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Abstract
Sebum is an important component of the skin that has attracted attention in many fields, including dermatology and cosmetics. 
Pore expansion due to sebum on the skin can lead to various problems. Therefore, it is necessary to analyze the morphologi-
cal characteristics of sebum. In this study, we used optical coherence tomography (OCT) to evaluate facial sebum areas. We 
obtained the OCT maximum amplitude projection (MAP) image and a cross-sectional image of skin pores in the facial area. 
Subsequently, we detected the sebum in skin pores using the detection algorithm of the ImageJ software to quantitatively 
determine the size of randomly selected pores in the proposed MAP images. Additionally, the pore size was analyzed by 
acquiring images before and after facial sebum extraction. According to our research, facial sebum can be morphologically 
described using the OCT system. Since OCT imaging enables specific analysis of skin parameters, including pores and 
sebum, skin analysis employing OCT could be an effective method for further research.

Keywords Facial skin pore · Spectral-domain optical coherence tomography (SD-OCT) · Sebum extraction · Image 
processing · Cross-sectional image

1 Introduction

As the outermost organ of the body, the human skin is a 
multilayered structure that forms the main interface with the 
environment [1]. The skin is largely composed of three lay-
ers called the epidermis, dermis, and hypodermis [2]. Skin-
care is crucial because the skin protects the body from the 
environment, including heat, sunlight, and cold [3]. Numer-
ous skin characteristics, including wrinkles, blackheads, 
roughness, and texture, have been studied; among these, skin 

pores are a crucial component in skin surface analysis [4, 5]. 
The term “skin pores” refers to the expanded openings in the 
hair follicles on the surface of the skin [6]. The size of skin 
pores where hair and sebum are present may vary depend-
ing on internal and external factors, such as aging or sebum 
secretion, and many of them are also distributed around the 
nose [7, 8]. Additionally, when the internal structure of the 
skin changes, the structure of the skin surface around pores 
also changes, which leads to a change in pore sizes [9]. As 
such, the pore sizes differ under various conditions, and sev-
eral studies have been conducted to objectively and quanti-
tatively analyze pore size [6–10]. Therefore, it is crucial to 
examine pores of various sizes and shapes.

Facial pores have been evaluated using various methods, 
such as the visual evaluation method of the distribution and 
size of pores and optimal image analysis of the number and 
size of pores [11–13]. Also, many studies have been con-
ducted in the fields of medical skin research and computer 
animation for detecting changes in skin structure [14–16]. 
Generally, high-resolution photos with different filters and 
polarizations have been commonly used to evaluate fine 
lines, wrinkles, scars, skin tone, pigmentation, and clogged 
pores.
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Among optical imaging technologies for skin investiga-
tion, ultrasound imaging, reflection confocal microscopy 
(RCM), fluorescence microscopy, and Phase Shift Rapid 
In Vivo Measurement of Skin (PRIMOS) have been used as 
useful tools for skin analysis [17–20]. Ultrasound imaging 
can be performed at millimeter depths noninvasively, but its 
resolution is limited to approximately 50 μm [5, 21]. Alter-
natively, RCM and fluorescence microscopy can provide 
images showing cellular changes in high contrast, but these 
techniques have the limitations of a narrow field of view and 
a shallow penetration depth [10, 22]. Moreover, the need to 
use a fluorescent substance is another limitation of fluores-
cence microscopy. Finally, an imaging system commonly 
used for skin measurements, PRIMOS (Canfield, USA), can 
provide noninvasive, fast, and accurate measurements of the 
skin surface for analysis of, for example, skin topography 
and the number of wrinkles [23]. However, the results of 
PRIMOS depend on the subject’s orientation, motion arti-
facts, and backscatter, which makes accurate and reliable 
skin analysis challenging [24]. Therefore, a noninvasive 
and high-resolution optical imaging technique is required 
to assess skin sebum efficiently.

