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Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder in the world after Alzheimer’s disease. 
Early diagnosing PD is challenging as it evolved slowly, and its symptoms eventuate gradually. Recent studies have demon-
strated that changes in speech may be utilized as an excellent biomarker for the early diagnosis of PD. In this study, we have 
proposed a Chirplet transform (CT) based novel approach for diagnosing PD using speech signals. We employed CT to get the 
time-frequency matrix (TFM) of each speech recording, and we extracted time-frequency based entropy (TFE) features from 
the TFM. The statistical analysis demonstrates that the TFE features reflect the changes in speech that occurs in the speech 
due to PD, hence can be used for classifying the PD and healthy control (HC) individuals. The effectiveness of the proposed 
framework is validated using the vowels and words from the PC-GITA database. The genetic algorithm is utilized to select 
the optimum features subset, while a support vector machine (SVM), decision tree (DT), K-Nearest Neighbor (KNN), and 
Naïve Bayes (NB) classifiers are employed for classification. The TFE features outperform the breathiness and Mel frequency 
cepstral coefficients (MFCC) features. The SVM classifier is most effective compared to other machine-learning classifiers. 
The highest classification accuracy rates of 98% and 99% are achieved using the vowel /a/ and word /atleta/, respectively. 
The results reveal that the proposed CT-based entropy features effectively diagnose PD using the speech of a person.

Keywords Chirplet transform · Genetic algorithm · Parkinson’s disease (PD) · Time-frequency representation · Speech 
Pathology · Support vector machine

1 Introduction

Parkinson’s disease (PD) is a neurological disease affect-
ing around 1% of individuals over the age of 65 [1, 2]. PD 
exhibits both motor and non-motor symptoms. The motor 
symptoms of PD include tremors, bradykinesia, stiffness 
(rigidity), and postural instability. The most common non-
motor symptoms are dysautonomia, discomfort, sensory 
dysfunction, and cognitive impairment [3]. The typical PD 
diagnosis process takes more than two years [4]. As a result, 
a new diagnostic method is needed to help with the PD 

diagnosis process based on the patient’s symptoms. Approxi-
mately 89% of individuals suffering from PD exhibit speech 
impairments [5]. This speech impairment mainly includes 
fundamental frequency fluctuation, aperiodicity in vocal fold 
vibration, reduced speech intensity, hoarseness, and irregular 
articulation. Hence, speech is an excellent option for offering 
diagnostic clues for the automatic detection of PD.

Numerous studies have been conducted to detect PD 
using speech signals. The feature extraction and classifica-
tion stages are the two key steps of the speech signal-based 
PD detection system. An appropriate speech processing 
algorithm is utilized to extract meaningful features from 
speech during the feature extraction. These features are 
applied to the machine learning classifier to evaluate the 
effectiveness of the system. Sakar et al. [6] developed a 
database for PD and healthy individuals’ speech samples 
with sentences, words, and sustained vowels. They evalu-
ated the database by extracting 26 acoustic features and 
machine learning classifiers. Tsanas et al. [7] used 132 
dysphonia measures extracted from sustained vowels. 
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Then, using feature selection methods, an efficient feature 
set was chosen and applied to machine learning classi-
fiers to classify PD and healthy control (HC) individuals. 
Nilashi et al. [8] presented a machine-learning approach 
for PD progression. Based on 16 acoustic characteristics, 
they established a novel approach for predicting total uni-
fied Parkinson’s disease rating scale (UPDRS) and motor 
UPDRS. Orozco-Arroyave et al. [9] examined the discrim-
inating capability of various spectral and cepstral coef-
ficients using voice recordings of 24 isolated words and 
the five Spanish vowels for classifying PD and HC indi-
viduals. Karan et al. [10] proposed instantaneous energy 
deviation cepstral coefficient (IEDCC) characteristics for 
classifying PD and healthy individuals using the Hilbert 
spectrum (HS). In another study, Karan et al. [11] ana-
lyzed the performance of time-frequency features derived 
from the decomposition of a time-frequency matrix (TFM) 
using non-negative matrix factorization for classifying PD 
and HC individuals. Narendra et al. [12] employed voice 
source information extracted using glottal features for 
classifying PD and HC individuals. They investigated the 
performance of traditional pipelines as well as the end-
to-end classifier architectures. Karan et al. [13] proposed 
Hilbert cepstral coefficients (HCCs) features to analyze the 
voice tremor of PD patients utilizing a combined approach 
of VMD and HS. Mehmet et al. [14] employed variational 
mode decomposition (VMD) to denoise speech signal and 
spectrograms of the denoised signal applied to pre-trained 
convolutional neural networks (CNN) and long short-
term memory (LSTM) to classify PD and HC individuals. 
Hirešet al. [15] presented an ensemble of CNNs trained 
with multiple fine-tuning to diagnose PD from voice 
recordings. Quan et al. [16] proposed a two-dimensional 
CNN to extract time series dynamic features and, subse-
quently, a one-dimensional CNN to capture the dependen-
cies between these time series for the diagnosis of PD from 
the speech signal. Karan et al. [17] proposed an intrin-
sic mode function cepstral coefficient (IMFCC) based on 
empirical mode decomposition (EMD) to identify PD and 
healthy persons. Fujita et al. [18] introduced a recurrent 
neural network (RNN) with a hyperbolic secant gate for 
the diagnosis of PD using speech which achieved equiva-
lent accuracy to LSTM and gated recurrent unit (GRU) 
with fewer hyperparameters. Goyal et al. [19] proposed 
a hybrid resonance-based sparse signal decomposition 

