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Abstract

Male factor infertility is a significant problem present in up to 50% of infertile couples. The 

relationship between male infertility and systemic disease is of significant interest, and emerging 

evidence suggests a relationship between male infertility and male genitourinary (GU) birth 

defects (cryptorchidism, hypospadias, ambiguous genitalia, and congenital anomalies of the 

kidney and urinary tract). Many of these birth defects are treated in isolation by busy urologists 

without acknowledgment that these may be related to more global syndromic conditions. 

Conversely, geneticists and nonurologists who treat variable systemic phenotypes may overlook 

GU defects, which are indeed related conditions. Many of these defects are attributed to copy 

number variants dosage-sensitive genes due to chromosome microdeletions or microduplications. 

These variants are responsible for disease phenotypes seen in the general population. The copy 

number variants described in this review are syndromic in some cases and responsible for both GU 

birth defects as well as other systemic phenotypes. This review highlights the emerging evidence 

between these birth defects, male infertility, and other systemic conditions.
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Infertility affects 12% of couples worldwide, with male factor present in 50% of cases (1, 

2). Although the cause of abnormal sperm production in a large subset of these patients 

continues to remain unknown, the underlying relationship of male infertility to systemic 

disease has become an area of significant research and interest. Numerous reports highlight 
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that infertile men may be harboring systemic disease, including malignancy, autoimmune 

disorders, and genetic conditions (3–5).

More specifically, men with congenital genitourinary (GU) defects, such as cryptorchidism, 

hypospadias, and male external genitalia anomalies, may have spermatogenic failure caused 

by the genetic defects underlying these conditions. Notably, these men may have significant 

associated phenotypes, including both syndromic as well as nonsyndromic conditions. 

Because these conditions are repaired surgically in infants, pediatric urologists treating GU 

anomalies may be unfamiliar with other systemic or dysmorphic characteristics; conversely, 

nonurologists treating systemic anomalies and syndromes may overlook GU birth defects.

Proper identification and characterization of male GU birth defects using history and 

physical examination, characterization of the responsible genes, and assessment of other 

related conditions are necessary in men presenting with male factor infertility (6–8). Many 

of these genetic abnormalities are secondary to an abnormal copy number variant (CNV) of 

a given gene region (i.e., duplications or deletions), which may impact one or multiple genes 

in the region (9). This review highlights the genetic defects associated with development of 

common GU birth defects and their implications in infertility as well as describes numerous 

well-implicated and future candidate genes known to cause GU birth defects.

COMMON GENITOURINARY BIRTH DEFECTS AND HOW THEY CAUSE 

INFERTILITY

Genitourinary birth defects in men include abnormalities of both the external (testis, 

scrotum, and penis) and internal (kidneys, ureter, and bladder) GU tract. These birth defects 

have varying embryologic origins, and, therefore, variable implications and associations 

with male infertility, ranging from mechanical barriers to spermatogenic failure.

Cryptorchidism

Cryptorchidism, or the failure of testicular decent into the scrotum, occurs in a single 

testicle in 9% of male births (10, 11). Significant risk factors include low birth weight, 

preterm delivery, small for gestational age, and twin pregnancies (10). Testicular descent 

occurs in two phases: the first phase of transabdominal descent and the second phase of 

inguinoscrotal descent (12). Descent of the testes from their original transabdominal location 

begins at the 10th week of gestation (13). The intra-abdominal gonad is suspended originally 

to the diaphragm by the cranial suspensory ligament (14). Descent depends on a complex 

interplay of numerous factors, and it begins with dissolving of the cranial suspensory 

ligament and shortening of the gubernaculum (13). Genetic factors, such as the protein 

insulin-like hormone, provide strong influence during this first phase of descent (13). The 

second phase of descent involves descent from the inguinal region into the scrotum, which 

begins at the 25th week of gestation (13). This involves evagination of the peritoneum, 

known as the processus vaginalis, which facilitates passage through the inguinal canal 

into the scrotum (12). Androgens play a key role in this phase in addition to increases in 

intra-abdominal pressure (13). Numerous other factors are involved in facilitating testicular 

descent, including a functional genitofemoral nerve, calcitonin gene-related peptide and 
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antimüllerian hormone (15). Given this complex process, cryptorchid testes may be found at 

any point along the pathway of descent or also may be found in other ectopic locations (such 

as superficial inguinal pouch, perineal, perihepatic, peri-splenic, and prepenile locations) 

(15). Cryptorchidism may be unilateral or bilateral, and is associated with increased risks 

of testicular malignancy (up to 4–9× greater), later spermatogenic deficiency, and infertility, 

regardless of whether an orchiopexy was performed (13, 16).

