiles and spatial relationships with a unified framework combining GraphSAGE 
network [25] and domain adaptation network, and SPIRAL-alignment utilizes the clus-
tering results of SPIRAL-integration to construct CCMs with cluster-aware Gromov-
Wasserstein distance. SPIRAL-integration is composed of four neural networks (Fig. 1): 
(1) GraphSAGE functions as an encoder to encode gene expressions and spatial coordi-
nates into a low-dimensional latent space; (2) noise classifier and (3) biology discrimina-
tor, they disentangle the low-dimensional embeddings to two parts: the noise part for 
distinguishing noise from different batches and the biology part for combining signals 
from different batches; (4) decoder network to reconstruct gene expressions. The biol-
ogy part of the low-dimensional embedding is further grouped to uncover the spatial 
domains for multiple samples. Based on the clusters, SPIRAL-alignment assigns the 
spots or cells within the shared clusters of one sample to the positions of the correspond-
ing ones of the reference sample. The reference sample is pre-selected to have the largest 
regions. The new coordinates of the sample-specific clusters in the reference coordinate 
system (RCS) are calculated via translation and/or rotation based on the spots of the 
shared clusters as datum points.

SPIRAL achieves the effective integration on simulated data

To quantitatively evaluate the performance of SPIRAL on removing batch effects of 
the same cell types and discerning cells with similar expression profiling but distinct 
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spatial neighbors, we generated three types of simulated datasets (simulate1-3) with the 
same cell-type compositions but different spatial arrangements, in which two cell types 
(Group1 and Group2) are adjacent in feature space and distant in physical space (Addi-
tional file 1: Fig. S1A). We used Splatter [28] to simulate gene expressions and assigned 
coordinates to each cell in the restricted regions (Methods). We evaluated the efficiency 
of batch effect removal by the combined local inverse Simpson index (LISI-CoM) [12] 
measuring the ability of both mixing same clusters and separating different clusters 
(Methods). We also employed adjusted Rand index (ARI) [32] to assess the correspond-
ences of the annotated groups and the learned clusters with the batch-effect-corrected 
embeddings. The Uniform Manifold Approximation and Projection (UMAP) visualiza-
tions (Fig. 2A and Additional file 1: Fig. S1B) and the quantitative measures LISI-CoM 
and ARI (Fig. 2B) proved the superior performances of SPIRAL-integration on the three 
datasets when compared to the other seven methods: harmony [12], Seurat [13], har-
mony_STAGATE [22], harmony_SEDR [23], GraphST [18], DeepST [19], STAligner 
[20]. It is noted that, for BASS, the lack of integrated embedding and gene expression 
prevented the calculation of LISI-COM and iLISI. The ARI of SPIRAL-integration were 
higher than the multi-sample clustering method BASS [17] on all datasets (Fig. 2B right). 
As expected, only the spatial-based methods SPIRAL, harmony_STAGATE, and STA-
ligner were able to discern Group1 and Group2, while harmony_STAGATE and STA-
ligner were not able to remove batch effects (Fig. 2A). Then, we utilized the clusters of 
SPIRAL-integration to assign the cells from Batch2 to the spatial coordinates of Batch1, 
which is selected as the RCS (Additional file 1: Fig. S1A). We evaluated the spatial coher-
ence using the spatial coherence score (SCS) of PASTE [21], which measures the prob-
ability of the spots in the neighborhood having the same clusters compared with the 
random assignment of the clusters. SPIRAL-alignment achieved higher SCS than PASTE 

Fig. 1  Overview of SPIRAL. SPIRAL includes two consecutive modules: SPIRAL-integration (upper right) 
and SPIRAL-alignment (bottom right). SPIRAL-integration takes combined gene expressions and separated 
graphs, constructed by spatial coordinates of spots for each sample, as input and learns the disentangled 
embeddings as biological embeddings and noise embeddings via a discriminator and a classifier. SPIRAL 
tries to preserve the spatial structures on biological embeddings and to preserve the expression patterns 
on the whole embeddings. SPIRAL-alignment takes cluster annotations of SPIRAL-integration and spatial 
coordinates as input to align coordinates of shared clusters between reference and query samples via 
Gromov-Wasserstein optimal transport. Through SPIRAL, the corrected embeddings, gene expressions, and 
aligned coordinates can be obtained. SPIRAL also can predict cluster labels and new coordinates for new SRT 
data
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in all three datasets (Fig. 2C). It is worth noting that SPIRAL-alignment could overcome 
the nonlinear transformations between two bathes, as the dataset simulate2 had differ-
ent coordinate rotations between the batches and simulate3 had coordinate scaling on 
the basis of simulate2 (Additional file 1: Fig. S1A).

We also compared the methods in more complex scenarios, such as distinct cell 
compositions. We simulated a two-batch dataset (simulate4) containing Group1-4 as 

Fig. 2  Simulating. A UMAP visualizations of simulate1 data. Colors represents cell types (upper) and batches 
(bottom), and each column responds to each method. B Boxplot of batch-effect-removing accuracy 
(LISI-CoM) (left) and clustering accuracy (ARI, Louvain clustering) (right) in three datasets: simulate1, 
simulate2, and simulate3 for eight or nine methods. C The spatial coherence score (SCS) of annotated cell 
types of SPIRAL and PASTE in three datasets. D spatial arrangements of cell types on original and aligned 
coordinates by SPIRAL and PASTE in simulate4 (upper) and simulate5 datasets (bottom). E The quantitative 
measurements of LISI-CoM and ARI in simulate4 and simulate5 datasets for eight or nine methods. F SCS of 
cell types in simulate4 and simulate5 data for SPIRAL and PASTE
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batch-shared cell types and Group5-6 as batch-specific cell types, and another three-
batch dataset (simulate5) containing Group1-3 in Batch1, Group1,3,4 in Batch2, and 
Group2,3,5,6 in Batch3 (Fig. 2D). We assumed there were the same spatial arrangements 
among the shared cell types. SPIRAL achieved the best performances on both datasets 
considering all the measurements (Fig.  2D–F and Additional file  1: Fig. S1C). Specifi-
cally, in terms of coordinate alignments, PASTE had poor performances by mixing the 
cells with different cluster labels, which indicates PASTE’s limitations in aligning sam-
ples with different cell compositions.

