Table 3.
Comparison among different types of reactors for intermittent utilization of thermal energy
Reactors | Solar irradiation types | Thermochemical process | Redox material and its shape | Power | Maximum temperature | Solar conversion efficiency | Reference |
---|---|---|---|---|---|---|---|
Packed bed reactor | Directly | Dissociation of H2O | Ni0.5Mn0.5Fe2O4 powder | ∼15 kW | ∼1373 K | / | Tamaura et al.218 |
Internally circulating fluidized bed | Directly | Dissociation of H2O | NiFe2O4/m-ZrO2 particles | ∼1.2 kW | / | <1% | Gokon et al.219 |
Internally circulating fluidized bed | Directly | Dissociation of H2O | NiFe2O4/m-ZrO2 particles | ∼1 kW | ∼1500°C | / | Gokon et al.220 |
Windowed solar chemical reactor | Directly | / | Coal coke particles | ∼0.94 kW | ∼850°C | 12% | Kodama et al.221 |
Stacked bed-Fixed bed | Directly | Dissociation of H2O | Ferrite-coated monoliths | ∼100 kW | ∼1473 K | / | Roeb et al.222 |
Solar receiver-reactors | Directly | Dissociation of H2O | Iron-oxides coated on ceramic substrate | ∼100 kW | 1200°C | / | Neises et al.223 |
Monolithic reactor | Directly | Dissociation of H2O | Ferrites ceramic honeycombs | / | 1300°C | / | Agrafiotis et al.224 |
Monolithic reactor | Directly | Dissociation of H2O | Monolith coated with ZnxFe1-xO | / | / | / | Roeb et al.225 |
Honeycomb reactor | Directly | Dissociation of CO2 | Zirconia and iron oxide ceramic honeycombs | / | 1200°C | / | Walker et al.226 |
Solar cavity reactor | Directly | Dissociation of H2O | / | ∼1 MW | 1020°C | / | Houaijia et al.227 |
Foam reactor | Directly | Dissociation of H2O | Fe3O4 or NiFe2O4 reticulated ceramic foam | ∼0.7 kW | 1773 K | / | Gokon et al.228 |
Quartz reactor | Directly | Dissociation of H2O | Fe3O4/c-YSZ particles | 7 kW | 1450°C | / | Gokon et al.100 |
Foam reactor | Directly | Dissociation of H2O | NiFe2O4/m-ZrO2 or Fe3O4/m-ZrO2 powders | 7 kW | 1450°C | / | Gokon et al.22 |