and time-frequency algorithm for feature extraction from 
speech recordings for diagnosing PD.

Researchers investigated numerous time-domain and fre-
quency-domain features in the literature for classifying PD and 
HC individuals from speech signals, although time-frequency-
based features are not employed extensively. The discontinui-
ties and abrupt changes occur in the speech of PD patients 
as the patients are unable to regulate the limbs and muscles 
used to produce speech. Separate time and frequency analyses 
may not capable of capturing these changes in the speech of 
PD patients [11]. The time-frequency representation of signal 
models the temporal and frequency changes jointly; hence we 
have considered the hypothesis that the feature derived from 
the time-frequency representation of speech signal gives sig-
nificant information for classifying PD and HC patients. This 
study employed the Chirplet transform (CT) to analyze speech 
recording and time-frequency domain feature extraction for 
classifying PD and HC individuals. The CT is effective for 
non-stationary signals [20, 21]. As speech is a non-stationary 
signal [22], it is expected that the time-frequency domain 
information obtained using CT of speech recording may pro-
vide useful information for classifying PD and HC individuals. 
In this work, we employed CT to get the TFM representation 
of each speech recording. Then, we used the TFM to get the 
time-frequency based entropy (TFE) features.

This paper follows the following structure: Sect. 2 discusses 
the proposed method for diagnosing PD using speech signals. 
Section 3 provides the experiment’s findings and a discussion. 
The conclusion is presented in Sect. 4.

2  Proposed method

The proposed method for diagnosing PD using speech record-
ing is illustrated in Fig. 1. It mainly consists of stages such 
as time-frequency analysis of speech recordings using CT, 
TFE feature extraction from the TFM, feature selection using 
a genetic algorithm, and SVM, DT, KNN, and NB classifiers 
for classifying PD and HC individuals.

2.1  Database

This study makes use of the PC-GITA database [1] to assess 
the proposed method. It includes Spanish speech samples of 
50 HC and 50 PD individuals. Each PD and HC group has 
25 men and women. The database has a balanced distribu-
tion of the speaker’s gender and age. Men with PD range in 

Fig. 1  The proposed method for diagnosing PD using speech recording
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age from 33 to 77 years, and women from 44 to 75 years. For 
healthy individuals, the age ranges for men and women are 
31–86 and 43–76 years, respectively. Three experienced pho-
neticians examined the participants’ speech. In this study, we 
have evaluated the proposed method on the following speech 
task of the PC-GITA database: (1) three repetitions of each of 
the five sustained vowels (/a/, /e/, /i/, /o/, and /u/), (2) Reading 
the five words (/apto/, /atleta/, /braso/, /globo/, and /petaka/). 
The sampling rate of speech recordings is 44.1 kHz. Before 
processing the speech recordings, every recording is down-
sampled to 8 kHz.