Infertility secondary to cryptorchidism is multifactorial and results predominantly from 

spermatogenic deficiency. Semen abnormalities occur in 30% of men with unilateral 

cryptorchidism and in 80% with bilateral cryptorchidism (17). Even after orchidopexy, 

which includes permanent anchoring of the testis into the scrotum, many men continue 

to have spermatogenic failure (18). This is thought to reflect a more systemic impact on 

spermatogenesis, rather than an isolated impact of increased scrotal temperature on the 

cryptorchid testis (18). Infertility in men with cryptorchidism also may be secondary to 

aneuploidy of chromosome 12, DNA mismatch repair alterations, Hiwi protein (member 

of piwi gene family), and Y-chromosome instability and microdeletions (gr/gr is associated 

specifically with spermatogenic failure) (19). Several of the most common dosage-sensitive 

gene defects causing cryptorchidism are discussed in a later section. It is noteworthy 

that this is a rapidly emerging field. Genecards (https://www.genecards.org) now lists 

4,275 genes associated with cryptorchidism in humans. Genomic (microdeletions or 

microduplications) defects, the most common cause known currently, are discussed in the 

section on genes involved in GU birth defects.

Hypospadias

Hypospadias is a failure in the development and closure of the urethral plate in men creating 

a urethral meatus on the ventral penile surface. It occurs at variable rates worldwide 

with up to 34.2 per 10,000 births in North America (20). Hypospadias also may be 

associated with other GU defects, including cryptorchidism and/or micropenis, which, when 

present in combination, warrant a work-up for a disorder of sexual differentiation (21). 

Hypospadias is common and, to date, 2,433 genes are associated with this birth defect 

(https://www.genecards.org) and, like cryptorchidism, the cause is identified more frequently 

as associated with a gene-dosage alteration. Embryologically, development of male genitalia 

and urethral plate from the genital tubercle begins at the 8th week of gestation followed 

by elongation of the tubercle from weeks 11–16, with eventual fusion of the urethral folds 

to create the penile urethra (22). For the majority of hypospadias cases (70%), the urethral 

meatus is located on the glans, the coronal sulcus, or the distal penile shaft, but meatal 

openings also may be found more proximally on the penile shaft, the penoscrotal junction, 

or in the perineum (22). Depending on the extent of hypospadias and functional goals, 

treatment requires surgical reconstruction with the need for possible staged procedures and 

various grafts.

Patients with distal hypospadias may have normal spermatogenesis, but the data is 

limited. Men with proximal hypospadias, however, more commonly have significantly 

diminished semen volume, sperm count, sperm concentration, motility, and morphology 

(23). Physical changes and/or consequences of surgical correction, such as stricture 
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development, additionally may impact sexual and ejaculatory function, as well as urinary 

function (24). Sexual dysfunction is secondary to altered penile size and penile appearance, 

including persistent chordee, torsion, or cosmetic outcomes, and has been reported in up 

to 40% of these men, with limited concerns regarding organic erectile dysfunction from 

iatrogenic injury of the neurovascular bundle (24). Ejaculatory issues are seen in a third 

of men, including reduced ejaculatory force, spraying, or dribbling of their ejaculate, with 

some reports of reduced and absent ejaculate volume (24). These issues may be secondary to 

urethral anomalies (stricture or diverticula), reduced spongiosal tissue around the urethra, or 

abnormal prostate or seminal vesicle development (23). These alterations create barriers for 

natural conception and subsequent presentation for work-up of male infertility.

Ambiguous Genitalia

Ambiguous genitalia includes a wide range of phenotypes, such as micropenis, and occurs 

in 1 of 2,000–4,500 babies (25). Genitalia may favor either male or female external genital 

characteristics but can remain unclassified into one specific category depending on the 

level of virilization. Embryologically, genital differentiation begins secondary to both the 

SRY gene and müllerian-inhibiting substance. This causes the differentiation of wolffian 

(male) and regression of müllerian (female) structures. External genitalia formation begins 

at the 8th week of gestation and involves folding and elongation of cloaca and genital 

swelling, followed by complete formation at week 20 and in males is under the influence of 

testosterone and dihydrotestosterone (26).

