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Rare predicted loss of function alleles in Bassoon (BSN) are
associated with obesity
Na Zhu1,2,10, Charles A. LeDuc 1,3,4,10, Ilene Fennoy 1,4, Blandine Laferrère3,4,5, Claudia A. Doege3,6, Yufeng Shen 2,7,8,
Wendy K. Chung1,3,4,5,9✉ and Rudolph L. Leibel1,3,4✉

Bassoon (BSN) is a component of a hetero-dimeric presynaptic cytomatrix protein that orchestrates neurotransmitter release with
Piccolo (PCLO) from glutamatergic neurons throughout the brain. Heterozygous missense variants in BSN have previously been
associated with neurodegenerative disorders in humans. We performed an exome-wide association analysis of ultra-rare variants in
about 140,000 unrelated individuals from the UK Biobank to search for new genes associated with obesity. We found that rare
heterozygous predicted loss of function (pLoF) variants in BSN are associated with higher BMI with p-value of 3.6e-12 in the UK
biobank cohort. Additionally, we identified two individuals (one of whom has a de novo variant) with a heterozygous pLoF variant
in a cohort of early onset or extreme obesity and report the clinical histories of these individuals with non-syndromic obesity with
no history of neurobehavioral or cognitive disability. The BMI association was replicated in the All of Us whole genome sequencing
data. Heterozygous pLoF BSN variants constitute a new etiology for obesity.
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INTRODUCTION
By 2030 it is estimated that roughly 50% of adults in the United
States will be obese, with 25% having severe obesity1. The
prevalence of obesity in U.S. adults has increased from 30.5 to
41.9% from 1999 to 2023; the prevalence of severe obesity has
increased from 4.7 to 9.2%. Approximately 18% of U.S. children
currently are obese2. The estimation from twin and GWAS data is
that the risk of obesity is 30–50% heritable3–6. Changes in
underlying genetics cannot be responsible for large increases in
the prevalence of obesity over such a short period of time;
however, the propensity to gain weight in an environment with
ready access to food is largely genetic7. Genome-wide association
studies have identified many common variants associated with
body weight regulation8–10. More recently, polygenic risk scores
aggregating large numbers genetic variants, each with small
contributions to energy homeostasis, can be used to predict
obesity deciles in some genetic ancestries11. However, the known
genome-wide significant loci only explain ~6% of variation in
BMI12,13. Exome sequencing of large numbers of individuals has
accelerated the discovery of rare genetic contributors to
quantitative phenotypes such as height14,15, celiac disease16, and
dyslipidemia17,18. In many instances the precise mechanistically
functional relevance of these associated genetic variants remains
unknown.
Recent advances in the treatment of obesity19 and hyperlipi-

demia20 have used human genetics to identify genes contributing
to extreme phenotypes to understand biology and molecular
mechanisms and develop novel interventions. The advent of
large-scale exome/genome sequencing in the United Kingdom
Biobank (UKBB) and All of Us has extended the ability to assess
rare variants at large scale in addition to prior methods of

assessing common variants in GWAS. In the current study we
combine the power of large population genomic data from the
UKBB and All of Us and an extreme obesity cohort recruited at
Columbia University. We report the association of predicted loss of
function (pLoF) alleles in the gene BSN with body mass index
(BMI).

RESULTS
Cohorts and overview of analysis workflow
We obtained data from three cohorts to identify new obesity risk
genes: 1) the UK Biobank (UKBB) study21,22 (interim 200k release,
Table 1) with exome sequence data and basic phenotype
information. We excluded related individuals and individuals with
a history of cancer or eating disorders and limited analysis to the
144,496 individuals of European ancestry by principal component
analysis. 2) a cohort recruited at Columbia University (the Columbia
cohort- summarized in Table 2) enriched in early onset and extreme
obesity23 with 1598 probands with exome sequencing data, and 3)
the All of Us dataset of about 50,000 European ancestry individuals
with both BMI and whole genome sequencing data.
We used the UKBB data as the discovery cohort for association

of rare variants and BMI, and then sought additional support in the
Columbia cohort and replication in the All of Us data (Fig. 1).