SPIRAL achieves consistent integrations and coordinate alignments across donors 

of the human dorsolateral prefrontal cortex data (DLPFC)

We then applied SPIRAL on a 10 × Genomics Visium dataset DLPFC, which contains 12 
slices from three independent donors [29] (Fig. 3A). Each donor has two pairs of “spa-
tial replicates,” in which each pair is composed of 10-um adjacent slices, and the second 
pair is located 300 µm posterior to the first pair. We referred to the four slices as “A, B, 
C, D” sequentially, in which AB and CD are the two replicates and BC are 300 µm apart 
(Fig.  3A). Maynard et  al. [29] have provided the spot-wise annotations ranging from 
white matter (WM) to different cortical layers in this dataset, which were used as the 
ground truth in the following evaluations. It is worth noting that all the 12 slices came 
from DLPFC of the neurotypical adult donors, whose differences were mainly caused by 
batch effects.

In total, we conducted 13 experiments to integrate each pair of consecutive slices, such 
as “AB,” “BC,” and “CD,” and four slices ‘ABCD’ within each donor, and did experiment 
to integrate all slices across donors to compare methods in terms of similar or slightly 
different samples. The quantitative measurement LISI-CoM demonstrated the superi-
ority of SPIRAL in correctly mixing up the same functional layers while separating the 
different ones (Fig. 3B left). Moreover, SPIRAL demonstrated superior performance in 
joint clustering on the integrated samples from the 13 experiments. It achieved the high-
est adjusted Rand index (ARI) regardless of the employed clustering methods, including 
Louvain [33], Leiden [34], and mclust methods [35] (Fig.  3B right). When comparing 
with the other methods, we found that harmony_STAGATE had the lowest LISI-CoM 

Fig. 3  DLPFC. A Schematic of DLPFC data, which included four sequential sections A, B, C, and D of three 
donors. B The accuracy of batch effect removing and Louvain clustering, LISI-CoM (left) and ARI (right), in 
13 integration experiments. C UMAP visualizations of 12-section integrations by different methods. Colors 
represent cell types (upper) and batches (bottom). D The barplot of Pearson correlation between deduced 
pseudo-time and annotated layers for 12-section integration experiment. E The boxplot of SCS of annotated 
layers on aligned coordinates by SPIRAL and PASTE in the 12 experiments. The “ns” means not significant 
differences. F Layers assignments on aligned coordinates by SPIRAL and PASTE for four sections of each 
donor. Colors represent different layers (upper) and shapes represent different sections. G SCS of annotated 
layers on aligned coordinates by SPIRAL and PASTE for 12-section integrations. H Spatial autocorrelations 
(Geary’s C and Moran’s I) of raw, SPIRAL, and Seurat-integrated gene expressions on original coordinates and 
raw and SPIRAL-integrated expressions on aligned coordinates, labeled as Raw, SPIRAL and Seurat, Raw-AC 
and SPIRAL-AC. I Violin plot of TRABD2A in annotated layers (upper) and deduced clusters (mclust, bottom). 
J spatial arrangements of raw (upper), Seurat (middle), and SPIRAL (bottom)-integrated gene expressions in 
original three spatial coordinates (the first three columns from the left) and aligned coordinates (the fourth 
column from the left)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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in all examinations, though it had higher ARI in many experiments. In contrast, STA-
ligner achieved higher LISI-CoM and similar joint clustering accuracy compared to 
harmony_STAGATE through inserting batch-effect-removal process into the unified 
model (Fig. 3B). We displayed the UMAP visualizations of five methods in Fig. 3C and 
Additional file 1: Fig. S2A; we found that, as a whole, all these methods realized effective 
integrations of different donors, while except for SPIRAL, the remaining methods had 
some wrong mixtures of the different layers. From the layouts of these UMAP embed-
dings, we found SPIRAL was the only method to accurately delineate a clear and correct 
spatial trajectory from layer1 to WM. To measure to what extent the low-dimensional 
embeddings could depict the trajectory from layer1 to WM quantitatively, we quantized 
the layers from layer1 to WM as 1 to 7, whose Pearson correlations with PAGA derived 
pseudo-time were calculated [36] (Methods). We displayed the Pearson correlations of 
eight methods in Fig. 3D and found substantial improvements of SPIRAL in spatial tra-
jectory preservation, compared with the other methods.

Furthermore, we proceeded to integrate the four slices from each donor to establish 
their common coordinate systems (Fig.  3E and F). In comparison to PASTE, SPIRAL 
demonstrated comparable spatial coherence of the layers in the majority of the experi-
ments and exhibited higher accuracy in aligning the four slices of donor1, which were 
more distinct from each other (Fig.  3F). Additionally, we tried to align coordinates of 
12 slices across the three donors. To align the spatial coordinates of all the samples, we 
selected sample 151,507 as the reference and mapped all other samples to the reference 
coordinate system. The spatial coherence of the annotated layers with the aligned coor-
dinates of SPIRAL-alignment was much higher than that of PASTE, indicating the supe-
riority of SPIRAL-alignment in the alignment of different individuals (Fig. 3G).

We further utilized the batch-effect-corrected gene expressions (Methods) to verify the 
effectiveness of SPIRAL in downstream analysis. Firstly, we examined the spatial expres-
sion patterns of the layer-marker genes (proposed in the original paper [29]), in terms of 
raw and integrated expressions. We used Moran’s I and Geary’s C to measure the spatial 
autocorrelations of the gene expressions [37, 38] and found that SPIRAL produced much 
clearer spatial patterns than the raw and Seurat-integrated expressions in the original 
physical spaces (Fig. 3H). We next used the combinations of SPIRAL-integrated expres-
sions or raw expressions and SPIRAL-aligned coordinates to calculate Moran’s I and 
Geary’s C. The much better spatial coherence of the new aligned coordinates than on the 
original coordinates (Fig. 3H) indicates that the common coordinate system could better 
recover the underlying spatial patterns consistent with the layer-marker genes.

We then further demonstrated the preservation of the laminar organization on the 
new coordinates in terms of the spatial distributions of both the annotated layers and the 
layer-marker gene expressions. We displayed the annotated layers on the aligned coordi-
nates of SPIRAL and PASTE (Additional file 1: Fig. S2B), where multiple false mixtures 
of different layers were found in PASTE and relatively much fewer false mixtures among 
L1-3 or L4-6 in SPIRAL, which was almost inevitable in the continuous laminar organi-
zations. Additionally, we showed the spatial dispositions of our clusters, derived by the 
clustering algorithm mclust [35], in Additional file 1: Fig. S2B, which delineated the true 
laminar structures of the human cortex. To annotate these clusters, we compared the 
expressions of the layer-marker genes of the annotated layers with our clusters (Fig. 3I), 
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and we found that almost all of them could be matched with the true layers (7 vs L1, 4 
vs L2, 6 vs L3, 1 vs L4, 3 vs L5, 2 vs L6 and 5 vs WM). Finally, we compared the enrich-
ment of the layer-marker genes expressed in raw data, SPIRAL-integrated data, and Seu-
rat-integrated data (Fig. 3J and Additional file 1: Fig. S2C); we found that SPIRAL could 
denoise and impute genes as its integrated expressions were more clearly and exclusively 
enriched in certain layers.

