Skip to main content
. 2023 Oct 5;26(11):108127. doi: 10.1016/j.isci.2023.108127

Table 2.

Comparison among different types of reactors for continuous utilization of thermal energy

Reactors Solar irradiation types Thermochemical process Redox material and its shape Power Maximum temperature Solar conversion efficiency Reference
Stacked bed-rotary reactor Directly Dissociation of ZnO ZnO particles ∼10 kW ∼2136 K ∼3.1% Schunk et al.199
Stacked bed-mobile bed Directly Dissociation of H2O ZnO powders ∼10 kW ∼1900 K / Koepf et al.200
Moving packed bed Directly Dissociation of H2O or CO2 CeO2 particles / ∼1500°C ∼30% Ermanoski et al.201
Directly-irradiated reactor Directly Dissociation of H2O or CO2 Ceria porous medium / ∼2203 K / Lapp et al.202
CR5 reactor Directly Dissociation of H2O Ferrite fins ∼36 kW ∼2300 K ∼29.9% Diver et al.203
Solar chemical reactor Directly Dissociation of ZnO ZnO particles ∼10 kW >2000 K / Haueter et al.204
Solar reactor Directly Dissociation of ZnO ZnO particles ∼100 kW ∼1936 K / Villasmil et al.205
Rotary cavity-type reactor Directly Dissociation of H2O ZnO powders ∼1.4 kW ∼1600°C / Chambon et al.206
Moving-front reactor Directly Dissociation of H2O ZnO and SnO2 powders ∼1 kW ∼1993 K ∼2.9% Chambon et al.207
Rapid reaction aerosol flow reactor Indirectly Dissociation of H2O ZnO particles / ∼2123 K / Perkins et al.208
Circulating fluidized bed Directly Dissociation of H2O NiFe2O4/m-ZrO2 particles 2.6 kW ∼1200°C <1% Gokon et al.209
Rotary-type reactor Directly Dissociation of H2O CeO2 or Ni, Mn-ferrite ceramics / ∼1623 K / Kaneko et al.210