Skip to main content
. 2023 Oct 5;26(11):108127. doi: 10.1016/j.isci.2023.108127

Table 3.

Comparison among different types of reactors for intermittent utilization of thermal energy

Reactors Solar irradiation types Thermochemical process Redox material and its shape Power Maximum temperature Solar conversion efficiency Reference
Packed bed reactor Directly Dissociation of H2O Ni0.5Mn0.5Fe2O4 powder ∼15 kW ∼1373 K / Tamaura et al.218
Internally circulating fluidized bed Directly Dissociation of H2O NiFe2O4/m-ZrO2 particles ∼1.2 kW / <1% Gokon et al.219
Internally circulating fluidized bed Directly Dissociation of H2O NiFe2O4/m-ZrO2 particles ∼1 kW ∼1500°C / Gokon et al.220
Windowed solar chemical reactor Directly / Coal coke particles ∼0.94 kW ∼850°C 12% Kodama et al.221
Stacked bed-Fixed bed Directly Dissociation of H2O Ferrite-coated monoliths ∼100 kW ∼1473 K / Roeb et al.222
Solar receiver-reactors Directly Dissociation of H2O Iron-oxides coated on ceramic substrate ∼100 kW 1200°C / Neises et al.223
Monolithic reactor Directly Dissociation of H2O Ferrites ceramic honeycombs / 1300°C / Agrafiotis et al.224
Monolithic reactor Directly Dissociation of H2O Monolith coated with ZnxFe1-xO / / / Roeb et al.225
Honeycomb reactor Directly Dissociation of CO2 Zirconia and iron oxide ceramic honeycombs / 1200°C / Walker et al.226
Solar cavity reactor Directly Dissociation of H2O / ∼1 MW 1020°C / Houaijia et al.227
Foam reactor Directly Dissociation of H2O Fe3O4 or NiFe2O4 reticulated ceramic foam ∼0.7 kW 1773 K / Gokon et al.228
Quartz reactor Directly Dissociation of H2O Fe3O4/c-YSZ particles 7 kW 1450°C / Gokon et al.100
Foam reactor Directly Dissociation of H2O NiFe2O4/m-ZrO2 or Fe3O4/m-ZrO2 powders 7 kW 1450°C / Gokon et al.22