Table 5.
Performance of Random Forest (RF) models averaged across 100 training runs, using different features as inputs
Input features | AUC | ACA (Class 1) |
Scl (Class 2) |
||
---|---|---|---|---|---|
TNR | FPR | TPR | FNR | ||
All 531 proteins | 0.73 | 84 | 16 | 62 | 38 |
PCA | 0.85 | 83 | 17 | 88 | 12 |
MDS | 0.49 | 63 | 37 | 34 | 66 |
ISOMAP | 0.54 | 58 | 42 | 49 | 51 |
LLE | 0.56 | 54 | 46 | 58 | 42 |
t-SNE | 0.48 | 37 | 63 | 59 | 41 |
UMAP | 0.66 | 77 | 23 | 54 | 46 |
RF-MDG | 0.77 | 68 | 32 | 86 | 14 |
RF-RFE | 0.93 | 100 | 0 | 85 | 15 |
SVM-RFE | 0.84 | 93 | 7 | 75 | 25 |
DCLDL | 1.00 | 100 | 0 | 100 | 0 |