2.2  Chirplet transform (CT)

The CT is utilized for the time-frequency domain analysis of 
non-stationary signals. For a speech signal s(n) with length N, 
i.e., n = 1, 2, 3,… ,N , the CT is defined as [20, 21]:

where z(n) is the analytical signal of speech signal s(n). It 
is given by

where H[s(n)] is the Hilbert transform of speech signal s(n). 
The term Ψ∗

n0,�,�
(n) is complex conjugate of window function 

Ψn0,�,�
(n) , given by

(1)C
�,�(k, n0) =

N
∑

n=1

z(n)e
−

2�kn

N Ψ∗
�,�,�

(n)

(2)z(n) = s(n) + jH[s(n)]

where w
�
(n − n0) represents a Gaussian window function 

given by [20, 21]

The complex values of the TFM of speech signal s(n) can 
be represented as

The magnitude of TFM of speech signal is given as

In this study, we have examined the magnitude of the TFM 
for speech recording of various speech tasks (sustained 
vowels and isolated words) of PD and healthy individuals. 
For PD and healthy classes, the speech signals for sustained 
vowel /a/ are shown in Fig. 2a, b, and corresponding time-
frequency contour plots are shown in Fig. 2c, d. The con-
tour plots show significant visual alterations in the time-
frequency properties of the speech signal as a result of PD. 
Hence, we may utilize the features derived from the TFM 
of speech for classifying PD and healthy individuals. We 
extracted the time-frequency based entropy (TFE) feature 
from the TFM in this work. The TFE feature is calculated 

(3)Ψn0,�,�
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�
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Fig. 2  Speech signals (vowel /a/) and their time-frequency contour plots a HC speech, b PD speech, c Time-frequency contour plot for HC 
speech, and d Time-frequency contour plot for PD speech
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using the histogram of mth frequency component in the TFM 
representation. The mth frequency component’s probability 
value is calculated as [23]

where Hb(k) is the histogram of mth frequency component 
with B number of bins. The TFE features for mth frequency 
component is given by [24]

In this work, we have extracted TFE features for all the 
frequency components to form 256 dimensional feature 
vector for each speech recording. In the next step, we have 
employed the genetic algorithm for feature selection. The 
reduced feature set obtained using genetic algorithm are 
employed for classifying PD and healthy individuals.

We have contrasted the efficacy of the proposed TFE 
features with the MFCC and breathiness features [25–29]. 
Which have often been used for speech pathology detec-
tion in the literature. Breathiness features are an important 
parameter for analyzing voice quality since it reflects infor-
mation about speech perturbations [25]. These breathiness 
features include jitter, shimmer, number of voiced frames 
(NVF), harmonic energy (HE), harmonic-to-noise ratio 
(HNR), harmonic energy of residue (HER), and glottal-to-
noise excitation ratio (GNER). In this work, we extracted 
these breathiness features for classifying PD and HC 
individuals as given in [25, 26]. We have also extracted 
39-dimensional MFCC (13-MFCC, 13-ΔMFCC, 13-ΔΔ
MFCC) features [30].

2.3  Feature selection

Feature selection is the most prevalent and widely employed 
data preprocessing technique for determining the optimal set 
of features. Finding the optimal subset of features involves a 
search in the space defined by all available feature combina-
tions. This search might be laborious and time-consuming. 
This study employed a genetic algorithm to select optimal 
TFE, breathiness, and MFCC features for classifying PD 
and HC individuals.

2.3.1  Genetic algorithm

Evolutionary computation is a breakthrough innovation that 
helps to solve and optimize problems in the computing world 
[31]. A genetic algorithm is a flexible evolutionary computa-
tion based on genealogy, and natural phenomenology [32]. 
It is an important heuristic algorithm that imitates Darwin’s 

(7)Pb(m) =
hb(m)

∑B

b=1
hb(m)

(8)TFEm = −

B
∑

b=1

Pb(m)log2
[

Pb(m)
]

theory of evolution [31]. Naturally, they are supposed to 
optimize the process by selecting the optimal answer and 
discarding the remainder [33].

The steps below summarize the execution of Genetic 
algorithm for feature optimization. The process begins by 
randomly creating a population of any size. The fitness func-
tion is used to determine how fit each unit of the popula-
tion is to accomplish the solution by estimating their fitness 
value [34]. Then, we choose the features with the highest 
fitness values while discarding those with the lowest fitness 
values to preserve the fittest unit for the next generation and 
enhance the population’s overall fitness. Two parents are 
chosen from each generation based on their fitness scores, 
and their vector entries are combined in the crossover phase 
for reproduction. Furthermore, offspring are formed from 
the parents by making random modifications to each parent 
alone, known as mutation. Using crossover, the algorithm 
finds the best genes from many parents and merges them 
to create potentially superior offspring. Even though the 
mutation rate is very low, it increases population diversity, 
increasing the likelihood that the algorithm would gener-
ate individuals with higher fitness values [34]. To create 
the next generation, the present population is replaced with 
offspring, then the procedure is repeated. The optimization 
will terminate when the number of generations reaches its 
pre-defined value.