Association of rare variants with BMI in the discovery cohort
First, we performed an exome-wide scan of risk genes through a
linear regression of BMI over counts of rare damaging variants using
the UKBB data. For each gene, we tested seven different ways of
combining rare (allele frequency < 1e-4 in the population) variants,
including protein truncating variants (inclusion or not), and predicted
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damaging missense variants by REVEL at variable thresholds. We
carried out the association test using REGENIE24, with age, Townsend
deprivation index at recruitment, smoking /alcohol status, sex, the
first eight principal components, and genetic heterozygosity as
covariates (Q-Q plot for UKBB in Supplementary Figure 1). We
identified two genes associated with BMI with exome-wide
significance (Table 3, one is MC4R (beta= 1.4, p-value= 5.0e-10,
genomic position for MC4R variants in Supplementary Fig. 2, BMI
distribution in Supplementary figure 3), a known obesity gene; the
other is BSN (beta=6.2, p value= 3.6e-12), a novel putative obesity
risk gene (individual variants listed in Supplementary Tables 1 (MC4R)
and 2(BSN)).
The association of BSN with BMI is primarily driven by protein-

truncating variants and damaging missense variants with REVEL >
0.75. Twenty-seven individuals have heterozygous genotypes for
one of these variants (aggregated allele frequency = 9.3e-5).
Figure 2a shows the BMI distribution of BSN predicted deleterious
heterozygotes compared to the overall UKBB population (Kolmo-
gorov-Smirnov p-value= 1.4e-05).

BSN pLOF carriers from the Columbia cohort
We identified two heterozygous pLoF BSN alleles in the Columbia
cohort (Fig. 2b). RU2487 is heterozygous for a de novo p.Gln703X
allele in BSN. At the time of the last assessment, she was a 23-year-
old Latina woman with a history of severe obesity and type 2
diabetes mellitus diagnosed at age 19 years at which time her

HbA1c was 7.4%. She was amenorrheic and had extensive
acanthosis nigricans, dyslipidemia, hypothyroidism, and hyperan-
drogenism. Her maximal weight was 113 kg at age 20. She had
gastric bypass surgery for weight loss at age 21. Immediately prior
to bariatric surgery, her BMI was 39.7 kg/m2. Her oral glucose
tolerance test prior to bariatric surgery showed euglycemic
hyperinsulinemia. Her nadir body weight after surgery was
77 kg; 2 years post-operatively she weighed 101 kg. She reports
frequently feeling very hungry. She is a college graduate with no
academic or cognitive difficulties nor history of psychiatric
diagnoses. She has no family history of obesity or type 2 diabetes.
RU2617 is an African American female heterozygous for a

p.R3494X variant in BSN; the allele was not inherited from the only
parent available for genetic analysis. At the time of her initial
evaluation, the patient was 15.7 years old with body weight of
162 kg and height of 160.9 cm (BMI= 62.6 kg/m2). Her waist
circumference was 158 cm. She was 11 years old at menarche and
had no history of irregular periods. She had obstructive sleep
apnea requiring continuous positive airway pressure. She initially
had a normal glucose tolerance test with normal fasting glucose
and HbA1c= 6.3%; however, she subsequently developed
impaired fasting blood glucose of 105mg/dl with persistently
elevated HbA1c. She had laparoscopic adjustable gastric banding
at 17.5 years. At 3 years post operatively, her weight had declined
to 134.2 kg and her height had increased to 163 cm (BMI of
50.5 kg/m2). HbA1c normalized to 5.2%.

Association of BMI-correlated traits in BSN
The association between BSN and the traits correlated with BMI
tested using REGENIE (Supplementary Table 3) showed arm, leg
and trunk fat mass and leg fat-free mass and leg predicted mass
reached genome-wide significance. We also tested the association
between BSN and ICD10 diagnoses (Supplementary Table 4) using
the binomial test. No diagnosis was significantly associated with
BSN after correction for multiple testing.