Fertility potential of men with ambiguous genitalia is dependent on the degree of sexual 

differentiation permitting sexual intercourse as well as the presence of testicular tissue 

required for spermatogenesis. Men with micropenis are defined as those with stretch penile 

length <2.5 standard deviations below the mean (27). Due to anatomic restrictions of 

micropenis, men may be required to explore and experiment with sexual positions to permit 

satisfactory vaginal intercourse (28). Generally, scrotal anomalies will not affect fertility 

unless there are associated testicular anomalies.

Congenital Anomalies of the Kidney and Urinary Tract

Congenital anomalies of the kidney and urinary tract represent 30% of all prenatal anomalies 

(29). Common anomalies of the urinary tract include ureterovesical or ureteropelvic 

junction obstruction, vesicoureteral reflux, ureterocele, ectopic ureter, ureteral duplication, 

primary obstructive megaureter and posterior urethral valves, and renal anomalies such 

as hydronephrosis, agenesis, ectopia, dysplasia or hypoplasia, duplication, fusion, and 

supernumerary kidneys (29). Embryologically, development of the GU tract and kidneys 

begins at the 3rd week of gestation and continues until after birth (30). These developments 

rely on appropriate communication, interaction, and complex interplay between the 

embryologic metanephric blastema and ureteral bud (31).

Given the shared embryological origin, namely, the intermediate mesoderm, of common 

genetic abnormalities, men with external GU birth defects also may have congenital 

anomalies of the kidney and urinary tract. For example, improper development of the 

mesonephric duct may result in vasal agenesis (obstructive azoospermia) as well as 
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possible renal anomalies (32). There also exist reports of men with renal anomalies and 

spermatogenic failure due to an undescended testis (33). Fertility also is reduced in patients 

with significant renal anomalies because reduced sperm quality is seen in patients with renal 

failure and chronic kidney disease (34).

GENES ASSOCIATED WITH GENITOURINARY BIRTH DEFECTS

Genetic and chromosomal rearrangements beyond those identified in a karyotype are 

responsible for male GU birth defects, and subsequently may be associated with infertility 

for the reasons already described. Many of these genetic changes are due to chromosomal 

alterations that modify gene copy number, known as CNVs. One of the first such 

known CNVs was related to the Y chromosome, which contains a few of the genes 

required for testis development and spermatogenesis (35). These microdeletions are small, 

and, therefore, not detected with normal karyotype analysis, but rather using molecular 

microarray techniques, a more recently developed technology (36). These and more 

advanced techniques, including whole exome sequencing, permitted the discovery of 

additional CNVs responsible for genitourinary birth defects and male infertility. Some of 

these genes are dosage-sensitive and cause syndromic conditions, whereas others appear 

in nonsyndromic individuals and are seemingly benign. Potential gene hotspots for GU 

anomalies are illustrated in Table 1 (9).

MYC-Associated Zinc Finger Protein

MYC-associated zinc finger protein (MAZ) is located on locus 16p11.2 of the human 

genome and encodes a C2-H2 zinc finger transcription factor that is thought to compete with 

WT-1 to impact WNT signaling (37). Abnormalities of the MAZ gene occur in a dosage-

sensitive manner (38). MYC-associated zinc finger protein is expressed ubiquitously through 

the body, based on human fetal complimentary heart, lung, brain, intrabdominal organs, 

and skeletal muscle DNA, but was identified to cause GU birth defects in nonsyndromic 

patients (38). The discovery of MAZ was novel because it was considered historically a 

simple housekeeping gene, but instead gene deletion was shown to have an important role in 

GU development, including bladder development, and defects, including cryptorchidism and 

micropenis (38). MYC-associated zinc finger protein abnormalities were detected in 6.2% of 

“nonsyndromic” patients with GU birth defects compared with 0% of controls, and 0.22% of 

the general population (39). Outside of the GU system, other abnormalities based on CNVs 

of MAZ and possible nearby genes include behavioral and intellectual disabilities, speech 

and language delays, facial dysmorphisms, ocular problems, obesity, seizures, cardiac and 

gastrointestinal problems, skin changes, dental anomalies, and hirsutism (40).