SPIRAL realizes a complete depiction of the whole sagittal mouse brain

Next, we tested whether SPIRAL could analyze tissue sections with more complicated 
structures (Fig. 4A). We applied SPIRAL to sagittal mouse brain data generated by 10X 
Visium protocol, which includes one pair of replicates in both anterior and posterior 
brain separately, labeled as “anterior1/2” and “posterior1/2” (Additional file 1: Fig. S3A). 
We conducted three integration experiments: integrating anterior1 and anterior2, inte-
grating posterior1, and posterior2 and integrating both anterior1/2 and posterior1/2. 
Given the absence of confidential annotations serving as ground truth, we utilized iLISI 
[12] to evaluate the extent of sample mixtures. To avoid the false mixtures of different 
domains be calculated by iLISI in integrating anterior1/2 and posterior1/2 sections, the 
iLISI was calculated using spots located on the 250- or 300-pixel distances around adja-
cent regions. According to the iLISI evaluations (Fig. 4B left) and UMAP visualizations 
(Additional file  1: Fig. S3D), SPIRAL-integration and Seurat emerged as the top two 
methods in terms of integration performance across all three experiments.

We further measured the consistency of the Louvain clusters obtained by nine meth-
ods with the spatial arrangements via SCS [21]; the bar plot showed that SPIRAL-inte-
gration and harmony_STAGATE had comparable values, which were slightly smaller 
than STAligner and much larger than the remaining methods on two integration experi-
ments (Fig. 4B right). Combining iLISI and SCS, we concluded that SPIRAL-integration 
performed best on both batch effect correction and spatial dependency preservation. 
Next, we aligned the coordinates of anteiror1 and anterior2, posterior1, and posterior2, 
with coordinates of anterior2 or posterior2 were rotated 30, 60, 90, 120, 150, and 180 
degrees (60-degree rotation was shown in Additional file  1: Fig. S3E), using SPIRAL-
alignment and PASTE separately. To measure the spatial coherence of domains on the 
aligned coordinates, we annotated the domains (Additional file  1: Fig. S3B) using the 
domain-marker genes (Additional file  2) and hematoxylin and eosin (H&E) stained 

(See figure on next page.)
Fig. 4  Sagittal mouse brain. A The anatomy diagram of anterior and posterior mouse brains to outline the 
task: integrating both mouse anterior and mouse posterior to delineate the whole sagittal mouse brain. 
B Quantitative measurement of iLISI for eight methods (left) and SCS of derived clusters for nine methods 
(right), in three integration experiments: anterior1 and anterior2, posterior1 and posterior1, both anterior1/2, 
and posterior1/2. C Distribution of SCS of annotated domains on aligned coordinates by SPIRAL and PASTE 
for six-category rotated anterior replicates and posterior replicates alignments. D Spatial arrangements of 
Louvain clusters derived by embeddings of four methods for four samples. E Spatial distributions of raw 
(upper), Seurat (middle), and SPIRAL (bottom) integrated gene expressions in cortex region for anterior1 and 
posterior1/2. F Spatial autocorrelation of raw, Seurat, and SPIRAL-integrated domain-marker genes in four 
sagittal mouse brain samples. G Wilcoxon rank sum test ( −10log(pvalue) ) of fold changes of domain-marker 
gene expressions in relative domains compared with domains having the second highest expressions



Page 11 of 26Guo et al. Genome Biology          (2023) 24:241 	

Fig. 4  (See legend on previous page.)
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images (Additional file 1: Fig. S3A and C). The SCS of the annotated domains of both 
experiments (anterior: median 597 vs 554; posterior: median 210 vs 251) proved SPI-
RAL-alignment and PASTE had close performances in aligning the replicates (Fig. 4C 
and Additional file 1: Fig. S3F).

We then displayed the Louvain clustering results derived by embeddings of four meth-
ods in Fig. 4D respectively, where SPIRAL, STAligner, and DeepST had more continu-
ous boundaries between domains and fewer outliers than non-spatial methods Seurat. 
Moreover, SPIRAL, STAligner, and Seurat had almost the same spatial distributions of 
clusters between replicates anterior1 and anterior2 or posterior1 and posterior2 and 
identified the shared clusters among the adjacent regions of the two consecutive sec-
tions, anterior1/2 and posterior1/2, which mainly included cortex, hippocampus, thala-
mus, and hypothalamus regions (Fig. 4D), whereas DeepST failed to identify common 
domains in the cortex region between posteiror1 and posterior2, as well as between 
anterior2 and posterior2 (Fig. 4D). Additionally, compared to STAligner, even with fewer 
clusters (STAligner: 31 vs SPIRAL: 29), SPIRAL was able to identify finer structures, 
such as GL_interneuron and PL_interneuron of cerebellum (red box of Fig. 4D).

We further analyzed the clusters of SPIRAL and found some sub-clusters of Louvain 
method compared with mclust method (Additional file 1: Fig. S3G). For example, in the 
anterior brains, cluster10 was separated from the cortex layers (cluster2, cluster3, clus-
ter15, cluster21) and was not included in the posterior brains. The differential expressed 
genes (DEG) of cluster10 were more enriched in the olfactory region (Additional file 1: 
Fig. S3H, Wilcoxon rank sum test: P-value < 2.2e − 16) than the other clusters (cluster2, 
cluster3, cluster15, cluster21) of the cortex. Combining the DEGs and the mouse brain 
sagittal anatomy diagram (Additional file 1: Fig. S3B), we deduced that this sub-cluster 
belonged to the anterior olfactory cortex (AOC). This sub-cluster could not be revealed 
by Seurat, which may further indicate the importance of spatial information during cor-
rect and functional integration.

Additionally, we testified the advantages of SPIRAL in terms of the batch-effect-cor-
rection gene expression profiles. Firstly, SPIRAL was able to denoise and impute gene 
expressions, which could be proved by the clear expressions of domain-marker genes, 
such as Rorb, a marker of the cortex layer4, in anterior2 and posterior2, and the layer6-
marker Hs3st4 in posterior1 (Fig.  4E). Secondly, SPIRAL could generate gene expres-
sions displaying more coherent spatial patterns, which were measured by higher Moran’s 
I and Geary’s C of domain-marker genes (Additional file 2) than raw and Seurat-inte-
grated data (Fig.  4F). Finally, the integrated expressions of domain-marker genes had 
higher expression enrichment in relative domains than in the other domains (Fig. 4G, 
Methods).