Optical coherence tomography (OCT) is a noninvasive, 
high-resolution imaging technique that provides real-time 
and three-dimensional (3D) morphological information 
about biological tissues [25–27]. This technique is char-
acterized by high resolution (1–15 μm) in imaging depths 
from sub-millimeter to millimeter scale (0.3–2 mm), which 
means that OCT can detect microscopic internal structures 
[28, 29]. OCT has been widely used in multiple fields, 
such as ophthalmology [30, 31], otolaryngology [32–35], 
dentistry [36–38], and even agriculture [39, 40]. Addition-
ally, the combination of interference signals generated via 
high-sensitivity spectroscopy detection can provide poten-
tially comprehensive information about biological tissues 
through precise morphological visualization of the samples. 
Moreover, studies using OCT to examine skin pores without 
removing tissue have been conducted [41–43]. In particu-
lar, high-resolution OCT techniques, such as micro-OCT 
[44–46], are promising tools to guide the detailed morpho-
logical evaluation of sebaceous glands in clinical settings 
to investigate disease mechanisms and therapeutic targets.

In this study, we developed a SD-OCT system to nonin-
vasively image the skin and quantify the areas of pores and 
sebum. The USFA 1951 resolution target was used to meas-
ure lateral resolution to quantitatively evaluate the perfor-
mance of the SD-OCT system. Using the proposed system, 
we obtained a 3D maximum amplitude projection (MAP) 
image and two-dimensional (2D) cross-sectional images of 
skin pores, including the sebum. A pore detection algorithm 
in ImageJ software was used to quantitatively measure the 
size of selected pores on the MAP images. Additionally, we 
evaluated the pore size before and after sebum extraction 

from the nose area. Our findings will potentially be a basic 
proposal for further studies on skin sebum.

2  Materials and methods

2.1  Development of spectral‑domain OCT system

The configuration of the SD-OCT system is shown in 
Fig. 1. The SD-OCT system operates with a SLED light 
source (EXS210022-02, EXALOS, Switzerland) having a 
center wavelength of 840 nm and a 50-nm bandwidth, which 
is also called full width at half maximum (FWHM). The 
light from the SLED source travels to a 50:50 fiber coupler 
(TW850R5A2, Thorlabs, USA), which delivers the divided 
light to the reference arm and sample arm, respectively. The 
light travels along the sample path through the collimator, 
one pair of lenses (lens1; AC254-050-B and lens2; AC254-
100-B, Thorlabs, USA), and the objective lens (10 × M Plan 
APO, Edmund Optics, USA) in sequence until it reaches the 
sample. In this process, the collimator collimates the beam, 
the pair of lenses expands the beam spot size, and the objec-
tive lens with a numerical aperture of 0.28 focuses the beam 
on the mirror. In the reference arm, the collimator, lens 1, 
and mirror were used, which are the same as the sample arm, 
to match the optical path length of the sample arm. Addi-
tionally, a dispersion compensation block was employed to 
correct the dispersion difference in the sample and reference 
arm. Moreover, the software-based dispersion compensation 
algorithm was applied as a post processing method. The mir-
ror reflects the focused light so that it is backscattered and 
returned in the direction from which it came.

Additionally, in the sample path, the two-axis galvanom-
eter scanner (GVS002, Thorlabs, USA) is placed to enable 

Fig. 1  System configuration of the presented optical coherence 
tomography (OCT) system to detect the skin pore elements. C colli-
mator; DG diffraction grating; FC fiber coupler; L lens; LSC line scan 
camera; M mirror; OL objective lens; S sample; SLED super lumines-
cent diode; PC polarization controller
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raster scanning of the sample. The backscattered beam from 
both sides of the path (reference and sample) interferes 
within the fiber coupler and enters the compactly custom-
made spectrometer in an aluminum case [47, 48]. The cus-
tomized version consists of a mirror, a transmission diffrac-
tion grating (1800 lines/mm, Wasatch Photonics Inc., USA), 
an achromatic focusing lens (AC508-100-1B. Thorlabs, 
USA), and a CMOS line-scan camera with 2048 (H) × 2 (V) 
pixels (high-speed CMOS camera, spL2048-140 km, Basler, 
Germany). The diffraction grating disperses the interfered 
light according to its wavelength. Finally, the focusing lens 
focuses the dispersed light on the line-scan camera, and a 
raw signal is detected by the camera.