Replication analysis using All of Us data
We sought to replicate the association of BSN using the All of Us
cohort. As of February 2023, there were 98,622 subjects for whom
both whole genome sequencing and clinical data are available. Half
of the participants (47,897) are unrelated and of European ancestry.
For each participant, we used the highest recorded BMI, giving a

Table 1. UKBB cohort summary.

BMI (mean, sd) kg/m2 27.3, 4.8

age (mean, sd) years 56.5, 8.1

Female: male 110,476: 90,153

With cancer 20,099

With eating disorder 160

European ancestries 1,67,246

Non-European ancestry 33,383

Related samples to be removed 5596

Correlation between age and BMI p= 0.048.
Correlation between age and Sex p= 0.082.
The UKBB cohort used in the analysis. Samples that were coded as having
had cancer, eating disorders, or both were removed from the cohort prior
to analysis.
Relatedness was estimated using plink King, when sample pairs had a
relatedness greater than 0.12 (second degree relative or closer) the sample
that had more relatedness to the cohort was excluded. F is female. M is
male. EUR indicates European ancestry.

Table 2. Patients in Columbia cohort.

Child-onset Adult-onset

BMI (mean, sd) kg/m2 41.4, 12.4 45.9, 11.9

BMIZ (mean,sd) 6.6, 3.6

age (mean,sd) years 12.2, 3.5 38.9, 12.3

Female: male 523:377 503:195

European ancestry 322 528

Non-European ancestry 352 170

Total 674 698

Clinical characteristics of the Columbia extreme or early-onset obesity
cohort. BMI is body mass index. BMIz is calculated for all children as the
BMI z score for gender and age.

Fig. 1 Overall workflow. Only rare (MAF < 10−4) likely damaging
variants are kept for association analysis. Drevel refers to likely
damaging missense variants with REVEL-predicted score above a
certain threshold. In the association analysis of the discovery cohort
(UKBB), 7 different combinations of variants were tested using the
REGENIE linear regression gene-burden test. BSN reached signifi-
cance and was replicated in the All of Us dataset (N ~ 50,000). Two
BSN LoF heterozygotes were identified in Columbia patients.
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cohort average BMI of 30.1+/− 7.8 kg/m2. In the cohort, 12
European individuals were heterozygous for BSN pLoF variants, with
an average BMI of 37.0+/− 5.7 kg/m2. Using sex, age, income, and
deprivation index as covariates, we tested the association between
BMI and BSN genotype using linear regression and found a
significant association (p value= 0.0075) with beta=6.3, a large
effect size similar to the estimation from the UK Biobank cohort.
Additionally, we identified six BSN pLoF heterozygotes among the
non-European participants (mean BMI 31.5 (SD= 8.5 kg/m2); BMI
range = 22–45; 3/6 with BMI > 30.0; Supplementary Table 5). Thus,
the BSN obesity association observed in the UKBB and Columbia
cohorts was replicated in the All of Us cohort.

DISCUSSION
We have identified a gene, BSN, for which we have demonstrated
an association of rare pLoF variants with obesity in two
independent large cohorts: the UKBB and All of Us, with similarly

large effect size. Additionally, we identified extremely obese
individuals in the Columbia cohort of early onset and/or extreme
obesity, including an individual with extreme, early onset obesity
associated with a de novo pLoF allele. There is no evidence that
these variants are associated with intellectual disability or
cognitive impairment, including direct assessment of two
individuals in the Columbia cohort.
BSN (bassoon) is expressed primarily in the brain (including

embryonic and adult brain regions that impact feeding beha-
vior25), inner hair cell ribbons, and the retina of mammals. Bassoon
is a presynaptic scaffold protein localized in the cytomatrix at the
active zone (CAZ) where it functions to orchestrate neurotrans-
mitter release. Bassoon participates in the formation of Golgi-
derived Piccolo-Bassoon transport vesicles that are axonally
transported to newly formed synaptic contacts. Bassoon is
associated with activity-dependent short- and long-term neuronal
plasticity26.
Bassoon is expressed during early neuronal differentiation, is