SPIRAL can integrate SRT samples with different experimental protocols

In the previous sections, we demonstrated SPIRAL’s integration performance on data 
generated by similar experimental protocols. In this section, we applied SPIRAL to 
datasets generated by more different protocols (Fig. 5A). These datasets included coro-
nal mouse brains sequenced by 10X Visium technology with different preserving and 
staining methods: formalin-fixed paraffin-embedded (FFPE) tissue with H&E staining, 
fresh frozen tissue with H&E staining, and fresh frozen tissue with immunofluorescence 
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(IF) staining, labeled as “10X_FFPE,” “10X_Normal,” and “10X_DAPI.” We annotated 
domains using marker genes in each sample (Additional file 2), where the cortex, hip-
pocampus, and thalamus were identified (Additional file 1: Fig. S4A).

From the quantitative measurements of iLISI, SCS and UMAP visualizations (Fig. 5B 
and Additional file  1: Fig. S4B), we concluded that SPIRAL and Seurat could remove 

Fig. 5  Coronal mouse brain. A H&E staining images of 10X_Normal and 10X_FFPE data and DAPI staining 
image of 10X_DAPI data were displayed to illustrate this experiment: integrating three datasets with different 
protocols. B Boxplot of iLISI (left) and SCS of derived clusters (right) in three-coronal-mouse-brain integration 
experiment. C Spatial autocorrelations of raw, Seurat and SPIRAL-integrated expressions on original or aligned 
coordinates for coronal mouse brain dataset. D Spatial arrangements of annotated domains on aligned 
coordinates of SPIRAL and PASTE in cortex and hippocampus regions. E SCS of annotated layers on aligned 
coordinates by SPIRAL and PASTE in coronal mouse brain dataset. F Domain-marker gene expression profiles 
on aligned coordinates by SPIRAL in hippocampus of coronal mouse brain
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batch effects effectively, while other methods were unable to integrate FFPE sample 
with the two frozen fresh samples. We noted that Seurat had higher iLISI (mean: 2.23 vs 
2.05 in Fig. 5B left) and lower SCS (mean: 557 vs 653 in Fig. 5B right), Moran’s I (mean: 
0.424 vs 0.666) and Geary’s C (mean: 0.424 vs 0.665) than SPIRAL (Fig.  5C). These 
results demonstrated clusters identified by methods missing spatial relationships could 
not represent spatial domains, which were defined as having high spatial coherence in 
both gene expression and histology [39, 40]. Furthermore, we specifically focused on 
the hippocampus region, where the “cord-like” and “arrow-like” structures serve as vis-
ible landmarks outlined by the Allen Brain Atlas [41] and domain-marker gene expres-
sions (Additional file 1: Fig. S4C). By examining the cluster arrangements derived from 
the embeddings of four spatial-based methods in the hippocampus region, we observed 
that SPIRAL outperformed other methods in delineating the dentate gyrus (DG) and 
the CA1/2 and CA3 layers of the hippocampus. These corresponded to cluster2, clus-
ter1, and cluster3, respectively, across all three samples (Additional file 1: Fig. S4D). In 
contrast, harmony_STAGATE and STAligner exhibited poorer performances on the 
‘10X_FFPE’ sample by missing the CA1/2 layers. Notably, DeepST failed to capture the 
‘arrow-like’ structure on all samples, particularly on the ‘10X_FFPE’ sample (Additional 
file 1: Fig. S4D).

We further aligned spatial coordinates across three samples, where we selected fresh 
frozen tissue with H&E staining (“10X_Normal”) as the reference coordinate map on 
account of its intact structure and high-quality gene expressions (Additional file 1: Fig. 
S4A and E). SPIRAL showed more accurate coordination alignments than PASTE, both 
in aligning the main functional domains, i.e., cortex (Fig.  5D, left) and hippocampus 
(Fig. 5D, right), and in aligning the whole samples (Additional file 1: Fig. S4F). The quan-
titative result of SCS also showed SPIRAL’s better performance than PASTE (Fig. 5E).

We then visualized the spatial distributions of gene expressions of the “cord-like” and 
the “arrow-like” structures within the hippocampus (Fig.  5F) and of the cortex layers 
(Additional file 1: Fig. S4G) in the aligned coordinates. We observed that the domain-
marker genes displayed enrichments in the corresponding domains whether of raw 
expression or Seurat- or SPIRAL-integrated expression, and SPIRAL-integrated genes 
had clearer spatial patterns. These results demonstrated the spatial patterns of gene 
expressions were preserved on the aligned coordinate system of SPIRAL, suggesting the 
feasibility to register new coronal mouse brain SRT data in the aligned coordinate map. 
Additionally, the integrated gene expressions of SPIRAL on aligned coordinates dis-
played clearer spatial patterns by the higher Moran’s I and Geary’s C than Seurat and raw 
(Fig. 5C).

SPIRAL can integrate SRT samples with different spatial technologies

Finally, we testified whether SPIRAL could integrate datasets with different spatial reso-
lutions using SRT data of mouse olfactory bulb (mouse OB) sequenced by 10X Visium, 
Stereo-seq [30], and Slide-seq V2 [31], whose resolutions were 50  µm, 35  µm (bin50, 
50 × 50 DNA nanoball), and 10 µm, labeled as (“10X Visium,” “Stereo-seq,” and “SlideV2”) 
respectively (Fig. 6A). In this experiment, we integrated data of Stereo-seq and Slide V2 
as a reference to register 10X Visium data (Fig.  6A). We showed the iLISI of the five 
methods in Fig.  6B and found SPIRAL-integration achieved the best performances in 
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batch integrations. The spatial arrangements of spatial clusters by SPIRAL-integration 
delineated the structures of mouse OB, whose layer-marker genes and spatial positions 
suggested the correspondences between typical structures of mouse OB and Louvain 
clusters: “7” vs accessory olfactory bulb (AOB), “6” vs rostral migratory stream (RMS), 
“1” vs granular cell layer (GCL_1), “4” vs GCL_2, “5” vs mitral cell layer (MCL), “0” vs 
external plexiform layer (EPL), “3” vs glomerular layer (GL), and “2” vs olfactory nerve 
layer (ONL) (comparing Fig. 6A, C, D). The domains identified by harmony_STAGATE 
revealed its inability to perform joint domain identifications, resulting in the failure to 
detect finer structures like the RMS in the low-resolution Stereo-seq data. This limita-
tion persisted even when the Louvain resolution was increased from 1.0 to 1.5 (Addi-
tional file 1: Fig. S5B). This observation was alleviated by STAligner (Additional file 1: 