2.2  Flowchart of system operation

The flow chart of the software program showing the data 
flow between the CPU and graphics processing unit (GPU) 
processes and the timing diagram for scanning and image 
acquisition as presented in Fig. 2. LabVIEW 2017 software 
was used to display the cross-section (B-scan) for data acqui-
sition. In the developed SD-OCT system, a frame grabber 
(PCIe-1433, National Instruments, USA) was used to trans-
mit and receive line-scan camera signals. We also utilized 
Compute Unified Device Architecture (CUDA) through a 
2816-core GPU using multithreading (GeForce GTX 980 
Ti, NVIDIA, USA) for fast data processing. To remove 
background noise and nonlinearity in the raw signal, data 

processing, including background removal, k-linearization 
(wavenumber linearization), and fast Fourier transform, were 
applied to the CUDA sub-processor of the GPU. As the final 
step in GPU processing, log scaling was applied to the data, 
and the resulting data was sent back to the CPU thread to 
display the B-scan image in real-time. The frame rate was 50 
frames per second; therefore, it took 20 ms to display a sin-
gle B-scan image. In the present study, 1000 B-scan images 
were combined, and it took 20 s to acquire MAP (C-scan) 
images. All OCT B-scan images were reconstructed to gen-
erate cross-section, En-face, and MAP images.

2.3  Post‑processing algorithm for skin pore 
detection

To detect and analyze skin pore characteristics, a five-step 
post-processing algorithm for obtaining OCT data was con-
figured in ImageJ (Fig. 3). ImageJ is a freely distributed 
program based on JAVA and uses simple image-processing 
technology that analyzes images at the pixel level [49]. 
Because ImageJ has been used in various scientific stud-
ies, such as those on skin structure and internal mitochon-
drial information, we attempted to analyze the skin OCT 
data using this tool. First, the Smooth and Gaussian blur 
filters were used on the original image to clearly distinguish 
between the skin pores and the rest of the facial features. 
Subsequently, the location of the pore area was indicated on 
the optimized image through the “Find Maxima” function 

Fig. 2  Description of the flow 
diagram about the systemic 
operation. a Signal processing 
in a software part of the OCT b 
A timing diagram showing the 
scheduling of each hardware 
component
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installed in ImageJ, as shown in the Prominence part, 
and precision detection was performed by controlling the 
numerical value of prominence range. Then pore extraction 
was performed based on the detected location. Finally, the 
boundary edge of the extracted area was identified, and the 
resulting image was derived by overlaying the identified 
edge on the existing original image. Although the extracted 
areas contained some other parts except for pores, it was suf-
ficient to detect pores from the acquired OCT MAP data. In 
the implemented algorithm, quantitative measurement was 
performed on the resulting data by measuring the size of 
the facial pores based on the overlaid results. We set sigma 
(radius) as 3.0 for Gaussian blur, prominence as 46, and 
using ‘exclude edge maxima, light background, and point 
selection method for precision detection.

3  Results

3.1  Quantitative OCT performance evaluation

To evaluate the performance of the OCT during the experi-
ment, we measured the lateral resolution (Fig. 4). We used 
the resolution target (USAF 1951, Edmund Optics, USA) 
and the obtained OCT MAP image, as shown in Fig. 4a. 
First of all, to perform the intensity profiling, we applied 
intensity reversal to the image in Fig. 4a, as shown in 
Fig. 4b, in which group 7 was enlarged. From this image, 
FWHM intensity fluctuation, corresponding to the lateral 
resolution, analysis was conducted on element 3 of group 7 

of the resolution target in two axes indicated by red-dotted 
lines (yellow arrows x and y), respectively. As shown in 
Fig. 4d and e, the intensities in both the x and y axes were 
accurately extracted from the red dotted line in Fig. 4b. As 
expressed in each FWHM graph, the three lines on each 
axis were clearly identified, confirming that the lateral 
resolution of the developed SD-OCT was about 3.1 μm. 
Furthermore, the vertical red dotted line in Fig. 4a repre-
sents the scanned region, and the cross-sectional image of 
that portion was obtained, as shown in Fig. 4c.

