Table 2.
Comparison among different types of reactors for continuous utilization of thermal energy
Reactors | Solar irradiation types | Thermochemical process | Redox material and its shape | Power | Maximum temperature | Solar conversion efficiency | Reference |
---|---|---|---|---|---|---|---|
Stacked bed-rotary reactor | Directly | Dissociation of ZnO | ZnO particles | ∼10 kW | ∼2136 K | ∼3.1% | Schunk et al.199 |
Stacked bed-mobile bed | Directly | Dissociation of H2O | ZnO powders | ∼10 kW | ∼1900 K | / | Koepf et al.200 |
Moving packed bed | Directly | Dissociation of H2O or CO2 | CeO2 particles | / | ∼1500°C | ∼30% | Ermanoski et al.201 |
Directly-irradiated reactor | Directly | Dissociation of H2O or CO2 | Ceria porous medium | / | ∼2203 K | / | Lapp et al.202 |
CR5 reactor | Directly | Dissociation of H2O | Ferrite fins | ∼36 kW | ∼2300 K | ∼29.9% | Diver et al.203 |
Solar chemical reactor | Directly | Dissociation of ZnO | ZnO particles | ∼10 kW | >2000 K | / | Haueter et al.204 |
Solar reactor | Directly | Dissociation of ZnO | ZnO particles | ∼100 kW | ∼1936 K | / | Villasmil et al.205 |
Rotary cavity-type reactor | Directly | Dissociation of H2O | ZnO powders | ∼1.4 kW | ∼1600°C | / | Chambon et al.206 |
Moving-front reactor | Directly | Dissociation of H2O | ZnO and SnO2 powders | ∼1 kW | ∼1993 K | ∼2.9% | Chambon et al.207 |
Rapid reaction aerosol flow reactor | Indirectly | Dissociation of H2O | ZnO particles | / | ∼2123 K | / | Perkins et al.208 |
Circulating fluidized bed | Directly | Dissociation of H2O | NiFe2O4/m-ZrO2 particles | 2.6 kW | ∼1200°C | <1% | Gokon et al.209 |
Rotary-type reactor | Directly | Dissociation of H2O | CeO2 or Ni, Mn-ferrite ceramics | / | ∼1623 K | / | Kaneko et al.210 |