Fig. 6  Mouse olfactory bulb. A laminar structures of Allen reference atlas with functional layers were 
annotated and H&E staining of 10X Visium and Stereo-seq data, this experiment aimed to integrate 
Stereo-seq data and Slide-seq V2 data, whose model were used to predict 10X Visium data. B Boxplot of 
iLISI-CoM of eight methods in integrating mouse olfactory bulb datasets of Stereo-seq and Slide V2-seq. 
C Joint clustering (Louvain) for integrated Stereo-seq and Slide V2-seq datasets by SPIRAL. D Violin plot of 
domain-marker gene expressions in derived clusters by SPIRAL
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Fig. S5C), which identified some common clusters, such as 8, 3, 0, 1, and 2, correspond-
ing to RMS, GCL_1, GCL_2, MCL, and GL. However, other common structures, such 
as ONL and EPL, were not accurately identified in a joint manner. The results of spatial 
alignment of Stereo-seq and Slide-seq V2 data with divergent coordinate scales demon-
strated the superiority of SPIRAL (Additional file 1: Fig. S5A).

After integrating Stereo-seq and Slide-seq V2, we wanted to test the abilities of predic-
tion and generalization of our model. To this end, we used the trained model to predict 
the 10X Visium data. The spatial distributions of the predicted clusters were well con-
sistent with the anatomic structures (Additional file 1: Fig. S5D and Fig. 6A). We fur-
ther registered the spots of 10X Visium data to the reference coordinates of Stereo-seq 
data, whose spatial arrangements of predicted clusters corresponded well with typical 
laminar organizations from GCL in the inner layer to ONL in the outer layer (Additional 
file 1: Fig. S5E). To assign the neurons of mouse olfactory bulb to domains, we predicted 
clusters of scRNA data [42] using a model trained by Stereo-seq and Slide-seq. We con-
structed a graph of scRNA by the similarities of the low-dimensional gene expressions. 
The percentages of cell types in each layer corresponded well with the prior knowledge, 
for example, the granule cells are in GCL, mitral and tufted cells are in MCL, external 
plexiform layer neurons in EPL, periglomerular cells in GL, and olfactory sensory cells in 
ONL [43–45] (Additional file 1: Fig. S5F).

We finally testified the spatial autocorrelations of the raw and integrated gene expres-
sions of SPIRAL and Seurat using Moran’s I and Geary’s C and found that our integrated 
genes reflected the spatial patterns more clearly, whether in the original coordinate maps 
or in the aligned coordinate maps (Additional file 1: Fig. S5G). The difference of the inte-
grated and the raw domain-marker gene expression profiles further indicated the ability 
of SPIRAL to denoise and impute gene expressions (Additional file 1: Fig. S5H).

Discussion
With the increasing development of spatial transcriptome technologies, more and more 
SRT data will be generated, which brings a great need for integrating and aligning these 
SRT data. Here, we proposed a method SPIRAL, to consecutively perform spatially batch 
effect removal and nonlinear coordinate alignment by integrating gene expression pro-
files and spatial contexts. SPIRAL is composed of two connected modules: SPIRAL-inte-
gration for batch effect removal and SPIRAL-alignment for spatial coordinate alignment. 
By combining inductive graph neural network GraphSAGE and domain adaptation net-
work, SPIRAL-integration could preserve spatial structures and eliminate unexpected 
discrepancies across samples, which also could be generalized to unseen SRT data. By 
utilizing the inferred clusters by embeddings of SPIRAL-integration, SPIRAL-alignment 
could accomplish cluster-wise coordinate alignments, which were more accurate than 
linear methods.

In this study, we applied SPIRAL to both simulated and several published data-
sets, which includes data from different experiments, different protocols, and differ-
ent SRT technologies. All these data demonstrate the superior of SPIRAL in removing 
batch effects and aligning coordinates, especially for samples with considerable differ-
ences in cell compositions and spatial structures. SPIRAL also denoised and imputed 
gene expressions to have clearer spatial patterns and stronger domain enrichments by 
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incorporating the spatial context of multiple samples. These genes were also proved to 
have biological functions. Finally, SPIRAL could be applied to unseen SRT data to pre-
dict their cluster labels and their new coordinates in reference coordinate systems.

However, SPIRAL can still be improved in the following aspects. Firstly, SPIRAL could 
further combine histological image, spatial locations, and gene expressions to remove 
batch effects both in gene expressions and in images, aligning both spots and pixels. 
This would enhance the delineation of morphological structures across multiple sam-
ples [46]. Secondly, SPIRL-alignment could be improved to ensure a more evenly distrib-
uted alignment within each cluster. Thirdly, while SPIRAL performs well with current 
datasets, its utility could be extended to higher resolution data, such as MERFISH [4] 
data, to achieve more precise delineation of structures. Additionally, parallel computa-
tion and distributed learning could be utilized to accelerate training procedures [47, 48]. 
Moreover, as spatial multiomics data become increasingly available, integration strate-
gies across various spatial omics would be desperately needed. SPIRAL could expand 
its capabilities to integrate a variety of spatial multimodal data, such as FISH-based SRT 
data and spatial proteomics data [49, 50].

Conclusions
In this contribution, we have presented SPIARL for multi-sample batch effect removal, 
domain identification, and spatial coordinate alignment in SRT data across different 
experiments, conditions, and technologies. In comparison with the existing methods, 
SPIRAL-integration achieves more thorough data integration and spatial structure pres-
ervation, SPIRAL-alignment produces more accurate coordinate alignment. In conclu-
sion, as an effective and convenient tool, SPIRAL facilitated multi-sample joint analysis 
of SRT data.