CRK Like Proto-Oncogene

CRK like proto-oncogene (CRKL) encodes a SH2 and SH3 homology adaptor protein 

involved in the mediation tyrosine kinase signaling pathways (41). As opposed to a simple 

housekeeping gene, such as MAZ, CRKL is associated with the well-known 22q11.2 

deletion syndrome, known as DiGeorge syndrome. Similar to MAZ, the gene is expressed 

ubiquitously throughout the body. The role of CRKL involvement in the development of 

both the upper and lower GU tracts was a novel finding. Deletion of the gene locus is 
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responsible for upper urinary tract abnormalities but also a high incidence of cryptorchidism 

and micropenis in mouse models (41). Abnormalities of CRKL are demonstrated in 1.4% of 

nonsyndromic patients with GU defects as opposed to 0.09% of controls (39). Interestingly, 

however, the testicular architecture seen in animal models with abnormalities of this 

gene revealed testicular atresia, which did not resemble the classic spermatogenic failure 

expected in cryptorchid testes, supporting the novel role of the CRKL gene in fertility and 

spermatogenic function. These animals also demonstrated lower testis weight and lower 

sperm count (41). In keeping with phenotypic changes of DiGeorge Syndrome, CRKL 
deletion also is involved with cardiac, developmental, and craniofacial defects, as well 

as prematurity, endocrine problems, recurrent infections, liver dysfunction, gastrointestinal 

abnormalities, and hearing and ocular impairment (40).

Vesicle Associated Membrane Protein

Vesicle associated membrane protein (VAMP7) is responsible for vesicle transport from 

endosomes to lysosomes (42). The VAMP7 gene is located on chromosome Xq28 and is 

part of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor family 

(42). Vesicle associated membrane protein over-expression was detected in patients who had 

idiopathic disorders of sexual differentiation, suggesting its role in masculinization (42). In a 

gene-dosage specific manner, VAMP7 over-expression altered the subcellular localization of 

the androgen receptor, suggesting interference of ligand-dependent shuttling of the androgen 

receptor into the nucleus, thereby altering androgen-responsive gene expression, and 

impairing masculinization (42). Furthermore, VAMP7 positively impacted transcriptional 

activity of estrogen receptors, which enhanced development toward a more feminized 

pathway (42). These changes provided a novel impact of VAMP7 duplication (over-

expression) on masculinization of male GU tract development by altering steroid hormone 

action in ways never before considered. These studies provided insight into the association 

of gene-dosage changes on GU birth defects, including hypospadias, reduced penile length, 

and cryptorchidism (43). Fertility phenotypes from animal studies demonstrated diminished 

sperm motility and spermatogenic failure with aging (43). The frequency of VAMP7 
duplication in those with hypospadias and/or cryptorchidism is 3.6% (43). Other systemic 

symptoms of VAMP7 gene-dosage changes from Database of Chromosomal Imbalance 

and Phenotype in Humans using Ensemble Resources (DECIPHER) include intellectual 

disability, facial dysmorphisms, autism, delayed speech, microcephaly, seizures, spasticity, 

and endocrinopathies (40).

E2F Transcription Factor 1

E2F transcription factor 1 (E2F1), located on human chromosome locus 20q11.22, encodes 

a transcription factor of the E2F family and is involved in cell cycle regulation and 

apoptosis, exhibiting variable and, at times, opposing functions (44, 45). Its function is 

highly related to the retinoblastoma tumor suppressor protein (46). Interestingly, both 

overexpression (microduplications) and deletion (microdeletions) of E2F1 are associated 

with infertility (45). Those men with over-expression exhibited less severe phenotypes, 

such as hypospermatogenesis or cryptozoospermia, whereas more severe spermatogenic 

defects, such as Sertoli-cell only, were identified in men with microdeletion of E2F1(46,48). 

Abnormal CNV of E2F1 also is associated with cryptorchidism (47). Therefore, E2F1 
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acts in a dosage-sensitive manner and has roles in both normal spermatogenesis as well 

as normal testicular descent (45, 47). Gene-dosage changes of E2F1 are present in 7.3% 

of patients with nonobstructive azoospermia and 0% of fertile controls (45). Furthermore, 

those with E2F1 exhibit increased susceptibility to multiple tumors (lung, liver, lymphoma, 

and sarcomas) (48). A DECIPHER query illustrates that E2F1 CNVs predispose patients 

to other systemic anomalies, including facial malformations, penile chordee, intellectual 

disability, hearing impairment, autism, short stature, language delay, renal anomalies, 

cardiac abnormalities, and digit abnormalities (40).