3.2  Mapping and cross‑sectional image of the skin

OCT imaging was performed on the skin of a healthy man 
in 20 s. During in-vivo human imaging, we used a support 
that can raise the chin and place the forehead with bench-
top type OCT configuration to minimizing the motion-
artifact. Representative images obtained during the experi-
ment, including the reconstructed MAP images (left) and 
cross-sectional images (right), are shown in Fig. 5. As 
shown in Fig. 5a, the appearance of sebum could be con-
firmed in the OCT MAP image. The corresponding circles 
in Fig. 5b, d, f show the cross-sections of the skin sebum, 
which correspond to the red dashed lines in those Fig. 5a, 
c, e. The distribution and overall shape of the several 
sebum are shown in these images. Especially the type of 
pore to which the hair belongs was also distinguished in 
the OCT cross-sectional image, as shown in Fig. 5f.

Fig. 3  Process of skin pore detection using the image post-processing method of Image J
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3.3  Applied algorithm and quantitative analysis

Using the obtained OCT MAP data of the skin, we per-
formed quantitative analysis on each pore by applying the 
developed algorithm. The images were overlaid by adjusting 
the numerical values for each image in ImageJ (Fig. 6a–c). 
Facial pores appearing in the original images were almost 
detected, and area analysis was performed on three repre-
sentative pores indicated by the red dotted circles in each 
figure. Nine skin pores with different sizes were arbitrarily 
selected (comparably large, medium, and small), and the 
analyze particles function of ImageJ was used to quantita-
tively measure the size of each part (Table 1). Some pores 
were detected by dividing them into outer and inner bounda-
ries in the algorithm because of severe reflection caused by 
sebum during imaging, but the area was measured based 
on the outer boundary regardless of the inner boundary. 
The measured pore sizes varied from a maximum of 22.975 
 mm2 to a minimum of 1.090  mm2. In terms of the accuracy 
of skin pore detection method, there are total 20 skin pore 

candidates in Fig. 6a–c. Among them, there are 16 real skin 
pores and others are artifacts on the face surface. Therefore, 
the calculated accuracy of skin pore detection method is 
80%.

3.4  Quantitative analysis before and after skin 
sebum extraction

Additionally, using the pimple extractor to extract the 
sebum from the nose, the pore size before and after 
extraction was compared (Fig.  7). The reconstructed 
volumetric morphology of the pore in the nose before 
and after sebum extraction is shown in Fig. 7a and d, 
respectively. From here, the en-face images of these two 
regions were acquired to analyze the areas in each case 
(Fig. 7b and e). After applying the implemented algo-
rithm, the area before sebum extraction was quantitatively 
measured to be approximately 33.705  mm2, and the area 
after sebum extraction was approximately 16.879  mm2 
(Table 2). The size of the pore from which sebum was 

Fig. 4  Performance evaluation of OCT using the resolution target. 
a OCT MAP image of the resolution target focused on 6–7 Groups. 
b Specifically magnified OCT MAP image of the target 7 Group. c 

OCT 2D cross-sectional image that corresponds to the vertical red-
dashed line in (a). d, e Resolution analysis using A-scan profiling of 
each of the x and y axes marked with a red-dotted line in (b)
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extracted was reduced, and the extraction rate was calcu-
lated to be approximately 49.9%. Furthermore, the cross-
sectional image of each part was obtained to visualize 
the extracted part (Fig. 7c and f). These results show that 

the SD-OCT system can be used to acquire 3D and 2D 
images for quantitative and qualitative evaluation of the 
areas before and after sebum extraction.

Fig. 5  Skin sebum images were 
obtained by using OCT. a, c, e 
MAP OCT images of the skin 
surface. b, d, f Cross-sectional 
OCT images were obtained at 
the vertical red-dashed line in 
(a), (c), and (e), respectively

Fig. 6  Quantitative analysis of the red-dotted circle areas in each MAP image a–c of OCT to which the implemented algorithm was applied

Table 1  Quantitative analysis 
table of the skin pore areas 
indicated by red-dotted circles 
in the above image (a, b, c)

Sebum list (unit) (a) (b) (c)

Pixel mm2 Pixel mm2 Pixel mm2

1 1388 6.203 858 3.834 322 2.542
2 1567 7.003 5141 22.98 356 2.811
3 548 2.449 244 1.090 508 4.011
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4  Discussion