Methods
SPIRAL algorithm description

GraphSAGE

GraphSAGE (graph sampling and aggregating) is a deep neural network-based inductive 
graph node embedding framework, whose inductive learning mode superiorities general 
graph convolution network (GCN)-based methods on predictions of unseen data, which 
is the HCA intends to do for more and more unseen scRNA and SRT data using current 
data. GraphSAGE leverages node features and graph structures to learn an embedding 
function to embed nodes to low-dimensional spaces. In our framework, GraphSAGE 
functions as an encoder to generate low-dimensional embeddings by nonlinearly aggre-
gating gene expressions from its physical neighbors. We first convert SRT data into an 
undirected graph, Gd

(
Vd ,Ed

)
 for 

{
d = 1, . . . ,D

}
 samples. In graph Gd V d ,Ed  , each 

node represents a spot, labeled as vid ∈ Vd for spot i , and the edge eijd ∈ E represents 
the spatial correlation of spots i and j in sample d . We proposed two alternative meth-
ods to construct graph, knn-based and radius-based methods. We used knn-based 
method in this paper, and we set knn = 6 for 10X Visium data, knn = 8 for Slide-seq V2 
and Stereo-seq data, and knn = 10 for synthetic data. Let xid ∈ RM be the normalized 
and minmax scaled gene expression of spot i in sample d , where M represents the num-
ber of selected genes and X = {xid , ∀i = 1, . . . , Sd , d = 1, . . . ,D} . We set K  as the 
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number of layers of GraphSAGE. GraphSAGE takes X and 
G(V ,E) = {Gd

(
Vd ,Ed

)
, ∀d = 1, . . . ,D} as input, and let X be the initial embedding (i.e., 

h0id = xid , ∀i = 1, . . . , Sd , d = 1, . . . ,D ). For spot i of graph d , its kth(k = 1, ..,K − 1) 
embedding hkid is obtained by aggregating embeddings hk−1

jd , ∀j ∈ Nd(i) of previous layer 
from its neighbors Nd(i) , followed by nonlinear transformation, which is expressed as,

where Wk is the trainable weights and σ is the ReLU function. AGGREGATEk repre-
sents kth aggregation function, which can be meaning, pooling, or LSTM aggregator. 
The neighbors Nd(i) of spot i are obtained from Gd

(
Vd ,Ed

)
 . We get the final embed-

ding of spot i as,

The loss function of GraphSAGE depicts the ability of learned embeddings to recon-
struct original graph, which is expressed as maximizing the similarities of embeddings 
between nearby nodes and minimizing them between disparate nodes. For embedding 
zid , its loss is described as,

where spot j is a spot that co-occurs with spot i on fixed length random walk, and 
RWd(i) represents all possible co-occurrence spots in one minibatch starting at spot i in 
Gd

(
Vd ,Ed

)
 . ρ is the sigmoid function, and pdn(i) represents the distribution of negative 

samples. We treat (zid , zjd) as positive pairs and 
(
zid , zind

)
 as negative pairs. In our imple-

mentation, for each minibatch, we sampling almost the same number of positive pairs 
and negative pairs.

Decoder

The decoder takes the latent embedding as input to reconstruct the processed gene 
expression. The output of layer k − 1(k = 2, . . . ,K − 1) is computed by the output of 
layer k for spot i,

where Ŵk and b̂k are trainable parameters of decoder, and σ is the ReLU function. The 
output of oKid decoder is as,

where ρ is the sigmoid function, and x̂id is the recovered expression of spot i from sam-
ple d . The loss function of decoder is formulated as,

hk
Nd(i)

= AGGREGATEk

({
hk−1

jd , ∀j ∈ Nd(i)
})

;

hkid = σ(Wk
∗ CONCAT (hk−1

id , hk
Nd(i)

))

hKid = WKCONCAT
(
hK−1

id , hK
Nd(i)

)
;

zid = hKid

lgs(zid) =
∑

j∈RWd(i)
− log

(
ρ

(
zTidzjd

))
− Eind∈pdn(i)

log(1− ρ(zTidzind))

ok−1
id = σ(Ŵko

k
id + b̂k)

o0id = ρ(Ŵ1o
1
id + b̂1)

x̂id = o0id
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In which the summation operates on M genes.

Discriminator

The discriminator extracts a smaller dimension of zid as input, labeled as zbioid  , and prints 
sample ID as output, labeled as yid . The discriminator aims to make batch ID indistin-
guishable from low-dimensional representation zbioid  by teaching generator (GraphSAGE 
in our model) to fool a well-trained discriminator via adopting gradient reversal layer 
(GRL) [51]. The output of discriminator can be obtained as,

where fdisc is a multi-layer nonlinear function, and W̃ , b̃ are its trainable parameters. 
GRL functions as gradient flipping with the same input and output in the forward propa-
gation and the opposite input and output in the backward propagation. Note that when 
the number of batches is two, yid = 0 or 1 for d = 1 or 2 , and the nonlinear transform of 
the final layer of fdisc is sigmoid function. Otherwise, yid is a zero-vector except the dth 
position is 1 and the final nonlinear function is softmax function. The loss function of 
the discriminator is,

In which θ is a cross entropy function.

Classifier

The classifier takes another portion znoiseid  of zid as input, where 
zid = CONCATE(znoiseid , zbioid ) , and batch ID yid as output. The function of the classifier 
is to well distinguish batch ID to retain batch information in znoiseid  , whose concatenation 
with zbioid  as zid = [znoiseid , zbioid ] , preserving the original structure, which can reconstruct 
more accurate original expressions. The design of this classifier is able to obtain gene 
expressions without batch effects by setting znoiseid = 0, ∀i = 1, . . . , S, d = 1, . . . ,D  [14]. 
The output and loss function of classifier are,

where fclass is a multi-layer nonlinear function, and W , b is its trainable parameters. 
ynoiseid  , yid , and θ have the same form as the discriminator mentioned before.

Total loss

The total loss of SPIRAL-integration is weighted summation of the four losses in one 
minibatch, where M represents the number of genes and

lde
(
x̂id , xid

)
=

∑

M

−xid log
(
x̂id

)
− (1− xid)log(1− x̂id)

ỹbioid = fdisc(GRL(z
bio
id ); W̃ , b̃)

GRL(zbioid ) = zbioid ;

∂GRL(zbioid )

∂zbioid

= −1

ldisc

(
ỹbioid , yid

)
= θ(ỹbioid , yid)

ynoiseid = fclass(z
noise
id ;W , b)

lclass
(
ynoiseid , yid

)
= θ(ynoiseid , yid)



Page 20 of 26Guo et al. Genome Biology          (2023) 24:241 

The overall architecture

In all experiments, we set the layer of GraphSAGE as 512–32, the decoder as 32–512, 
the classifier as 4, and the discriminator as 32–16. The � and γ are all set as 1, and the 
meaning aggregator are used in all experiments. Adam optimizer is used to minimize 
ltotal , and the initial learning rate and weight decay are set as 0.001 and 0.0005. The batch 
size is set 16 for simulating data, 256 for sagittal mouse brain, coronal mouse brain and 
512 for mouse olfactory bulb and DLPFC, and epoch is set 100 for all experiments. In 
each minibatch, for each spot, its positive and negative pairs are randomly sampled. We 
set the number of walks as knn , and the number of steps in one round of walk as 1 for 
positive pairs. In our experiment, we sampled almost the same number of negative pairs 
as positive pairs for each spot in minibatch via sampling from spots excluding spots co-
occurrence with this spot in random walk.