Orthodenticle Homeobox 1

Orthodenticle homeobox 1 (OTX1) is a transcription factor located on chromosome 2p15 

and has roles in maintenance and organ regionalization, including the vertebrae brain 

(49). Although historically OTX1 was identified in neurodevelopmental phenotypes, little 

emphasis was placed on their role in male GU birth defects (49). Deletions of regions 

in this gene are associated with external genitalia birth defects, including micropenis and 

abnormal scrotum, cryptorchidism, small testis, bladder exstrophy, and epispadias, and 

kidney anomalies such as hydronephrosis and multicystic dysplastic kidney (49, 50). These 

findings may be explained by the role of OTX genes in sonic hedgehog signaling, which 

coordinates genitalia, bladder, and internal urethral development, or due to altered pituitary 

hormone release by OTX1 (49). In a small series of men with GU defects affecting testes, 

external genitalia, and kidneys, 100% displayed defects in the OTX1 gene. Additional 

clinical phenotypes of OTX1 have a relationship to its pivotal role in brain development, 

including seizures, developmental delay, and autism spectrum disorder. OTX1 also is 

associated with abnormal facial features, ocular changes, microcephaly, and malignancy 

(non-Hodgkin lymphoma, medulloblastoma, and gastrointestinal cancer) (49–54).

Y-Microdeletions and Short Stature of Homeobox

Microdeletions of the Y chromosome were among the first discovered CNVs and they 

have well-known implications in male infertility. Microdeletions of the long arm of the 

Y chromosome (AZFa, AFZb, and AZFc) are involved directly with infertility following 

analysis of men with idiopathic azoospermia and severe oligospermia and subsequent 

variable prognostic sperm retrieval rates (55). In addition to infertility, microdeletions 

of the AZF regions, which encode additional genes, including DDX3Y, ELF1AY, 

KDM5D, USP9Y, UTY, and RBMY, are involved with other systemic functions, including 

cardiovascular disease, stroke, malignancy, and neuropsychiatric disease (56).

In addition to these microdeletions, the Y chromosome is flanked by two pseudoautosomal 

regions (PAR1, on the tip of the long arm of Y chromosome, and PAR2, on the tip of the 

short arm) that undergo homologous recombination during meiosis with their counterpart on 

the X chromosome. The remainder of the male-specific region of the Y chromosome does 

not undergo homologous recombination with the X chromosome. PAR1 encodes numerous 

genes, including PLCXD1, GTPBP6, PPP2R3B, CRFL2, CSF2RA, IL3RA, SLC25A6, 

ASMTL, P2RY8, AKAP17A, ASMT, DHRSX, ZBED1, CD99, XG, and short stature of 
homeobox (SHOX) (35). PAR2 encodes fewer genes, including IL9R, HSPRY3, CXYorf1, 

and VAMP7, discussed earlier in this review (35). Within PAR1, duplication or deletion 
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of SHOX is associated with variable height and gene haploinsufficiency or duplication 

is associated with a spectrum of nonspecific stature and skeletal abnormalities, such as 

syndromic Leri-Weill dyschondrosteosis, resulting in body habitus anomalies commonly 

seen in Klinefelter syndrome (due to SHOX duplication) or Turner Syndrome (due to SHOX 
haploinsufficiency) (57).

As an extension to this, given the variable function of genes on the Y chromosome, 

abnormal fusion or translocation of the Y chromosome may result in additional phenotypes 

found in a subset of Y chromosome–microdeleted men. Isodicentric Y chromosomes 

represent one such change, and this results in a Y chromosome with two centromeres with 

associated gene duplication and/or loss depending on the regions involved (58). Therefore, 

numerous mosaic and phenotypic patterns may be seen in those with Y chromosome–

associated conditions (i.e., microdeletions or CNVs of PAR1/PAR2 genes), including 

ambiguous genitalia (up to 75%), short stature, autism, language delay, dysmorphic facial 

features, mental disorders, and growth delay (59).