selectively sorted into axons and is among the first proteins to
arrive at nascent synapses26. The release of neurotransmitters
from the presynaptic terminal involves the active zone (AZ). The
AZ includes an electron-dense protein meshwork, the presynaptic
cytomatrix. Bassoon is one of several scaffolding proteins (along
with Piccolo (PCLO), RIM, MUNC13, and ELKS) within the
presynaptic cytomatrix. BSN and PCLO are structurally related,
interact, and are the largest active-zone-specific proteins. Unlike
other the proteins in the AZ that are evolutionally conserved
down to C. elegans, Piccolo and Bassoon are only found in
vertebrates27.
Mice homozygous for LoF Bsn alleles have reduced synaptic

transmission that is primarily caused by the inactivation of a
significant fraction of glutamatergic synapses. These mice have
spontaneous epileptic seizures. Bassoon is not essential for
synapse formation but is essential for regulated neurotransmitter
release from a subset of glutamatergic synapses28. At the
ultrastructural level, these inactive synapses cannot be distin-
guished from functional synapses. These homozygous Bassoon
mutant mice have seizures with structural brain alterations
including enlarged hippocampi and cerebral cortices29. These
animals are not obese.
Bassoon is involved in the maintenance of the integrity of AZ30.

Glutamatergic synapses from Bsn knockout mice exhibit enhanced
short-term synaptic depression with a high percentage of silent
synapses but have no gross structural defects31, presumably due
to the significant functional redundancy with Picolo. When both
proteins are absent from glutamatergic synapses, the cells
undergo synapse degeneration32.
BSN was originally identified while attempting to identify

expressed cerebellar transcripts in patients with multiple system
atrophy, a rare progressive neurodegenerative disease character-
ized by cerebellar symptoms, parkinsonism, and autonomic

Table 3. REGENIE linear regression for UKBB only.

Gene GeneDescription MASK A1FREQ BETA SE CHISQ p-value

BSN bassoon presynaptic cytomatrix protein LoF+Drevel >=0.75 9.34E-05 6.21 0.89 48.29 3.60E-12

MC4R melanocortin 4 receptor LoF+Drevel >=0.25 1.47E-03 1.40 0.23 38.66 5.00E-10

PCSK1 proprotein convertase subtilisin/kexin type 1 LoF+Drevel >=0.75 9.34E-04 1.42 0.28 25.17 5.20E-07

PHF3 PHD finger protein 3 LoF+Drevel >=0.75 1.56E-04 3.26 0.69 22.18 2.48E-06

ALOX5 arachidonate 5-lipoxygenase Drevel >=0.5 1.56E-03 1.00 0.22 20.95 4.71E-06

NCR2 natural cytotoxicity triggering receptor 2 Drevel >=0.25 7.96E-05 4.29 0.97 19.63 9.41E-06

UKBB REGENIE linear regression result.
The BMI association results for UKBB cohort using REGENIE. Drevel refers to likely damaging missense variants with REVEL-predicted score about a certain
threshold. Genes with p value < e-5 are listed with the smallest p value for each gene listed. The p value significance threshold after Bonferroni correction was
3.57e-7. BSN was a novel gene that reached genome wide significance. MC4R and PCSK1 are known obesity risk genes.

Fig. 2 BMI density distribution. a The BMI density distribution for
pLoF BSN heterozygotes is shifted to a higher BMI than the overall
UKBB cohort. A.) There is an apparent bi-modal distribution for the
BSN pLoF heterozygotes. This distribution is not explained by
putative protein functional consequences (CADD score), genomic
physical location, phylogenetic conservation, epigenetic markers, or
histone modification across different stages. The bimodal may be
simply due to the small number of carriers and the bin size, if the bin
size is increased from 2 to 5, the binomial distribution goes away.
The distribution difference between overall cohort and UKBB
heterozygotes was tested using the Kolmogorow-Smirnov method
(p= 1.4e-05). The dots in the red curve represent the BMI of the
individuals with predicted deleterious BSN variants. b Phenotype of
BSN pLoF heterozygotes in the Columbia cohort.
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dysfunction33. This study did not find coding mutations in BSN but
first identified BSN as a new transcript that could be cloned from
the cerebellum of these patients. BSN acts in concert with Parkin
RBR E3 Ubiquitin Protein Ligase (PRKN) to control presynaptic
autophagy and maintain homeostatic presynaptic proteostasis
and synaptic vesicle turnover34. Human heterozygous missense
variants in BSN have been implicated in neurodevelopmental and
neurodegenerative disorders including progressive supranuclear
palsy-like syndrome, a rare neurodegenerative tauopathy35.
We have implicated heterozygous pLoF variants in BSN as a new