Coordinate alignment

Firstly, we selected one of samples as reference, on to which all other samples are 
aligned. There are no strict conditions for reference selection, which can be the one with 
complete spatial domains, for example, 10X Visium has larger priority than Slide-seq as 
it has larger views. Although, do not worry about this problem too much, because we 
can extend the region of reference coordinate system by aligning new clusters. Next, we 
registered the shared clusters between the reference sample and the remaining samples 
using biological embedding. Specifically, for shared cluster c(c = 1, . . . , C) , the spot set 
of reference sample R(R ∈ {1, . . . ,D}) and studied sample d are labeled as SPR

c  and SPd
c  , 

we calculated Gromov-Wasserstein distance like PASTE,

where e : RM
× RM

→ R
+

 , is a function to calculate the distance of biological embed-
dings between spots of reference sample and other samples. πij represents the alignment 
probability of spot i and spot j , dik represents the physical distance of i and spot k , the 
same with πkl , and djl . α balances the importance between expression profile and spatial 
structure. Then, we calculated the new coordinates of other samples at reference coor-
dinate system based on � . We calculated the new coordinate of spot j of cluster c of 
sample d as

where coordRj  is the new coordinates of spot j in reference coordinate map. Finally, we 
conducted coordinate transformation, mainly including rotations and translations, to cal-
culate the new coordinates of sample-specific clusters by regarding the spots of shared 

ltotal =
∑

i,dǫminibatch

lgs

(
zbioid

)
+lde

(
x̂id , xid

)
∗M+ldisc

(
ỹbioid , yid

)
∗�+lclass

(
ynoiseid , yid

)
∗γ

Fc

(
�;ZR,DR,Zd ,Dd , e,α, c

)
= (1− α)

∑

i ∈ SPR
c

j ∈ SPd
c

e
(
zbioiR , zbioid

)
πij+α

∑

i, k ∈ SPR
c

j, l ∈ SPd
c

(dik − djl)
2πijπkl

coordRj =

1∣∣{πij > 0, ∀i ∈ SPR
c

}∣∣
∑

πij>0,∀i∈SPRc

coordRi
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clusters as landmark. We used Procrustes function of vegan package of R [52], which 
rotates a configuration to maximum similarities with another configuration [53, 54].

Parameter selection

There are two key parameters to be considered, parameter � of SPIRAL-integration, 
controlling the degree of batch effect removal, and parameter α of SPIRAL-alignment, 
balancing the importance of gene expressions and spatial correlations. For data from 
the same tissue sample, � = 1 can achieve effective and accurate batch effect removal, 
while for data having both tissue-shared and significant tissue-specific cell types, such 
as shared immune cells for many tissues, adjusting � to smaller value would relieve fault 
mixing of different cell types [14]. For cluster-wise coordination alignment, larger α can 
compensate for incorrect clustering results by assigning higher weights on gene expres-
sions, and smaller α can preserve spatial correlations more accurately by weighting more 
on spatial distances. In our studies, α ranges from 0.5 to 0.8 having satisfactory results.

Clustering methods

For SPIRAL embeddings, we used Louvain algorithm implemented by “scanpy.
pp.neighbors” and “scanpy.tl.louvain” of scanpy package on simulated and sagittal mouse 
brain data, Louvain algorithm implemented by “FindNeighbors” and “FindClusters” of 
Seurat package on coronal mouse brain and mouse olfactory bulb data, and “mclust_R” 
of STAGATE package on DLPFC data. For other compared methods, we adopted the 
provided clustering methods by them.

Refine clustering

For DLPFC and mouse olfactory bulb data, we refined the cluster label of each spot by its 
surrounding spots as did in spaGCN [55].

Metrics description

LISI‑CoM

We evaluated the extent of integrations of same domains and separations of different 
domains by the local inverse Simpson index (LISI) of batches in each domain (LISI-
batch) and the LISI of domains in all data (LISI-domain) [12]. The combination of nor-
malized LISI-batch and LISI-domain is calculated as,

SCS

We evaluated the spatial coherence of predicted cluster labels on original coordinates 
and annotated labels on aligned coordinates by z-scaled spatial coherence scores, which 
was proposed by PASTE [21] by calculating the frequencies of the coexistences of any 
two labels compared with random assignments of labels,

LISI_CoM = 2 ∗
(1/LISI_domainnorm) ∗ LISI_batchnorm

(1/LISI_domainnorm)+ LISI_batchnorm
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where a, b = 1 . . .K  represents the labels, and E represents the total number of edges of 
constructed graphs.

Moran’s I and Geary’s C

We evaluated the spatial autocorrelations by Moran’s I and Geary’s C, which are used to 
measure spatial autocorrelations of genes in SRT data analysis  [37, 38]. We calculated 
these two values by two R functions, “Moran.I” of package “ape” and “geary.test” of pack-
age “spdep.” The values of Geary’s C are converted by subtracting by 1 to make sure lager 
value means lager spatial autocorrelations.

Pseudo time

The pseudo-time is calculated by sc.tl.dpt of “scanpy” package, which is used to calculate 
spearman correlations between laminar labels from 1 to 7, representing from L1 to WM.

Data description

Simulating data

We adopted Splatter to simulate gene expressions. We simulated four two-batch data-
sets and one three-batch dataset, all of which contain 500 genes. In simulate1-simulate3, 
we simulated the same cell type compositions and two similar cell types: Group1 and 
Group2; in simulate4 and simulate 5, we generated different cell type compositions. For 
spatial positions, we randomly assigned cells of each cell type to a restricted regular 
region. In simulate1, the spatial distributions of cell types are the same; in simulate2, the 
spatial ordering of cell types among two batches are reversed; and in simulate3, the coor-
dinates of one batch are rotated on the basis of simulate2. In simulate4 and simulate5, we 
assumed the same spatial arrangements of shared cell types.

DLPFC data

The DLPFC data consists of 12 sections for three donors, each donor has two pairs of 
10µm replicates, and the two pairs of replicates are 30µm apart. The number of spots 
ranges from 3498 to 4789 for each sample, and the layers were manually labeled, which 
are ground truth for comparison.