Cystic Fibrosis Transmembrane Conductance Regulator

The cystic fibrosis transmembrane conductance regulator (CFTR) gene is located on 

chromosome 7. Various mutations of this gene, most commonly at the phenylalanine 

position of 508, is associated with impaired protein folding, chloride channel dysfunction, 

and infertility (60). Various phenotypes exist in those with CFTR mutations, but the most 

severe includes cystic fibrosis, a condition that includes pancreatic insufficiency, chronic 

bronchiectasis, and recurrent infections (61). In addition to gene mutations, polymorphisms, 

such as the 5T allele, also reduce protein expression, altering RNA splicing and, therefore, 

protein translation and penetrance (62). Almost all men (>97%) with CFTR mutations 

display infertility secondary to congenital absence of the vas deferens (CBAVD), resulting 

in obstructive azoospermia (63). As the vas deferens develops from the mesonephric 

duct, those without CFTR mutations and abnormal vas deferens also can have other GU 

abnormalities, such as renal agenesis (32).

Although 80% of CBAVD is related to CFTR gene mutations described, the remaining 

have no clear cause (64). Whole exome sequencing of the CFTR gene revealed the role 

of the adhesion G protein-couples receptor G2 (ADGRG2), an X-linked gene located on 

chromosome p22.13, in these azoospermic men (65). Adhesion G Protein-Couples Receptor 

G2 belongs to a family of receptors with roles throughout the body, but is localized 

specifically to efferent duct tissue, illustrating an obstructive azoospermia phenotype in the 

subset of patients who do not have associated unilateral renal agenesis (65, 66).

Kidney Ankyrin Repeat-Containing Protein 1

Kidney ankyrin repeat-containing protein 1 (KANK1) is located on chromosome 9p23 

and belongs to a family of proteins involved in cytoskeleton formation through actin 

polymerization regulation (67). Kidney ankyrin repeat-containing protein 1 impacts 

neurodevelopmental disorders and has a potential role in the development of GU birth 

defects (9, 68). It has been found in 1.4% of patients with GU defects. A DECIPHER 

query reveals an association with cryptorchidism, micropenis, hypospadias, and urethral 
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and scrotal development, as well as developmental abnormalities, cardiac problems, 

gastrointestinal issues, hypotonia, short stature, skeletal anomalies, renal abnormalities, 

vesicoureteral reflux, respiratory issues, and neurological abnormalities (40).

Potassium Channel Tetramerization Domain Containing 13

Potassium channel tetramerization domain containing 13 (KCTD13), located on 

chromosome 16p11.2, is a substrate-specific adapter of a BTB-CUL3-RBX1 (BCR) E3 

ubiquitin protein ligase complex involved in transmission of synapses (69). It has high 

expression levels in human testes (70). Mutations in KCTD13 are seen in 2.7% of patients 

with GU birth defects vs. 0% of controls and 0.22% of the general population (39). Based 

on a DECIPHER query, KCTD13 has GU phenotypes of cryptorchidism, hypospadias, 

micropenis, and vesicoureteral reflux, as well as facial dysmorphisms, short stature, seizures, 

autism, speech abnormalities, respiratory anomalies, skeletal abnormalities, obesity, and 

visual impairment (40).

SH2B Adaptor Protein 1

SH2B adaptor protein 1 (SH2B1) is located on chromosome 16p11.2 and belongs to a 

family of adaptor proteins that bind to receptor tyrosine kinases (71, 72). Deletions of 

SH2B1 gene are associated with renal abnormalities (agenesis and chronic kidney disease) 

(73). Copy number variants of SH2B1 are seen in 0.5% of patients with GU birth defects 

vs. 0% of controls. A DECIPHER query demonstrates relationships to hypospadias, as 

well as language development, facial dysmorphisms, seizures, intellectual disability, cardiac 

abnormalities, altered body habitus, neurologic abnormalities, and autism (40).

ANDROGEN-DEPENDENT CONDITIONS AND DISORDERS OF SEXUAL 

DIFFERENTIATION

In addition to specific defects of novel genes, which are implicated in the GU birth defects 

described, rarer disorders affecting androgen production, metabolism, or androgen receptor 

function lead to ambiguous and/or altered male genitalia.

Androgen Insensitivity Syndrome

Androgen insensitivity syndrome (AIS) is an intersex condition secondary to mutations of 

the androgen receptor (AR) gene, presenting as a wide array of phenotypes (partial, mild, 

or complete) (74). In patients with partial AIS, a wide phenotypic spectrum is observed for 

external genitalia; the same AR variant in patients with partial AIS may produce variable 

phenotypes secondary to either differential expressivity or other modifiable factors (75). 