genetic etiology for human obesity that is not associated with
adverse impact on cognition or other neurobehavioral pheno-
types. The expression of BSN throughout the brain suggests that
gene dosage could contribute to hyperphagia through both
homeostatic and hedonic circuits36. Additional detailed pheno-
typic assessment – ideally of individuals prior to the onset of
obesity – will be required to assess this point. BSN is expressed in
the synapses of glutamatergic neurons and hypothalamic neurons
mechanistically tied to ingestive behaviors31,37–39. The valence of
these effects is consistent with hyperphagic obesity conveyed by
hypomorphic alleles.

METHODS
We ran REGENIE for rare variants association in UKBB data to
detect the risk genes associated with BMI, and then sought
additional support in the Columbia cohort and replication in the
All of Us data (Fig. 1). Informed consent was obtained from all
human participants.

UKBB cohort
For this analysis, we included 200,643 individuals from the UK
biobank22. The average age of this cohort is 56.4+/− 8.1 years;
mean BMI of 27.3+/− 4.8 kg/m2; 55.1% female (Table 1).

Columbia cohort
The Columbia University early onset and/or extreme obesity
cohort was collected using protocols approved by the Institutional
Review Boards at Columbia University Irving Medical Center (New
York, NY) and The Rockefeller University (New York, NY). The
cohort consists of 1598 individuals from 903 families. Obesity was
defined as described below. Of the 903 families, 122 constitute
affected child/parent trios. The remaining 781 families have 1372
affected (890 females and 482 males) and 226 unaffected family
members. Cohort details have been described previously23,40.
Approximately half of the probands were pediatric (either at time
of recruitment or obesity onset age younger than 19 years old
with 674 participants having a BMI Z score >=2; average age at
enrollment 6.6+ /- 3.6 years) and half adults (obesity onset or
recruitment age at least 19 years old with 698 adults with
BMI >= 30 kg/m2; average age 51.5+ /- 12.0 years) (Table 2).
Samples were exome sequenced using xGen and SeqCap VCRome
Capture. Greater than 99% of samples had depth of coverage > 10
in 80% of target regions.

All of Us data
The current release (June 2022) of the All of Us data includes
whole genome sequencing for 98,622 individuals (58,190 females
and 38,290 males). The average age of this cohort is 52.6+/− 16.9
years; mean BMI is 30.9+/− 9.0 kg/m2.

Bioinformatic analysis of exome or genome sequencing data
Columbia cohort: Paired-end reads were mapped and aligned

to the human reference genome (version GRCh38/hg38, accession
GCA 000001405.15) using BWA-MEM41. Picard v1.93 MarkDupli-
cates (http://broadinstitute.github.io/picard/) was used to identify

and flag PCR duplicates and GATK v4.1 HaplotypeCaller42 in
Reference Confidence Model mode to generate individual-level
gVCF files from the aligned sequence data. We performed joint
calling of variants from the obesity cohorts using GATK variant
caller.
Ancestry prediction and relatedness check: We predicted the

ancestry and relatedness in the Columbia cohort using Peddy43.
Relatedness prediction in the UKBB samples, due to the large
sample size, was completed with plink King44. To ensure that
private mutations carried in individual families were not over-
counted, samples with a second-degree relationship or closer (a
kinship coefficient greater than 0.12 in King or 0.25 in Peddy) had
the relative who was more related to the overall cohort excluded.
Variant annotation: We used the Ensembl Variant Effect

Predictor (VEP, Ensemble 93)45 to annotate variant function and
ANNOVAR46 to aggregate variant population frequencies and for
in silico predictions of deleteriousness. Rare variants were defined
by a population frequency < 10−4 in gnomAD WES and WGS47.
Deleterious variants were defined as predicted loss-of-function
(pLoF: including premature stop-gain, stop-loss, frameshift indels,
canonical splicing variants and multi-exon deletions) or predicted
damaging missense (Dmis) based on REVEL48 score thresholds.
The same annotation pipeline was used for Columbia, UKBB, and
All of US variant annotation.