Sagittal mouse brain data

The sagittal mouse brain is divided along the anterior-posterior axis, which have one pair of 
replicates respectively. The number of spots ranges from 2696 to 3353. We annotated domains 
by domain-marker genes and H&E staining images. The links of these data are as follows:

https://​suppo​rt.​10xge​nomics.​com/​spati​al-​gene-​expre​ssion/​datas​ets/1.​0.0/​V1_​
Mouse_​Brain_​Sagit​tal_​Anter​ior
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https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Anterior
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Anterior
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https://​suppo​rt.​10xge​nomics.​com/​spati​al-​gene-​expre​ssion/​datas​ets/1.​0.0/​V1_​
Mouse_​Brain_​Sagit​tal_​Anter​ior_​Secti​on_2
https://​suppo​rt.​10xge​nomics.​com/​spati​al-​gene-​expre​ssion/​datas​ets/1.​0.0/​V1_​
Mouse_​Brain_​Sagit​tal_​Poste​rior
https://​suppo​rt.​10xge​nomics.​com/​spati​al-​gene-​expre​ssion/​datas​ets/1.​0.0/​V1_​
Mouse_​Brain_​Sagit​tal_​Poste​rior_​Secti​on_2

Coronal mouse brain data

There three coronal mouse brain sections, which are formalin-fixed paraffin-embedded 
(FFPE) tissue with H&E staining, fresh frozen tissue with H&E staining, and fresh frozen 
tissue with immunofluorescence (IF) staining. The number of spots is 2264, 2702, 2903. 
We labeled these tissues by marker genes and Allen brain atlas.

The links of these data are as follows:

https://​www.​10xge​nomics.​com/​resou​rces/​datas​ets/​mouse-​brain-​secti​on-​coron​al-1-​
stand​ard-1-​1-0
https://​www.​10xge​nomics.​com/​resou​rces/​datas​ets/​adult-​mouse-​brain-​secti​on-1-​
coron​al-​stains-​dapi-​anti-​neu-n-​1-​stand​ard-1-​1-0
https://​www.​10xge​nomics.​com/​resou​rces/​datas​ets/​adult-​mouse-​brain-​ffpe-1-​stand​
ard-1-​3-0

Mouse olfactory bulb data

We used mouse olfactory bulb data of 10X Visium, Stereo-seq and Slide-seq V2, whose 
resolutions are 50µm , ∼ 35µm , and 10µm , and the number of spots is 1185, 8827, 
18,537. We used Seurat to preprocess the Slide V2 data, which includes calculating and 
plotting the quality control features and filtering the low-quality spots, that with less 
than 3000 UMIs and 15 genes. For Stereo-seq data, we used the in-house built R pro-
gram to merge transcripts to bins, the detail process includes specify a bin_size, adjust 
coordinates, calculate bin IDs, aggregate UMI counts, and get the new coordinates of 
each bin. In this paper, we used bin_size as 50 to obtain approximately 35μm resolution. 
The 10X Visium data can be accessed  via https://​www.​10xge​nomics.​com/​resou​rces/​
datas​ets/​adult-​mouse-​olfac​tory-​bulb-1-​stand​ard.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​03078-6.

Additional file 1: Figure S1. Simulating. A. Spatial arrangements of cell types on original and aligned coordinates 
by SPIRAL and PASTE for simulate 1-3 datasets. Colors represent cell types and shapes represent batches. B-C UMAP 
visualizations of simulate2-3 (B) and simulate4-5 (C) datasets, each dataset occupies two rows, in which colors 
represent cell types (upper) and batches (bottom). Figure S2. DLPFC. A. UMAP visualizations of four-section integra-
tions for each donor (donor1 in upper, donor2 in middle, donor3 in bottom). B. Spatial arrangements of annotated 
layers on aligned coordinates by SPIRAL and PASTE (left, middle) and spatial distributions of clusters (mclust; right) 
on SPIRAL-aligned coordinates. C. Spatial distributions of raw, Seurat and SPIRAL-integrated domain-marker gene 
expressions, RORB, KRT17 and PCP4 in 151507, 151669, 151673 and SPIRAL-aligned coordinates. Figure S3. Sagittal 
mouse brain. A. H&E staining images of both anterior and posterior mouse brains. B. The anatomy diagram of sagittal 
mouse brain, where black line divides mouse brain into anterior and posterior parts. C. Spatial visualizations of anno-
tated domain labels for four samples. D. UMAP visualizations of raw and integrated embeddings by five methods in 

https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Anterior_Section_2
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integrating four samples. Each method occupies two columns, where domains are colored in left and batches are 
colored in right. E. Spatial arrangements of annotated domains on samples with one of replicates were rotated 60 
degree. F. Spatial arrangements of annotated domains on aligned coordinates of anterior1&2 (left) and posterior1&2 
(right) by SPIRAL (upper) and PASTE (bottom). G. Spatial disposition of mclust-derived clusters by SPIRAL on four 
samples. H. Comparison of the expressions of DEGs from cluster10 and DEGs from cluster 2,3,15,21 in mouse olfac-
tory bulb domains. Figure S4. Coronal mouse brain. A. Annotations of domains generated by marker genes and 
Allen mouse brain atlas in three coordinates. B. UMAP visualizations of integrations of embeddings from origin and 
five methods. C. The anatomy diagram of coronal mouse brain for hippocampus structures (left) and the distribu-
tions of the corresponding gene expressions (right). D. The arrangements of derived clusters by for spatial based 
methods on the region of hippocampus. E. Statistics of sequence depth of three protocols. F. Spatial arrangements of 
annotated domains on aligned coordinates by SPIRAL (left) and PASTE (right). G. Spatial patterns of domain-marker 
gene expressions from raw data and SPIRAL integrated data in the cortex region of 10X Normal data. Figure S5. 
Mouse olfactory bulb. A. Spatial distributions of clusters derived by SPIRAL in aligned coordinates by SPIRAL (left) and 
PASTE right). B&C. Spatial distributions of Louvain-derived clusters on the embeddings of harmony_STAGATE (B) and 
STAligner (C). D. Spatial distributions of predicted clusters of 10X Visium data using model trained by Stereo seq data 
and Slide V2 data. E. Spatial distributions of of predicted clusters on aligned coordinates by SPIRAL. F. The percent-
ages of cell types in each cluster. G. Spatial autocorrelations of raw and integrated gene expressions in original and 
aligned coordinates. H. Spatial distributions of raw, SPIRAL-integrated and Seurat-integrated layer-marker expres-
sions, Nrgn, Gabra1, Slc6a11 and Kctd12 on three samples. Each method occupies one row.

Additional file 2. Supplementary Table.
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