Skip to main content
. 2023 Sep 28;26(11):108006. doi: 10.1016/j.isci.2023.108006

Table 5.

Performance of Random Forest (RF) models averaged across 100 training runs, using different features as inputs

Input features AUC ACA + (Class 1)
Scl 70+ (Class 2)
TNR(%) FPR(%) TPR(%) FNR(%)
All 531 proteins 0.73 84 16 62 38
PCA 0.85 83 17 88 12
MDS 0.49 63 37 34 66
ISOMAP 0.54 58 42 49 51
LLE 0.56 54 46 58 42
t-SNE 0.48 37 63 59 41
UMAP 0.66 77 23 54 46
RF-MDG 0.77 68 32 86 14
RF-RFE 0.93 100 0 85 15
SVM-RFE 0.84 93 7 75 25
DCLDL 1.00 100 0 100 0