2.4  Classifiers

The discrimination capability of proposed features is evalu-
ated using SVM, DT, KNN, and NB classifiers along with 
a genetic algorithm.

2.4.1  Support vector machine (SVM)

The SVM is widely employed in the fields of speech pathol-
ogy and emotion recognition [35–39]. For a binary classifi-
cation task, it divides the two classes using hyperplanes as 
efficiently as possible. It determines decision boundaries by 
optimizing a certain mathematical function over a specific 
data set [40]. In addition, kernel functions are also employed 
to convert the initial feature space into a higher-dimensional 
space that it can be separated linearly [41]. The SVM uses 
convex optimization to find a solution that is globally opti-
mum. In this study, we employed SVM classifier with radial 
basis function (RBF) for classifying speech recordings of PD 
and HC individuals.

2.4.2  Decision tree (DT)

A DT is a nonparametric supervised learning algorithm 
that can be employed for classification as well as regres-
sion problems. One distinguishing feature of DT among all 
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machine learning classifiers is that they are computation-
ally inexpensive [42]. It comprises a tree-like, hierarchical 
structure with a root node, branches, internal nodes, and 
leaf nodes [43]. Each node in the tree represents an attribute 
test, each branch represents the test’s outcome, and each leaf 
represents a class or class distribution [44]. A classifying 
rule starts with the root node at the top and ends with the 
leaf at the bottom.

2.4.3  K‑nearest neighbor (K‑NN)

The K-NN algorithm is a well-known supervised machine-
learning approach that has been widely explored for clas-
sification, regression, data mining, and pattern recognition 
[45]. The k-nearest neighbor (k-NN) algorithm is a non-
parametric instance-based approach that classifies a point 
by identifying the k vectors closest to it [46]. In this method, 
instead of creating a model, each new observation must be 
compared to the whole set of training data. Hence it is also 
known as lazy evaluation. The most common measure for 
establishing similarity criteria is Euclidean distance [47].

2.4.4  Naïve bayes (NB)

The NB classifier is frequently utilized in the majority of 
medical fields for symptom diagnosis [48]. It is supervised 
learning algorithm based on Bayes theorem. It assumes that 
the features are statistically independent [45]. The NB is 
one of the simplest machine learning classifiers for imple-
mentation [48]. It determines the likelihood of a particular 
outcome based on the available dataset. This classifier is 
considered to be less precise than other methods since it 
relies on a massive amount of records [48].

The effectiveness of the SVM, DT, KNN, and NB classi-
fiers is evaluated using measures such as accuracy, F-score, 
and precision. The confusion matrix for this binary classifi-
cation is shown in Fig. 3. Mathematically, accuracy, preci-
sion, and F-score are calculated as follows [24]:

3  Results & discussion

This section discusses the statistical analysis of proposed 
TFE features and the performance evaluation of the pro-
posed framework for classifying PD and HC individuals. 
We have also compared the effectiveness of the proposed 
TFE features with the breathiness and MFCC features. We 
have performed statistical analysis using probability density 
function (PDF) plots to analyze the discriminating poten-
tial of the proposed TFE features. The PDF plots for the 
selected TFE features (TFE11 , TFE12 , TFE15 , TFE23 , TFE25 , 
and TFE38 ) are shown in Fig. 4a–f. It is noted that the peaks 
of the PDF plots for PD and HC speech classes are located 
in distinct bins and have different probability values. This 
shows that TFE features have statistically significant vari-
ations; hence we can employ the proposed TFE features 
for classifying PD and HC individuals. We have used the 
SVM, DT, KNN, and NB classifiers along with the genetic 
algorithm for feature selection for classifying PD and HC 
individuals using TFE, breathiness, and MFCC features. The 
efficacy of the classifiers for classifying PD ad HC individu-
als is evaluated using a 10-fold cross-validation.