Statistical analysis
UKBB cohort: After excluding related individuals and indivi-

duals with a history of cancer or eating disorder, 144,496
unrelated European individuals were selected for quantitative
trait (BMI) association analysis21,47. We collapsed rare variants
based on allele frequency and predicted variant deleteriousness.
The variants were partitioned into cohort frequency <10−4 as well
as 7 variant functional groups. The variant functional groups were
missense variants with REVEL >=x, where x is 0.25, 0.5, 0.75, with
or without pLoF variants (7 combinations). Genes having less than
15 heterozygotes in a test group were removed. The significance
threshold was set to 3.5e-07 (= 0.05/ (7*20,000)). We then tested
the quantitative BMI for the 144 K UKBB individuals using
REGENIE24, which accounts for relatedness, population structure
and polygenicity. We included age, Townsend deprivation index at
recruitment, smoking /alcohol status, sex, the first 8 principal
components, and genetic heterozygosity as covariates. REGENIE
resolved the gene-based association tests in the large UKBB
dataset with no inflation or deflation in the synonymous variants
with the gene-based tests (Sup Fig. 1a). The type I error rate was
well controlled for pLoF and Dmis variants in gene-based tests,
showing minor inflation in the QQ plot (Sup Fig. 1b).
Columbia cohort: When there were multiple individuals with

obesity in a family, the most severely affected was defined as the
proband (either the child with the highest Z-score; or the adult
with the highest BMI if there were only adults in the family).
We defined the threshold for genome-wide significance by

Bonferroni correction for multiple testing (n= 20,000*7, threshold
p-value= 3.57e-7) (workflow shown in Fig. 2).
All of Us: To attempt to replicate findings from the UKBB

analysis and Columbia Cohort, we ran linear regression on the
48,722 European ancestry individuals from the All of Us dataset
using their provided cloud-based research platform to test the
association between BMI and BSN deleterious variants using age,
sex, deprivation index and median income as covariates.
All analyses were under the auspices of the Columbia University

IRB “Molecular Genetic Analysis of Obesity and Non-Insulin
Dependent Diabetes Mellitus” IRB #: AAAA4485. All participants
provided written or electronic informed consent to take part in
their respective study (Columbia, UK Biobank, or All of Us).
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
UKBB genotypic and phenotypic data are available to approved investigators via the
UK Biobank study (www.ukbiobank.ac.uk/). Additional information about registration
for access to the data is available at www.ukbiobank.ac.uk/register-apply/. Data
access for approved applications requires a data transfer agreement between the
researcher’s institution and UK Biobank, the terms of which are available on the UK
Biobank website (www.ukbiobank.ac.uk/media/ezrderzw/applicant-mta.pdf). Original
All of Us Biobank data are available to registered and approved All of Us researchers
(https://www.researchallofus.org/register/). Genetic data requires controlled tier
access, which researchers can register for through their institutions.

CODE AVAILABILITY
We used REGENIE for statistical analysis. The software is written by a team in
Regeneron, available on GitHub: https://nam02.safelinks.protection.outlook.com/?
url=https%3A%2F%2Frgcgithub.github.io%2Fregenie%2F&data=05%7C01%
7Cnz2274%40cumc.columbia.edu%7Cb05e1e0311ea4ad5915308db8868e3e7%
7Cb0002a9b0017404d97dc3d3bab09be81%7C0%7C0%7C638253756299911043%
7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6
Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=IOOvWWxc9Qpsd2pqK9p
9k1oRRMPWoDnbjqYdYhtFYUw%3D&reserved=0.
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