Genitourinary features in patients with complete AIS include complete feminization of the 

external genitalia and infertility (76). Those with mild AIS have undervirilized external 

genitalia, including micropenis, hypospadias, and cryptorchidism, and may be able to 

conceive depending on the degree of virilization or the ability to perform surgical sperm 

retrieval (76). Other systemic features of AIS include isolated infertility, altered stature, 

endocrinopathies, abnormal hair growth, and inguinal hernias (77, 78).
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5α-Reductase Deficiency

5-α-reductase (5ARI) deficiency is a disorder of the five-alpha reductase enzyme, which 

plays a critical role in steroid metabolism and completes the conversion of testosterone to 

dihydrotestosterone (79). With a 46XY karyotype, patients with 5ARI have male internal 

sex structures (seminal vesicles, epididymis, ejaculatory ducts, and vas deferens) and testes, 

but have external ambiguous-appearing genitalia until puberty where phallic development 

generally occurs (80). In addition to reduced phallic length after puberty, 5ARI deficiency 

also is linked to hypospadias (81). In addition to GU birth defects, these men have 

impaired fertility potential due to low volume and viscous ejaculates secondary to deficient 

dihydrotestosterone and absence of liquifying serine proteases (82). These men generally do 

not experience male pattern baldness secondary to reduced dihydrotestosterone levels, but 

also have reduced facial and body hair (83).

Persistent Müllerian Duct Syndrome

Individuals with persistent müllerian duct syndrome have a 46XY karyotype along with 

presence of müllerian duct structures, including a cervix, uterus, fallopian tubes, and upper 

two thirds of the vagina (84). These individuals may exhibit cryptorchidism or testicular 

ectopia (either unilateral or bilateral) as well as hypospadias (84, 85). They are at an 

increased risk of malignancy, including teratomas, yolk sac, and embryonal tumors and often 

have hernias (84, 86). The majority of these patients are azoospermic and only rare cases of 

fertility in individuals with testis, vas deferens, and epididymis have been reported (87, 88).

Mixed Gonadal Dysgenesis

Mixed gonadal dysgenesis is a rare disorder of sexual development that may present with 

ambiguous genitalia. These individuals usually have a 45, XO/46, XY mosaic karyotype, 

and may present with hypospadias, abnormal scrotum, cryptorchidism, and micropenis 

(89). Interestingly, up to a third may have a normal karyotype, and those who do have a 

unilateral testicular gonad present are generally devoid of germ cells (3). These men also 

have cardio-renal malformations, increased risk of malignancy, such as germ cell tumors and 

gonadal blastomas, and short stature (90, 91).

Disorders of Testosterone Biosynthesis

Defects in testosterone biosynthesis result from enzymatic defects in the steroidogenesis 

pathway and include enzymes such as 17-ß-hydroxysteroid dehydrogenase, 3-ß-

hydrosteroid dehydrogenase, and steroidogenic acute regular protein (92). Depending 

on the enzyme involved, these individuals may have deficient glucocorticoid (i.e., 

cortisol), mineralocorticoid (i.e., aldosterone), and/or sex steroid (i.e., testosterone and 

dihydrotestosterone) production. Therefore, various levels of virilization and ambiguity of 

genitalia may manifest (92).

46, XX Testicular Disorder of Sex Development

This condition, which includes a 46, XX male karyotype, is a disorder of sexual 

differentiation with a rare incidence of 1 in 20,000 live births. Embryologically, gonadal sex 

determination occurs during week 7 of gestation, as a result of expression of sex determining 
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region Y gene (SRY), which results in the differentiation of the bipotential gonad into 

a testis (12). In the 46, XX male, the defect generally results from the translocation of 

SRY onto an X chromosome (93, 94). The remainder of the Y chromosome is no longer 

present. These men may have micropenis, cryptorchidism, and hypospadias, but infertility 

and azoospermia are most characteristic, secondary to the absence of the remainder of the Y 

chromosome (94, 95).

SUMMARY

The association of male infertility and GU birth defects is an emerging field of research. 

Many GU birth defects are unrecognized as a possible constellation of other systemic 

phenotypes and are overlooked by busy healthcare providers. Men with mild phenotypic 

features may present for evaluation of male factor infertility before uncovering an 

appropriate underlying genetic cause. This spectrum of phenotypic anomalies requires 

adequate education about and understanding of the genes involved and their associated 

variable normal function. Ongoing translational research is needed to continue identifying 

additional implicated genes, their dosage-sensitivity, and associated birth defects in an effort 

to improve the overall health and well-being of men with infertility.
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