The performances of the SVM, DT, KNN, and NB classi-
fiers with 10-fold cross-validation for five Spanish sustained 
vowels and five isolated words are shown in Tables 1 and 
2, respectively. All of the results are depicted in terms of 
mean  ±  standard deviation. The classification accuracy 
achieved with sustained vowels ranges from 72 to 98% 
using the various machine learning classifiers. The vowel 
/a/ achieved the highest accuracy of 98% using the SVM 
classifier. With isolated words, classification accuracy var-
ies from 73 to 99%. The highest classification accuracy of 
99% is achieved using the word /atleta/ and the SVM clas-
sifier. Conversely, the breathiness and MFCC features per-
form quite poorly. For the breathiness features, the highest 
accuracy of 73% is achieved for the word /apto/ using the 
SVM classifier. The maximum achieved accuracy of MFCC 
features is 85% for the word /petaka/ using the SVM classi-
fier. The performance of MFCC features is superior to that 
of breathiness features but inferior to that of CT-based TFE 
features. In terms of classifier performance, the SVM con-
sistently surpasses the DT, KNN, and NB classifiers.

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)Precision =
TP

TP + FP

(11)F-score =
2 * TP

2 * TP + FP + FN

Fig. 3  Confusion matrix of binary classification
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The comparison between the results of the proposed 
framework and the state-of-the-art methods is presented in 
Table 3. We have achieved the highest accuracy compared to 
other state-of-the-art methods. Mehmet et al. [14] enhanced 
speech recording using variational mode decomposition, and 
then a spectrogram of enhanced speech signals was used 
for classifying PD and HC individuals using a combination 
of CNN and LSTM. Hireš et al. [15] also achieved 99% 
accuracy on vowel /a/ using an ensemble of CNN classi-
fier, which is a pretty complicated architecture. Conversely, 
we have achieved the same accuracy using CT-based TFE 
features and a simple conventional machine learning SVM 
classifier.

The state-of-the-art methods employed temporal and 
frequency domain features extensively for diagnosing PD. 
These commonly used acoustic features may not be efficient 
in capturing the discontinuities and abrupt changes in speech 
that occur in PD patients because of the patients weaken 
muscles and nerves. The proposed CT-based TFE features 
outperform the conventional MFCC and breathiness features 
as TFE features jointly capture the temporal and frequency 
speech perturbation.

The SVM classifier outperforms the other machine learn-
ing classifiers, such as DT, KNN, and NB, as well as deep 
neural network and transformer neural network, because 
SVM is a highly effective classifier for binary classification 
that can give excellent performance even with a small learn-
ing dataset. The SVM has demonstrated outstanding per-
formance and generalizability when evaluating pathological 
speech signals [9, 11, 49–53]. The deep learning classifiers 

and transformer neural networks typically produce superior 
results with adequate training data. In this study, the dataset 
size is small; hence their performance lags behind that of 
the SVM.

Although PD is the second-most common neurodegenera-
tive disease, diagnosing it often takes more than two years. 
There is no particular diagnostic test for PD. A neurolo-
gist diagnoses PD by reviewing the patient medical history, 
evaluating signs and symptoms, and conducting a physical 
and neurological examination. We proposed a novel CT-
based approach for PD diagnosis utilizing speech signals 
in this work. First, a TFM representation is obtained for 
each speech recording using CT, and then TFE features 
are extracted from it. The genetic algorithm is applied to 
these features for selecting the efficient subset of features for 
classifying PD and HC individuals. Results reveal that the 
proposed TFE features efficiently discriminate between PD 
and HC speech classes. The discrimination capability of the 
proposed TFE features is very high compared to the MFCC 
and breathiness features. The proposed approach uses only 
speech signals and machine learning techniques for diagnos-
ing PD. Hence, it can be deployed in real-time on an embed-
ded platform to diagnose PD.

4  Conclusion

The diagnosis of PD using speech signals is a breakthrough 
in the non-invasive diagnosis of various diseases. We pre-
sented a novel approach based on the CT in which the TFE 

Fig. 4  Probability density function plots of PD and HC speech classes for a TFE
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features are extracted from the TFM representation of the 
speech obtained using the CT. The efficacy of the proposed 
method is accessed using the words and sustained vowels 
from the PC-GITA database. The proposed TFE features 
outperform the breathiness and MFCC features. The highest 
results of 98% and 99% are achieved with sustained vowel /a/ 
and word /atleta/, respectively. The results demonstrate the 
usefulness of the presented CT-based framework for diag-
nosing PD using speech signals. We can conclude that the 
CT-based TFM representation of speech shows significant 
variations for PD and HC individuals. These variations can 
be captured using the TFE features for classifying PD and 
HC individuals.

In further work, we will examine the competency of the 
developed framework on a large dataset to better compre-
hend its competence. Additionally, we’ll use the developed 
framework to assess the degree of dysarthria of PD patients.
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