OCT is a valuable imaging technique that can perform 
high-resolution and noninvasive imaging for the meas-
urement of facial skin features. With the development of 
OCT-related technologies, many studies [50–52] have been 
conducted on skin features, such as pores, wrinkles, and 
sweat glands. This study aimed to measure the pore size, 
including sebum, in three arbitrarily selected cases as a 
preliminary step in skin sebum research. Since the average 
size of skin pores shows a rather high variability among 
ethnic groups, ranging from 0.03  mm2 to over 1  mm2 [53], 
it is required to enhance the lateral resolution of OCT to 
conduct the quantitative analysis with high accuracy for 
various sizes of skin pores. Therefore, we enhanced the 
lateral resolution compared to the conventional OCT 
to improve the versatility of our proposed method. The 
measured values before and after sebum extraction were 
compared. In addition, the selected case proves that OCT-
based quantitative analysis is possible through the fact 
that the extracted area is included in the depth of focus of 
the used OCT system. Additionally, the implemented area 

measurement algorithm was suitable for measuring skin 
pore sizes. Unlike conventional ultrasound imaging, RCM, 
and fluorescence microscopy, the morphological appear-
ances of the skin could be intuitively visualized using 
OCT with a label-free feature, high resolution, and a wide 
field of view. Specifically, OCT has advantages in terms 
of resolution (higher than ultrasound imaging), the field of 
view and penetration depth (much wider and deeper than 
RCM), and labeling (fluorescent substance is required in 
fluorescence microscopy). In addition, specifically in OCT 
and PRIMOS comparison, although the imaging speed of 
PRIMOS is faster than OCT by utilizing the area scan 
camera, OCT has a distinction in that it can provide high-
resolution lateral and depth-direction resolution of internal 
tomographic structures that PRIMOS cannot provide.

The properties of the optical interference-based OCT sys-
tem in the present skin sebum study can be further improved. 
In this study, we preferentially performed area measurements 
using 3D MAP images, but additional volume analysis using 
cross-sectional images is required to analyze the morpho-
logical characteristics of sebum. To proceed with quantitative 
volumetric analysis of sebum, the sebum properties can be 
clearly distinguished by increasing the penetration depth of 
the system and better revealing the structure of the skin sebum. 
By adjusting the optical component to increase the penetration 
depth, the structure in the depth direction of the object can be 
analyzed closely. Improved penetration depth would enable a 
volumetric and cross-sectional analysis of skin sebum images 
obtained with the OCT system in future studies. In addition, 
in terms of imaging speed, the maximum achievable A-line 
rate of this system is 100 kHz when considering the acquisi-
tion and processing time. In this case, the frame rate of B-scan 
is able to be increased by 200 fps (100 kHz/500 A-lines) and 

Fig. 7  Comparative analysis of OCT images before and after sebum 
extraction. a, d 3D reconstructed skin sebum areas. b, e En-face 
images of the OCT were reconstructed after using the algorithm. c, 

f Cross-sectional OCT images of the sebum area are indicated by the 
red dotted line in (a) and (d)

Table 2  Quantitative analysis table of the skin pore areas before and 
after sebum extraction indicated by red-dotted circles in the above 
image (b) and image (e)

Sebum extraction (unit) (a) (b)

Pixel mm2 Pixel mm2

Area 7542 33.705 3777 16.879
Extracted rate 49.9%
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one 3D volume is acquired in 5 s (1/100 kHz * 500 A-lines * 
1000 B-scans), which enhances the applicability of OCT in 
clinical fields. Moreover, the imaging speed of OCT is also 
able to be increased by using the dual camera-based SD-OCT 
setup [54] or by introducing swept-source OCT. The informa-
tion obtained in this study enabled quantitative analysis of the 
size of various sebum-containing pores before and after sebum 
extraction. The findings of the present study provided a quan-
titative basis for the noninvasive 3D evaluation of skin sebum.

5  Conclusion

In conclusion, we used the skin measurement algorithm in the 
proposed SD-OCT system to evaluate an arbitrary sebum area 
of the face. OCT images enabled noninvasive measurement of 
the morphological structures of pores and sebum areas. The 
obtained MAP image was processed using an ImageJ pore 
detection algorithm to quantitatively analyze the areas of the 
selected pores. We also analyzed the areas of nose skin before 
and after sebum extraction, which further demonstrated the 
usefulness of OCT as a tool for skin research as it could quan-
titatively evaluate skin pores and sebum characteristics.
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